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Abstract

For a rational homology 3-sphere Y with a Spinc structure s, we show that simple algebraic

manipulations of our construction of equivariant Seiberg-Witten Floer homology in [5] lead to a

collection of variants HF
SW;�

�;U(1)
(Y; s), HF

SW;1

�;U(1)
(Y; s) HF

SW;+

�;U(1)
(Y; s), dHF

SW

�
(Y; s) and HFSW

red;�(Y; s)

which are topological invariants. We establish a long exact sequence relating HF
SW;�

�;U(1)
(Y; s) and

HF
SW;1

�;U(1)
(Y; s). We show they satisfy a duality under orientation reversal, and we explain their

relation to the equivariant Seiberg-Witten Floer (co)homologies introduced in [5]. We conjecture

the equivalence of these versions of equivariant Seiberg-Witten Floer homology with the Heegaard

Floer invariants introduced by Ozsv�ath and Szab�o.

Key words: rational homology 3-spheres, equivariant Seiberg-Witten Floer homology, Spinc struc-

tures, topological invariants.

Mathematics Subject Classi�cation. Primary: 57R58. Secondary: 57R57, 58J10.

1 Introduction

For any rational homology 3-sphere Y with a Spinc structure s, we constructed in [5] an equivari-

ant Seiberg-Witten Floer homology HF SW
�;U(1)(Y; s), which is a topological invariant. In this paper, we

will generalize this construction to provide a collection of equivariant Seiberg-Witten Floer homologies

HF
SW;�
�;U(1)

(Y; s);HF
SW;1
�;U(1)

(Y; s);HF
SW;+
�;U(1)

(Y; s);dHF SW

� (Y; s) and HF SW
red;�(Y; s), all of which are topologi-

cal invariants, such that HF
SW;+
�;U(1)

(Y; s) is isomorphic to the equivariant Seiberg-Witten Floer homology

HF SW
�;U(1)(Y; s) constructed in [5]. The construction utilizes the U(1)-invariant forms on U(1)-manifolds

twisted with coeÆcients in the Laurent polynomial algebra over integers.

In analogy to Austin and Braam's construction of equivariant instanton Floer homology in

[1], the equivariant Seiberg-Witten Floer homology HF SW
�;U(1)(Y; s) is the homology of the complex
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(CF SW
�;U(1)(Y; s);D), where CF

SW
�;U(1)(Y; s) is generated by equivariant de Rham forms over all U(1)-orbits

of the solutions of 3-dimensional Seiberg-Witten equations on (Y; s) modulo based gauge transforma-

tions (Cf.[5]). More speci�cally,

CF
SW
�;U(1)(Y; s) =

M
a2M�

Y
(s)

Z[
]
 (Z�a�Z1a)� Z[
]
 Z1�; (1)

where MY (s) = M�
Y (s) [ f�g is the equivalence classes of solutions to the Seiberg-Witten equations

for a good pair of metric and perturbations, consists of the irreducible monopoles M�
Y (s) and the

unique reducible monopole �. We used the notation �a to denote a 1-form on Oa
�= S1, such that the

cohomology class [�a] is an integral generator of H1(Oa). Similarly, we denote by 1a the 0-form given

by the constant function.

Each generator is endowed with a grading such that, for any k � 0,

gr(
k 
 �a) = 2k + gr(a); gr(
k 
 1a) = 2k + gr(a) + 1; and gr(
k 
 1�) = 2k; (2)

where gr : M�
Y (s) ! Z is the relative grading with respect to the reducible monopole �. This corre-

sponds to grading equivariant de Rham forms on each orbit Oa by codimension (Cf.[5] x5 for details).

The di�erential operator D can be expressed explicitly in components as the form:

D(
k 
 �a) =
X

b2M�
Y
(s)

gr(a)�gr(b)=1

nab

k 
 �b +

X
c2M�

Y
(s)

gr(a)�gr(c)=2

mac

k 
 1c � 
k�1 
 1a

+na�

k 
 1�(if gr (a) =1);

D(
k 
 1a) = �
X

b2M�
Y
(s)

gr(a)�gr(b)=1

nab

k 
 1b;

D(
k 
 1�) =
X

d2M�
Y
(s)

gr(d)=�2

n�d

k 
 1d:

(3)

where nab; na� and n�d is the counting of 
owlines from a to b (if gr(a) � gr(b) = 1), from a to � (if

gr(a) = 1) and from � to d (if gr(d) = �2), and mac (if gr(a) � gr(c) = 2) is described as a relative

Euler number associated to the 2-dimensional moduli space of 
owlines from a to c (Cf. Lemma 5.7

of [5]). In the next section, we shall brie
y review the construction and various relations among the

coeÆcients, as established in [5]. These identities ensure that D2 = 0. Notice that, in the complex

