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1 Introduction

This paper is the �rst part of a program aimed at a better understanding of how the

recently de�ned Seiberg-Witten-Floer homology for any closed 3-manifold Y with a

Spinc structure s [7], [12], [18], [20], [35] behaves under surgery. The non-equivariant

Seiberg-Witten-Floer homology is constructed from the chain complex generated by the

irreducible critical points of the perturbed Chern-Simons-Dirac functional on the space

of L21-con�gurations modulo the action of L22-gauge transformations, the di�erential is

de�ned by counting the gradient 
ow lines connecting the critical points of relative
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index one. These critical points are the equivalence classes of solutions to the Seiberg-

Witten equations on (Y; s) modulo gauge transformations. The gradient 
owlines are

the equivalence classes of solutions to the Seiberg-Witten equations on Y �R with the

pull-back Spinc structure, modulo gauge transformations. For a general introduction

to Seiberg{Witten Floer theory see [20].

Throughout the paper we are considering an oriented, closed homology 3-sphere Y

and a knot K smoothly embedded in Y . We consider two other manifolds obtained

by Dehn surgery on K: a homology 3-sphere Y1, obtained by +1-surgery on K, and a

3-manifold Y0 which has the homology of S1 � S2, obtained by 0-surgery on K. Our

main goal is to establish the existence of an exact triangle relating the Seiberg-Witten-

Floer homology groups of these manifolds. A similar setup for instanton homology

in Donaldson theory was considered in [2], where Floer's ideas on the corresponding

construction of the exact triangle for instanton homology are presented.

Because of various technical diÆculties intrinsic in this program, we need to sub-

divide the problem into several steps. In this �rst paper we deal with the \geometric

triangle", namely we introduce a suitable \surgery perturbation" � for the Seiberg-

Witten equations on Y that simulates the e�ect of surgery. We use the notation MY;�

for the moduli space of gauge classes of solutions of the perturbed Seiberg-Witten equa-

tions on Y , MY1 and MY0(s) for the moduli spaces of the perturbed Seiberg-Witten

monopoles on Y1 and (Y1; s), where s is a Spinc structure on Y0.

Our main result in this paper is to prove the following decomposition theorem for

MY;�.

Theorem 1.1. With a careful choice of perturbations and metrics on Y; Y1 and Y0, we

have the following relation between the critical sets of the Chern-Simons-Dirac func-

tional on the manifolds Y; Y1 and Y0:

MY;�
�=MY1 [

[
sk

MY0(sk); (1)

where sk runs over the Spinc-structures on Y0.

In section 2, we will brie
y review the perturbation theory we use to de�ne our

moduli spaces. In this paper, we only introduce perturbations suÆcient to achieve

transversality of moduli spaces of critical points. Eventually, when dealing with the

full Seiberg-Witten-Floer homology, we shall need a more sophisticated class of pertur-

bations that achieve transversality simultaneously for moduli spaces of critical points

and of 
ow lines. These will be non{local perturbations of the Chern{Simons{Dirac

functional, somewhat similar to those proposed in [12]. We shall deal with this more

re�ned perturbation theory elsewhere.

In section 3, we will study the Seiberg-Witten monopoles on the knot complement

V = Y �K, equipped with a cylindrical end metric modelled on T 2�[0;1). We use the
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notation �(T 2; V ) for the moduli space of 
at connections on T 2 modulo the subgroup

of gauge transformations on T 2 which can be extended to V . Notice that �(T 2; V ) is

a Z-covering of the moduli space of 
at connections on T 2 modulo the gauge group

Map(T 2; U(1)) which we denote by �(T 2). In �(T 2), there is a unique point � such

that the Dirac operator on T 2 coupled with � has non-trivial kernel. The main result

in section 2 is the following structure theorem for the monopole moduli space MV .

Theorem 1.2. For generic metrics and perturbations, the moduli space of Seiberg-

Witten monopoles on V , denoted by MV , consists of the union of a circle of reducibles

�(V ) and an irreducible piece M�
V which is a smooth oriented 1-dimensional manifold,

compact except for �nitely many ends limiting to �(V ). Moreover, there is a continuous

boundary value map

MV
@
1! �(T 2; V )

�! �(T 2): (2)

de�ned by taking the asymptotic limit of the Seiberg-Witten monopoles on V over the

end. Under @1, �(V ) is mapped to a circle in �(T 2; V ), and the compacti�cation
�M�
V of M�

V is mapped to a collection of compact immersed curves in �(T 2; V ) whose

boundary points consist of a �nite set of points in ��1(�) [ @1(�(V )). For generic

perturbations the interior of the curve @1(M�
V ) is transverse to any given �nite set of

curves in �(T 2; V ).

For simplicity of notation, in the following we shall not distinguish between �(V )

and its embedded image @1(�(V )) � �(T 2; V ).