CF SW
�;U(1)(Y; s) and in the expression of the di�erential operator, only terms with non-negative powers

of 
 are considered. We modify the construction as follows.
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De�nition 1.1. Let CF
SW;1
�;U(1)

(Y; s) be the graded complex generated by

f
k 
 �a;

k 
 1a;


k 
 1� : a 2M
�
Y (s); k 2 Z:g

with the grading gr and the di�erential operator D given by (2) and (3) respectively. Let CF
SW;�
�;U(1)

(Y; s) be

the subcomplex of CF
SW;1

�;U(1)
(Y; s), generated by those generators with negative power of 
. The quotient

complex is denoted by CF
SW;+
�;U(1)

(Y; s). Their homologies are denoted by HF
SW;1
�;U(1)

(Y; s), HF
SW;�
�;U(1)

(Y; s)

and HF
SW;+
�;U(1)

(Y; s) respectively.

The main results in this paper relate these homologies to the equivariant Seiberg-Witten-Floer

homology HF SW
�;U(1)(Y; s) and cohomology HF

SW;�
U(1)

(Y; s) constructed in [5] and establish some of their

main properties.

Theorem 1.2. For any rational homology 3-sphere Y with a Spinc structure s 2 Spinc(Y ), these

homologies satisfy the following properties:

1. HF
SW;1
�;U(1)

(Y; s) �= Z[
;
�1].

2. HF
SW;+
�;U(1)

(Y; s) �= HF SW
�;U(1)(Y; s) where HF SW

�;U(1)(Y; s) is the equivariant Seiberg-Witten Floer ho-

mology for (Y; s) constructed in [5].

3. HF
SW;�
�;U(1)

(Y; s) �= HF
SW;�
U(1)

(�Y; s) where HF
SW;�
U(1)

(�Y; s) is the equivariant Seiberg-Witten Floer

cohomology for (�Y; s) constructed in [5].

4. There exists a long exact sequence

� � � ! HF
SW;�
�;U(1)

(Y; s)
l� // HF SW;1

�;U(1)
(Y; s)

�� // HF SW;+
�;U(1)

(Y; s)
Æ�// HF SW;�

��1;U(1)
(Y; s)! � � � (4)

relating these homologies. Moreover, HF
SW;�
�;U(1)

(Y; s), HF
SW;1
�;U(1)

(Y; s), HF
SW;+
�;U(1)

(Y; s) and

HF SW
red;�(Y; s) = Coker(��) �= Ker(l��1) are all topological invariants of (Y; s).

5. There is a u-action on HF
SW;�
�;U(1)

(Y; s), HF
SW;1
�;U(1)

(Y; s) and HF
SW;+
�;U(1)

(Y; s) respectively which de-

creases the degree by two, and is related to the cutting down moduli spaces of 
owlines by a

geometric representative of a degree 2 characteristic form. The long exact sequence (4) is a long

exact sequence of Z[u]-modules.
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6. There is a homology group dHF SW

� (Y; s), which is also a topological invariant of (Y; s), such that

the following sequence is exact:

� � � !dHF
SW

�
(Y; s) // HF

SW;+

�;U(1)
(Y; s)

u // HF
SW;+

��2;U(1)
(Y; s) //

dHF
SW

��1(Y; s)! � � � (5)

and that dHF SW
(Y; s) is non-trivial if and only if HF

SW;+
�;U(1)

(Y; s) is non-trivial.

The u-action in the main theorem is induced from a u-action on the chain complex

u : CF
SW;1
�;U(1)

! CF
SW;1
�;U(1)

;

which decreases the degree by 2. We will show that this u-action is homotopic to the obvious 
�1

action on the chain complex CF
SW;1

�;U(1)
. Thus, the induced u-action on HF

SW;�

�;U(1)
(Y; s) endows them with

Z[u]-module structures.

Let dCFSW

� (Y; s) be the subcomplex of CF
SW;+
�;U(1)

(Y; s) such that the following sequence is a short

exact sequence of chain complexes:

0!dCFSW

� (Y; s)
// CF SW;+

�;U(1)
(Y; s)


�1// CF SW;+
�;U(1)

(Y; s)! 0

We can de�ne dHF SW

� (Y; s) to be the homology of dCF SW

� (Y; s).

In recent work [7] [8], Ozsv�ath and Szab�o introduced Heegaard Floer invariants HF�� (Y; s),

HF1� (Y; s), dHF �(Y; s), and HFred;�(Y; s), with exact sequences relating them. In view of their con-

struction, the result of Theorem 1.2, together with the identi�cation of our HF
SW;1

�;U(1)
(Y; s) and the

HF1� (Y; s) of Ozsv�ath and Szab�o, suggest the following conjecture.

Conjecture 1.3. For any rational homology 3-sphere Y with a Spinc structure s 2 Spinc(Y ), there are

isomorphisms

HF
SW;+
�;U(1)

(Y; s) �= HF+
� (Y; s); HF

SW;�
�;U(1)

(Y; s) �= HF�� (Y; s);

dHF SW

� (Y; s) �= dHF �(Y; s); HF SW
red;�(Y; s)

�= HFred;�(Y; s):

Acknowledgments This research was supported in part by the Humboldt Foundation's Sofja Ko-

valevskaya Award.
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2 Review of equivariant Seiberg-Witten Floer homology

In this section, we recall some of basic ingredients in the de�nition of the equivariant Seiebrg-Witten

Floer homology from [5] (See [5] for all the details).

Let (Y; s) be a rational homology 3-sphere Y with a Spinc structure s 2 Spinc(Y ). For a good

pair of metric and perturbation (a co-closed imaginary-valued 1-form � ) on Y , the 3-dimensional

Seiebrg-Witten equations on (Y; s) (Cf. [2] [3] [4] [5]):
8<
:

�FA = �( ; ) + �

=@A = 0;
(6)

for a pair of Spinc connection A and a spinor  , have only �nitely many irreducible solutions (mod-

ulo the gauge transformations), denoted by M�
Y (s) the set of equivalence classes of irreducible so-

lutions to (6), and � is the unique reducible solution (modulo the gauge transformations). Write

MY (s) =M�
Y (s) [ f�g:

Gauge classes of �nite energy solutions to the 4-dimensional Seiebrg-Witten equations, perturbed

as in [2] [3] [5], can be regarded as moduli spaces of 
owlines of the Chern-Simons-Dirac functional

on the gauge equivalence classes of Spinc connections and spinors for (Y; s). These can be partitioned

into moduli spaces of 
owlines between pairs of critical points from MY (s). Each is a smooth oriented

manifold which can be compact�ed to a smooth manifold with corners by adding broken 
owlines that

split through intermediate critical points.

The spectral 
ow of the Hessian operator of the Chern-Simons-Dirac functional de�nes a relative

grading on MY (s):

gr(�; �) : MY (s)�MY (s)! Z:

In particular, using the unique reducible point � in MY (s), there is a Z-lifting of the relative grading

given by gr(a) = gr(a; �).

Let a be an irreducible monopole in MY (s), then for any b 6= a in MY (s), the moduli space of


owlines from a to b, denoted by M(a; b) has dimension gr(a)� gr(b) > 0 (if non-empty). The moduli

space of 
owlines from � to d 2 M�
Y (s), denoted by M(�; d) has dimension �gr(d) � 1 > 0 (if non-

empty). Note that all these moduli spaces of 
owlines admit an R-action given by the R-translation of


owlines: the corresponding quotient spaces are denoted by cM(a; b) and cM(�; d), respectively.
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For any irreducible critical points a and c in MY (s) with gr(a) � gr(c) = 2, we can construct a

canonical complex line bundle over M(a; c) and a canonical section as follows (see section 5.3 in [5]).

Choose a base point (y0; t0) on Y � R, and a complex line `y0 in the �ber Wy0 of the spinor bundle

W over y0 2 Y . We choose `y0 so that it does not contain the spinor part  of any irreducible critical

point. Since there are only �nitely many critical points we can guarantee such choice exists. Denote

the based moduli space of M(a; c) by M(Oa; Oc) as in [5], where Oa and Oc are the U(1)-orbits of

monopoles on the based con�guration space. We consider the line bundle

Lac =M(Oa; Oc)�U(1) (Wy0=`y0)!M(a; c) (7)

with a section given by

s([A;	]) = ([A;	];	(y0; t0)): (8)

For a generic choice of (y0; t0) and `y0 , the section s of (8) has no zeroes on the boundary strata of

the compacti�cation of M(a; c). This determines a trivialization of Lac away from a compact set in

M(a; c). The line bundle Lac over M(a; c), with the trivialization ' speci�ed above, has a well-de�ned

relative Euler class (Cf. Lemma 5.7 in [5]).

De�nition 2.1. 1. For any two irreducible critical points a and b in MY (s) with gr(a)� gr(b) = 1,

we de�ne nab := #(M̂(a; b)), the number of 
owlines in M(a; b) counting with orientations.

Similarly, for any a 2 MY (s) with gr(a) = 1 and any d 2 MY (s) with gr(d) = �2, we de�ne

na� := #(M̂(a; �)) and n�d := #(M̂(�; b)), respectively.

2. For any two irreducible critical points a and c in MY (s) with gr(a)� gr(c) = 1, we de�ne mac to

be the relative Euler number of the canonical line bundle Lac (7) with the canonical trivialization

given by (8).