In section 4, we will establish a gluing theorem for the moduli spaces of critical

points of the Chern-Simons-Dirac functional when cutting and gluing the 3-manifold

along a torus. In our case, these are the moduli spaces of monopoles on a closed

manifold which is either Y , Y1, or Y0. Let �(K) be a tubular neighbourhood of K in

a closed manifold Z, so Z = V [ �(K). We may cut Z along T 2 and glue in a long

cylinder [�r; r] � T 2, resulting in a new manifold denoted by Z(r). Use the notation

�(T 2; Z) for the character variety (or moduli space) of 
at connections on a trivial line

bundle over T 2 modulo the gauge transformations on T 2 which can be extended to Z.

We denote by �(�(K); Z), the moduli space of 
at connections on �(K) modulo the

gauge transformations on �(K) which can be extended to Z. there is a natural map

�(�(K); Z) ! �(T 2; Z). We denote by M�
V;Z the moduli space of the Seiberg-Witten

monopoles on V modulo the gauge transformations on V which can be extended to Z.

We have a re�nement of the boundary value map of (2):

M�
V;Z �! �(T 2; Z): (3)

Then we have the following gluing theorem.
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Theorem 1.3. For a suÆciently large r, under suitable perturbations and choice of

metrics, there exist the following di�eomorphisms given by the gluing maps on the

�bered products

#Y :M�
V;Y ��(T 2;Y ) �(�(K); Y ) �!M�

Y (r);

#Y1 :M�
V;Y1

��(T 2;Y1) �(�(K); Y1) �!M�
Y1(r)

;

#Y0 :M�
V;Y0 ��(T 2;Y0) �(�(K); Y0) �!

[
s

M�
Y0(r)

(s):

Here, M�
Y (r)

, M�
Y1(r)

and M�
Y0(r)

are the moduli spaces of irreducible monopoles on

Y (r); Y1(r) and Y0(r) respectively, and s runs over all the possible Spinc structures on

Y0. The �ber product is taken with respect to the re�ned boundary value maps (3) from

M�
V;Y ;M�

V;Y1
and M�

V;Y0
to �(T 2; Y ), �(T 2; Y1) and �(T 2; Y0) respectively.

The proof of Theorem 1.3 is based on balancing the slow decay of certain eigenfunc-

tions of the linearization at the approximate solutions, against the exponential decay of

the �nite energy solutions on V with non-degenerate asymptotic value, thus obtaining

an unobstructed gluing.

Using the gluing Theorem 1.3, together with the construction of the perturbation

� that \simulates the e�ect of surgery", we will be able to derive a corresponding

deformation of the moduli spaces, and the expected relation between the generators of

the Floer groups as in Theorem 1.1.

In the last section, we apply the result of Capell-Lee-Miller on the decomposition

of spectral 
ow (Theorem C of [4]) to study the relative gradings of monopoles under

the identi�cation of Theorem 1.1. We show that the identi�cation of Theorem 1.1 is

compatible with the relative gradings on the Seiberg-Witten-Floer chain complexes (Cf.

Proposition 6.2 and Proposition 6.4).

Acknowledgments We are very grateful to Ronnie Lee, Tom Mrowka, Vicente

Munoz, and Peter Ozsvath for useful discussions and suggestions. We like to thank

Cli� Taubes for providing the proof of Lemma 2.3 and Liviu Nicolaescu for the proof of

Lemma 4.11. The three authors also thank the Max-Planck-Institut f�ur Mathematik,

Bonn for the kind hospitality and for support. AC and BW are partially supported by

Australian Research Council. MM is partially supported by NSF grant DMS-9802480

and by Humboldt Foundation (Sofja Kovalevskaya Award).

2 Seiberg-Witten equations on 3-manifold

The 3-dimensional Seiberg-Witten monopoles on a compact manifold have been exten-

sively studied in [6] [8] [11] [13] [14] [20] [21] [24]. In this section we will brie
y recall

some of the main features of 3-dimensional monopoles. A 3-dimensional monopole, as

noted �rst in [13], can be viewed as a critical point of the Chern-Simon-Dirac functional
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on an in�nite dimensional space (the orbit space of Spinc connections and sections of

the spinor bundle under the action of the gauge group). We recall the basic setting of

3{dimensional Seiberg{Witten theory, then we will end this section with the observa-

tion that, under a generic perturbation with compact support in a �xed open set, the

critical points are all non-degenerate.

Let (Y; g) be a closed, oriented Riemannian 3-manifold. A Spinc structure s on (Y; g)

is a pair (W;�) consisting of a rank 2 Hermitian bundle W together with a Cli�ord

multiplication � : T �Y ! End(W ). If fe1; e2; e3g are an oriented orthonormal frame

for TY , we choose the Cli�ord multiplication such that �(e1)�(e2)�(e3) = 1.