The following proposition states various relations satis�ed by the integers de�ned in De�nition 2.1,

whose proof can be found in Remark 5.8 of [5].

Proposition 2.2. 1. For any irreducible critical point a inM�
Y (s) and any critical point c inMY (s)

with gr(a)� gr(c) = 2, we have the following identity:

X
b2M�

Y
(s)

gr(a)�gr(b)=1

nabnbc = 0:
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2. Let a and d be two irreducible critical points with gr(a) � gr(d) = 3. Assume that all the critical

points c with gr(a) > gr(c) > gr(d) are irreducible. Then we have the identity

X
c1:gr(a)�gr(c1)=1

na;c1mc1;d �
X

c2:gr(c2)�gr(d)=1

ma;c2nc2;d = 0:

When gr(a) = 1 and gr(d) = �2, we have the identity

X
c1:gr(c1)=0

na;c1mc1;d + na�n�d �
X

c2:gr(c2)=�1

ma;c2nc2;d = 0:

With the help of this Proposition, we can check that the equivariant Seiberg-Witten-Floer complex

CF SW
�;U(1)(Y; s) as given in (1) with the grading and the di�erential operator given by (2) and (3) is

well-de�ned, and we denote its homology by HF SW
�;U(1)(Y; s). The equivariant Seiberg-Witten-Floer

cohomology, denoted by HF
SW;�

U(1)
(Y; s), is the homology of the dual complex Hom(CF SW

�;U(1)(Y; s);Z).

The main result in [5] shows that the equivariant Seiberg-Witten Floer homology HF SW
�;U(1)(Y; s) and

cohomology HF
SW;�
U(1)

(Y; s) are topological invariants of (Y; s).

3 Variants of equivariant Seiberg-Witten Floer homology

As mentioned in the introduction, we will generalize the construction of the equivariant Seiberg-Witten

Floer homology in several ways.

First, we denote by CF
SW;1
�;U(1)

(Y; s) the graded complex generated by

f
k 
 �a;

k 
 1a;


k 
 1� : a 2M
�
Y (s); k 2 Z:g

More precisely, for any irreducible critical orbits Oa, we set

C1
�;U(1)(Oa) = Z[
;
�1]

�0(Oa)

:=
L

k2Z

�
Z
k
 �a + Z
k
 1a

�

with the grading gr(
k 
 �a) = 2k + gr(a) and gr(
k 
 1a) = 2k + gr(a) + 1, and we set

C
1

�;U(1)(�) =
M
k2Z

Z:
k
 1�

with the grading gr(
k 
 1�) = 2k.
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We then consider

CF
SW;1
�;U(1)

(Y; s) =
M

a2MY (s)

Z[
;
�1]
 

��dim(Oa)
0 (Oa); (9)

with the grading and the di�erential operator given by (2) and (3) respectively. That is, CF
SW;1
�;U(1)

(Y; s)

is given by

M
a2MY (s)

C
1

�;U(1)(Oa)

=
M

a2M�
Y
(s)

C
1

�;U(1)(Oa)� C
1

�;U(1)(�):

Theorem 3.1. De�ne HF
SW;1
�;U(1)

(Y; s) to be the homology of (CF
SW;1
�;U(1)

(Y; s);D). Then we have

HF
SW;1

�;U(1)
(Y; s) �= Z[
;
�1]:

Proof. Consider the �ltration of CF
SW;1
�;U(1)

(Y; s) according to the grading of the critical points

FnC
1

�;U(1) :=
M

gr(a)�n

C
1

�;U(1)(Oa)

the corresponding spectral sequence Er
kl. The �ltration is exhaustive, that is,

CF
SW;1
�;U(1)

(Y; s) =
[
n

FnC
1

�;U(1);

and

� � � � Fn�1C
1

�;U(1) � FnC
1

�;U(1) � Fn+1C
1

�;U(1) � � � � � CF
SW;1
�;U(1)

(Y; s):

Moreover, by the compactness of the moduli space of critical orbits, the set of indices gr(a) is

bounded from above and below, hence the �ltration is bounded. Thus, the spectral sequence converges

to HF
SW;1
�;U(1)

(Y; s).

We compute the E0-term:

E0
kl = FkC

1

k+l;U(1)=Fk�1C
1

k+l;U(1)

=
M

a2MY (s):gr(a)=i�k

C
1

k+l�i;U(1)(Oa)=
M

a2MY (s):gr(a)=i�k�1

C
1

k+l�i;U(1)(Oa)

=
M

a2MY (s):gr(a)=k

C
1

l;U(1)(Oa):
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For k 6= 0 this complex is just the direct sum of the separate complexes (C1
�;U(1)(Oa); @U(1)) on each

orbit Oa with gr(a) = k:

� � � ! Z:

 1a
0
! Z:

 �a

�1
! Z:1
 1a

0
! Z:1
 �a

�1
! Z:
�1
 1a ! � � � (10)

In the case k = 0 we have

E
0
0;l = C

1

l;U(1)(�)�
M

a2M�
Y
(s):gr(a)=0

C
1

l;U(1)(Oa);

which again is a direct sum of the complexes (C1
�;U(1)(Oa); @U(1)), here @U(1) is the equivariant de Rham

di�erential, and of the complex with generators 
r 
 1�i in degree l = 2r and trivial di�erentials.

We then compute the E1
pq term directly: we have

E
1
kl = Hk+l(E

0
k;�) =

8><
>:
Z:
r 
 1� k = 0; l = 2r

0 k 6= 0;

since each complex (10) is acyclic. Thus, the only non-trivial E1-terms are of the form E1
0l = Z:
r
1�,

l = 2r, with trivial di�erentials, so that the spectral sequence collapses and we obtain the result.

3.1 Long exact sequence

De�nition 3.2. Let CF
SW;�
�;U(1)

(Y; s) be the subcomplex of CF
SW;1
�;U(1)

(Y; s), generated by

f
k 
 �a;

k 
 1a;


k 
 1� : a 2M
�
Y (s); k 2 Z and k < 0g;

whose homology groups are denoted by HF
SW;�
�;U(1)

(Y; s). The quotient complex is denoted by

CF
SW;+
�;U(1)

(Y; s), with the homology groups denoted by HF
SW;+
�;U(1)

(Y; s).

Theorem 3.3. 1. HF
SW;+
�;U(1)

(Y; s) �= HF SW
�;U(1)(Y; s), where HF

SW
�;U(1)(Y; s) is the equivariant Seiberg-

Witten-Floer homology de�ned in [5].

2. There is an exact sequence of Z-modules which relates these variants of equivariant Seiberg-Witten-

Floer homologies:

� � � ! HF
SW;�
�;U(1)

(Y; s)
l� // HF SW;1

�;U(1)
(Y; s)

�� // HF SW;+
�;U(1)

(Y; s)
Æ�// HF SW;�

��1;U(1)
(Y; s)! � � �
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Proof. It is easy to see that CF
SW;+
�;U(1)

(Y; s) = CF SW
�;U(1)(Y; s), with the same grading and di�erentials,

hence HF
SW;+
�;U(1)

(Y; s) �= HF SW
�;U(1)

(Y; s). The long exact sequence in homology is induced by the short

exact sequence of chain complexes:

0! CF
SW;�

�;U(1)
(Y; s)! CF

SW;1

�;U(1)
(Y; s)! CF

SW;+
�;U(1)

(Y; s)! 0:

From the above long exact sequence, we can de�ne

HF SW
red;�(Y; s) = Coker(��) �= HF

SW;+
�;U(1)

(Y; s)=Ker(Æ�)

�= Im(Æ�) �= Ker(l��1):
(11)

3.2 The spectral sequence for HF
SW;+
�;U(1)(Y; s)

We consider again the �ltration by index of critical orbits,

FnC
+
�;U(1)

:=
M

gr(a)�n

C
+
�;U(1)

(Oa);

for

C
+
�;U(1)

(Oa) = Z[
]
 

��dim(Oa)
0 (Oa):

We have

E0
kl = FkC

+
k+l;U(1)

=Fk�1C
+
k+l;U(1)

=
L

gr(a)=k C
+
l;U(1)

(Oa):

This is a direct sum of the complexes

� � �
�1
! Z:

 1a

0
! Z:

 �a

�1
! Z:1
 1a

0
! Z:1
 �a ! 0; (12)

over each orbit Oa
�= S1 and, in the case k = 0, the complex with generators 
r 
 1� in degree l = 2r,

and trivial di�erentials.

Thus, we obtain that E1
pq = Hp+q(E

0
p�) is of the form

E
1
pq =

8><
>:

0 q > 0

Z:1
 �a q = 0; gr(a) = k

10



for k 6= 0, and

E
1
0q =

8><
>:
Z:
r 
 1� q = 2r > 0

Z:1
 �a � Z:1
 1� q = 0; gr(a) = 0:

The di�erential d1 : E1
p;q ! E1

p�1;q is of the form

d1(1
 �a) = nab1
 �b

+na�1
 1� (if gr(a) = 1)

Thus, we obtain

E
2
pq =

8>>>>>>>>>><
>>>>>>>>>>:

HF SW
p (Y; s) p 6= 0; q = 0

Ker(�1) p = 1; q = 0

HF SW
0 (Y; s) � T0 p = 0; q = 0

Z:
r 
 1� p = 0; q = 2r > 0:

Here HF SW
� (Y; s) denotes the non-equivariant (metric and perturbation dependent) Seiberg{Witten