With the Levi-Civita connection on the frame bundle of Y , a U(1)-connection A on

the determinant bundle det(W ) determines a Spinc connection rA on W such that � is

parallel. Applying Cli�ord multiplication, we can de�ne a Dirac operator, denoted by

=@A. Then the Seiberg-Witten equations are the equations for a pair (A; ) consisting

of a U(1)-connection on det(W ) and a section  of W ( is called a spinor):( �FA = �( ; ) + �

=@A( ) = 0:
(4)

Here � is a co-closed imaginary-valued 1-form on Y , and �(�; �) is a symmetric R-bilinear
form W 
W ! T �Y 
 iR given by

�( ; ) = ���1(( 
  �)0) = ���1( 
  � � j j2
2
Id)

=
i

2
Imh�(ei) ; iei

:

Note that this R-bilinear form �(�; �) satis�es the following property [7]:

(1) Under Cli�ord multiplication, we have �( ; ): = �1

2
j j2 , and

h�: ;  i = 2h�; �( ; )iT �Y , for � 2 
1(Y; iR).

(2) �( ; �) = 0 if and only if on Y � �1(0) � = ir for a real-valued function r on

Y �  �1(0).

(3) For any imaginary valued 1-form �, �(�: ; �) + �( ;�:�) = �(Reh ; �i)�.
(4) If  is a nowhere vanishing section ofW , thenW �= C  � ?, and �( ; �) de�nes

a bundle isomorphism between R �  ? and T �Y 
 iR.

Denote by AY the con�guration space of (Y; s) consisting of pairs (A; ) with the

completion under L21-norm. The gauge group of automorphisms of the Spinc-bundleW

is GY =Map(Y;U(1)) with L22-completion. GY acts on AY by

u(A; ) = (A� 2u�1du; u );

and the Seiberg-Witten equations are invariant under this action. Denote by BY the

quotient space of AY by the gauge group action. BY is an in�nite dimensional Hilbert
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manifold except at points where the spinor part is zero, which are called reducible

points. Otherwise, points (A; ) with  6= 0 are called irreducible. As noted in [13],

the Seiberg-Witten equations on (Y; s; g) are the equations for the critical points of the

following Chern-Simons-Dirac functional on AY :

C�(A; ) = �1

2

Z
Y

(A�A0) ^ (FA + FA0 � 2 � �) +
Z
Y

h ; =@A idvolY ; (5)

where A0 is a �xed connection on det(W ). Note that C� descends to a circle-valued

function on BY . The set of critical points of C� on BY is denoted by MY;�(s), its

irreducible critical point set is denoted by MY;�(s)
�.

For any critical point (A; ) on AY , the in�nitesimal action of GY and the derivative

of grad(C�) at (A; ) de�ne a complex


0
L22
(Y; iR)

G(A; )! 
1
L21
(Y; iR) � L21(W )

H(A; )! 
1
L2(Y; iR) � L2(W ); (6)

where the maps G(A; ) and H(A; ) are given by

G(A; )(f) = (�2df; f );

H(A; )(�; �) = (�d� � 2�( ; �); =@A�+
1

2
�: ):

We say that [A; ] is a non-degenerate critical point of C� on BY if the middle

cohomology of (6) is zero:

KerH(A; )=ImG(A; ) = 0:

At the smooth points of BY , this de�nition is the same as saying that the derivative of

grad(C�) at a critical point is non-degenerate. The gradient of C� can be viewed as an

L2-tangent vector �eld on BY , a section of the L2-tangent bundle over BY , while the
tangent space of BY at [A; ] is the L21-completion of

KerG�(A; ) = f(�; �)jd��+ iImh ; �i = 0:g

The covariant derivative of grad(C�), denoted by H[A; ], de�nes a operator on

KerG�(A; ), sending (�; �) 2 KerG�(A; ) to

(�d� � 2�( ; �) � 2df; =@A�+
1

2
�: + f );

where f is the unique solution to the equation

(d�d+
1

2
j j2)f = iImh=@A ; �i:

Note that H[A; ] is a closed, unbounded, essentially self-adjoint, Fredholm operator

on the L2-completion of KerG�(A; ), its eigenvectors form an L2-complete orthonormal
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basis, its L2-spectrum forms a discrete subset of the real line with no accumulation

points. Hence, as in [20], the spectral 
ow ofH[A; ], along a path connecting two critical

points de�nes a relative index onM�
Y;�(s)�M�

Y;�(s). This relative index depends only

on the homotopy class of the connecting path for non-torsion Spinc structure (Cf.

Remark 4.5 in [20] and De�nition 3.6 in [7]).

The following properties about the critical points of C� are now standard (See [20]

[8] [11] [14] [16]).