Floer homology. This is the homology of the complex with generators 1 
 �a in degree gr(a) and

boundary coeÆcients nab for gr(a)� gr(b) = 1. We also denoted by �1 the map

�1 : HF
SW
1 (Y; s)! Z:1
 1�;

�1(
X

xa1
 �a) =
X

xana�1
 1�;

where the coeÆcients xa satisfy
P
xanab = 0. Finally, the term T0 denotes the term

T0 = Z:1
 1�=Im(�1):

Notice then that the boundary d2 : E2
p;q ! E2

p�2;q+1 is trivial, hence the E
3
p;q terms are disposed as

in the diagram:

� � � 0 0 0 0 Z:
2

 1� 0 0 � � �

� � � 0 0 0 0 0 0 0 � � �

� � � 0 0 0 0 Z:

 1� 0 0 � � �

� � � 0 0 0 0 0 0 0 � � �

� � � HFSW
4 HFSW

3

d3

55kkkkkkkkkkkkkkkkkkkkkk
HFSW

2 Ker(�1) HFSW
0 � T0 HFSW

�1 HFSW
�2 � � �

11



The di�erential d3 : E3
p;q ! E3

p�3;q+2 is given by the expression

d
3([
X

xa1
 �a]) =
X

xamacnc�

 1�; (13)

for gr(a) � gr(c) = 2. The expression is obtained by considering the unique choice of a representative

of the class [
P
xa1
 �a] in E

3
p;q whose boundary (3) de�nes a class in E

3
p�3;q+2.

The di�erential d4 : E4
p;q ! E4

p�4;q+3 is again trivial, and we obtain the E5
pq of the form

� � � 0 0 0 0 Z:
2

 1� 0 0 � � �

� � � 0 0 0 0 0 0 0 � � �

� � � 0 0 0 0 T1 0 0 � � �

� � � 0 0 0 0 0 0 0 � � �

HFSW
5

d5

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
HFSW

4 Ker(�3) HFSW
2 Ker(�1) HFSW

0 � T0 HFSW
�1 HFSW

�2 � � �

where again we denote by T1 the term

T1 = Z:

 1�=Im(�3):

Thus, by iterating the process, we observe that all the di�erentials d2k : E2k
p;q ! E2k

p�2k;q+2k+1 are

trivial and the di�erentials d2k+1 : E2k+1
p;q ! E

2k+1
p�2k�1;q+2k consists of one map for p = 2k + 1, q = 0:

�2k+1 : HF
SW
2k+1 ! Z:
k 
 1�;

induced by

�2k+1(
X

xa1
 �a) =
X

xamaa2k�1ma2k�1a2k�3 � � �ma3a1na1�

k 
 1�:

Here we have gr(a) = 2k+1 and gr(ar) = r. Notice that these maps agree with the morphism ��, which

is obtained in [5] as the connecting homomorphism in the long exact sequence relating equivariant and

non-equivariant Seiberg{Witten Floer homologies.

We thus obtain the following structure theorem for equivariant Seiberg{Witten Floer homology.

12



Theorem 3.4. The equivariant Seiberg{Witten Floer homology HF
SW;+
�;U(1)

(Y; s) has the form

HF
SW;+
�;U(1)

(Y; s) =

8>>>>>><
>>>>>>:

Ker(�2k+1) � = 2k + 1 > 0

HF SW
2k (Y; s)� Tk � = 2k � 0

HF SW
� (Y; s) � < 0

where Tk is the term

Tk = Z:
k
 1�=Im(�2k+1):

This result re�nes the long exact sequence obtained in [5]:

HF SW
�;U(1)(Y; s)

i�// HF SW
� (Y; s; g; �)

��ttjjjjjjjjjjj

Z[
]

j�
OO

Similar results can be obtained for HF
SW;�
�;U(1)

(Y; s).

3.3 Topological invariance

Note that the de�nitions of these homologies depend on the Seiberg-Witten equations, which use the

metric and perturbation on (Y; s). By the result of [5], we know that HF
SW;+
�;U(1)

(Y; s) �= HF SW
�;U(1)(Y; s) is

a topological invariant of (Y; s), we �rst recall this topological invariance as stated in Theorem 6.1 [5].

Theorem 3.5. (Theorem 6.1 [5]) Let (Y; s) be a rational homology sphere with a Spinc structure. Sup-

pose given two metrics g0 and g1 on Y and perturbations �0 and �1 such that Ker(=@
g0
�0) = Ker(=@

g1
�1) = 0,

so that the corresponding monopole moduli spaces MY (s; g0; �0) and MY (s; g1; �1) consist of �nitely

many isolated points. Then there exists an isomorphism between the equivariant Seiberg-Witten Floer

homologies HF SW
�;U(1)(Y; s; g0; �0) and HF

SW
�;U(1)(Y; s; g1; �1), with a degree shift given by the spectral 
ow

of the Dirac operator =@
gt
�t along a path of metrics and perturbations connecting (g0; �0) and (g1; �1).

That is, if the complex spectral 
ow along the path (gt; �t) is denoted by SFC (=@
gt
�t), then for any k 2 Z,

HF
SW
k;U(1)(Y; s; g0; �0)

�= HF
SW
k+2SFC(=@

gt
�t
);U(1)

(Y; s; g1; �1):

From Theorem 3.1, we know that

HF
SW;1
�;U(1)

(Y; s) �= Z[
;
�1]
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is independent of (Y; s), up to a degree shift as given in Theorem 3.5. Thus, applying the �ve lemma

to the long exact sequence in Theorem 3.3, we obtain that HF
SW;�
�;U(1)

(Y; s) and HF SW
red;�(Y; s) are also

topological invariants of (Y; s).

Theorem 3.6. HF
SW;�
�;U(1)

(Y; s) and HF SW
red;�(Y; s) are topological invariants of (Y; s), in the sense that,

given any two metrics g0 and g1 on Y and perturbations �0 and �1, with Ker(=@
g0
�0) = Ker(=@

g1
�1) = 0,

there exist isomorphisms

HF
SW;�
k;U(1)

(Y; s; g0; �0) �= HF
SW;�

k+2SFC(=@
gt
�t
);U(1)

(Y; s; g1; �1)

HF SW
red;k(Y; s; g0; �0)

�= HF SW
red;k+2SFC(=@

gt
�t
)
(Y; s; g1; �1):

Here SFC (=@
gt
�t) denotes the complex spectral 
ow of the Dirac operator =@

gt
�t along the path (gt; �t).

4 Properties of equivariant Seiberg-Witten Floer homologies

In this section, we brie
y discuss some of the algebraic structures and properties of the equivariant

Seiberg-Witten Floer homologies de�ned in the previous section.

Note that for any irreducible critical points a and b in M�
Y (s), the associated integer mac is the

counting of points in the geometric representative of the relative �rst Chern class of the canonical line

bundle (7) overM(a; c), we can apply this fact to de�ne a u-action on the chain complex CF
SW;1

�;U(1)
(Y; s)

u : CF
SW;1

�;U(1)
(Y; s) �! CF

SW;1

�;U(1)
(Y; s)

which decreases the grading by two. The action is given in terms of its actions on generators as follows:

u(
n 
 �a) =
X

c2M�(Y;s)

gr(a)�gr(c)=2

mac

n 
 �c:

u(
n 
 1a) =

8>>>>><
>>>>>:

X
c2M�(Y;s)

gr(a)�gr(c)=2

mac

n 
 1c if gr(a) 6= 1

X
c2M�(Y;s)

gr(c)=�1

mac

n 
 1c + na�


n 
 1� if gr(a) = 1

u(
n 
 1�) =
X

d2M�
Y
(s)

gr(d)=�2

n�d

n � �d +
n�1 
 1�:

(14)
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Proposition 4.1. The u-action de�ned (14) on the chain complex CF
SW;1
�;U(1)

(Y; s) is homotopic to the


�1-action acting on CF
SW;1
�;U(1)

(Y; s). The induced actions on CF
SW;�
�;U(1)

(Y; s) de�ne Z[u]-module struc-

tures on HF
SW;�

�;U(1)
(Y; s).

Proof. De�ne H : CF
SW;1

�;U(1)
(Y; s) �! CF

SW;1

�;U(1)
(Y; s) by its actions on the generators as follows:

H(
n 
 �a) = 0;

H(
n 
 1a) = 
n 
 �a;

H(
n 
 1�) = 0:

Then it is a direct calculation to show that we have:

(u� 
�1)(
k 
 �a) = mac

k 
 �c � 
k�1 
 �a = (DH +HD)(
k 
 �a)

(u� 
�1)(
k 
 1a) = mac

k 
 1c �
n�1 
 1a (+na�


n 
 1� if gr(a) = 1) = (DH +HD)(
k 
 1a);

(u� 
�1)(
k 
 1�) = n�d

n 
 �d = (DH +HD)(
k 
 1�):

Thus the claim follows using the chain homotopy u� 
�1 = D ÆH +H ÆD.

Thus, on the homological level, we can identify the u-action with the induced 
�1 action on various

homologies. In particular, we see that there is a subcomplex dCF SW

� (Y; s) of CF
SW;+
�;U(1)

(Y; s) such that

the following short exact sequence of chain complexes holds:

0!dCF SW

� (Y; s)
// CF SW;+

�;U(1)
(Y; s)


�1// CF SW;+
�;U(1)

(Y; s)! 0: (15)

Proposition 4.2. Let dHF SW

� (Y; s) be the homology of dCF SW

� (Y; s), then dHF SW

� (Y; s) is also a topo-

logical invariant of (Y; s), and it is determined by the following long exact sequence

� � � !dHF SW

� (Y; s) // HF SW;+
�;U(1)

(Y; s)
u // HF SW;+

��2;U(1)
(Y; s) // dHF SW

��1(Y; s)! � � � :

Moreover, dHF SW
(Y; s) is non-trivial if and only if HF

SW;+
�;U(1)

(Y; s) is non-trivial.

Proof. The long exact sequence follows from the short exact sequence of chain complexes (15) and

Proposition 4.1. This long exact sequence implies that dHF SW

� (Y; s) is also a topological invariant of

(Y; s).
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Note that, from the compactness of MY (s), we see that each element in HF
SW;+
�;U(1)

(Y; s) can be

annihilated by a suÆciently large power of 
�1. Hence, u is an isomorphism on HF
SW;+
�;U(1)

(Y; s) if and

only if HF
SW;+
�;U(1)

(Y; s) is trivial. Then the last claim follows from this observation and the long exact

sequence.

If we think of the set of Spinc structures on Y as the set of equivalence classes of nowhere vanishing

vector �elds on Y (Cf.[9]), then there is a natural bijection between Spinc(Y ) and Spinc(�Y ) where

�Y is the same Y with the opposite orientation.

Theorem 4.3. Let (Y; s) be a rational homology 3-sphere with a Spinc structure s, and (�Y; s) de-

note Y with the opposite orientation and the corresponding Spinc structure. Then there is a natural

isomorphism

HF
SW;�
U(1)

(Y; s) �= HF
SW;�
�;U(1)

(�Y; s)

where HF
SW;�

U(1)
(Y; s) is the equivariant Seiberg-Witten-Floer cohomology de�ned in [5].

Proof. Note that HF
SW;�
U(1)

(Y; s) is the homology of the dual complex Hom(CF
SW;+
�;U(1)

(Y; s);Z). We

start to construct a natural pairing

h�; �i : CF
SW;1
�;U(1)

(Y; s) �CF
SW;1
�;U(1)

(�Y; s) �! Z (16)

which satis�es

hDY (�1); �2i = h�1;D�Y (�2)i; h
�1(�1); �2i = h�1;

�1(�2)i: (17)

for any element �1 2 CF
SW;1
�;U(1)

(Y; s) and any element �2 2 CF
SW;1
�;U(1)

(�Y; s).

Then we will show that the above pairing is non-degenerate when restricted to

CF
SW;+
�;U(1)

(Y; s)� CF
SW;�

�;U(1)
(�Y; s).

From the nature of the Seiberg-Witten equations, we see that there is an identi�cation

MY (s)!M�Y (s)

for a good pair of metric and perturbation on (Y; s) and the corresponding metric and perturbation

on (�Y; s). Then the relative gradings with respect to the unique reducible monopole in MY (s) and
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M�Y (s) respectively, satis�es

gr�Y (a
�) = �grY (a)� 1;

where a� is the element in M�
�Y (s) corresponding to a 2M

�
Y (s), we assume that grY (�) = gr�Y (�

�).

Moreover, there is an natural identi�cation between the moduli spaces of 
owlines for (Y; s) and (�Y; s),

that is,

MY�R(a; b) �=M�Y�R(b
�
; a
�):

Now we de�ne the pairing on CF
SW;1

�;U(1)
(Y; s)�CF

SW;1

�;U(1)
(�Y; s) such that the following pairings are

the only non-trivial pairings:

h
n 
 �a;

�n�1 
 1a�i = 1

h
n 
 1a;

�n�1 
 �a�i = 1

h
n 
 1�;

�n�1 
 1��i = 1:

It is a direct calculation to show that this pairing satis�es the relation (17) and the restriction of

this pairing to CF
SW;+
�;U(1)

(Y; s) � CF
SW;�
�;U(1)

(�Y; s) is non-degenerate. Then the claim follows from the

de�nition.

Let dHF SW;�
(Y; s) and HF

SW;�

�;U(1)
(Y; s) denote the homology groups of the dual complexes

Hom(dCF SW

� (Y; s);Z) and Hom(CF
SW;�
�;U(1)

(Y; s);Z) ofdCFSW

� (Y; s) and CF
SW;�
�;U(1)

(Y; s) respectively. From

the proof the above Theorem 4.3, we actually establish the following duality between these homologies.

Theorem 4.4. For any rational homology 3-sphere Y with a spinc structure s, there exist natural

isomorphisms

dHF SW;�
(Y; s) �= dHF SW

� (�Y; s); HF
SW;�

�;U(1)
(Y; s) �= HF

SW;�

�;U(1)
(�Y; s): (18)
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