Proposition 2.1. There exists a Baire set of co-closed 1-form � 2 
1
L22
(Y; iR) such

that all the critical points in MY;�(s) are non-degenerate. Moreover, if b1(Y ) > 0,

MY;�(s) consists of only �nitely many irreducible points in BY ; if Y is a rational

homology 3-sphere, assume that a generic � satis�es Ker=@� = 0 (where � is the unique

reducible point in MY;�(s), that is, �F� = �), then MY;�(s)
� =MY;�(s)�f�g consists

of only �nitely many irreducible points.

In this paper and sequel work, it is convenient to use a perturbation with support

contained in a �xed open set, so that Proposition 2.1 still holds for perturbations with

compact support contained in a �xed open set. The �rst such statement was made in

Proposition 7.1 [32] by Taubes, who kindly communicated the proof to us.

Proposition 2.2. Fix a non-empty open set U in Y and a Spinc structure s on

Y , if b1(Y ) > 0 and c1(det(s)) = 0, we require that U is chosen so that the map

H2(Y;R) ! H2(U;R) is non-zero. Then there exists a Baire set of co-closed imaginary

valued 1-forms � with compact support in U such that all the critical points of C� on

BY are non-degenerate.

Proof. We �rst study the family version of the critical points of C� on B�Y , where �
is from a set of imaginary valued co-closed 1-forms on Y with compact support in U .

Denote this set of perturbations as Z(U; iR). Let [�;A;  ] be a critical point of C�. We

need to show that the derivative of the gradient of fC�g�2Z(U;iR) is surjective. Namely,
consider

KerG�[A; ] � Z(U; iR) ! KerG�[A; ];

which sends (�; �; �1) to

(�d� � 2�( ; �) + �1; =@A�+
1

2
�: ):

Suppose that (�; �) is orthogonal to the image of the above map, then (�; �) satis�es
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the following equations:

(1) d��+ iImh ; �i = 0;

(2) �d�� 2�( ; �) = 0;

(3) =@A�+
1
2�: = 0;

(4) � is exact when restricted to U:

(7)

The elliptic regularity implies that (�; �) is smooth. From (4) and (2) of equations

(7), we know that �( ; �) = 0 on U . The following Lemma due to Taubes [33] will

ensure that �( ; �) = 0 on Y . Hence, there is a real-valued smooth function f on Y ,

such that � = if . Using (3) of (7), we obtain

=@A(if ) +
1

2
�: = 0

on Y , which leads to � = �2idf on Y . By the equation (1) in (7), we get

2d�df + f j j2 = 0

on Y. Note that  �1(0) does not disconnect any domain in Y (the unique continuation

principle for Dirac operator (see page 57-58 [10])). Therefore, f = 0 which implies that

(�; �) = 0.

From the Sard-Smale theorem, there is a Baire set of � 2 Z(U; iR) such that all

critical points of C� in B�Y are non{degenerate for a generic �.

Now we need to prove that the reducible critical point of C� is also non-degenerate.
By the assumption, C� admits reducible critical point if and only if Y is a rational

homology 3-sphere. From the analysis in [20], we know that, in order to achieve the

non-degenerate condition at reducible critical point, � is required to be away from

the codimension one subset Z(U; iR) where the corresponding Dirac operator has non-

trivial kernel. This completes the proof of the Proposition. Now we give the proof of

Taubes' Lemma.

Lemma 2.3. (Taubes) Let (A; ) and (�; �) as above, where (A; ) is a solution to

the Seiberg-Witten equation (4) and (�; �) satis�es (1)-(3) of the equations (7). Then

q = �( ; �) obeys an equation of the form

�q = H � q +K � rq

at all points where  6= 0. Here � is the Laplacian on di�erential 1-forms and H and

K are linear maps that depend implicitly on  . The set of points where  6= 0 is path

connected open dense set in Y . The unique continuation principle applies to q so that

q cannot vanish on U without vanishing everywhere on Y .
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Proof of Taubes' Lemma: Apply the Laplacian to q = �( ; �), we have the following

expression of �q:

�q = �(� ; �) + �( ;��) + 2�(frA ;rA�gT �Y ); (8)

here � acting on spinors is r�ArA, and frA ;rA�gT �Y is the pairing using the metric

on T �Y . Now invoke the Weitzenb�ock formula for the Dirac operator,

=@�A=@A = ��+
�

4
� 1

2
�(�FA);

where � is the scalar curvature on Y . Thus, from the Dirac equations for  and �, we

obtain

� = �
4
 � 1

2
(�FA): ;

�� = �
4�� 1

2 (�FA):�+ 1
2(d

��) � 1
2(�d�): �r�

A ;

here r�
A = f�;rA gT �Y . Plug these two equations into (8), and note that

�( ; 12(d
��) ) = 0 and �( ;�1

2 (�d�): ) = j j2q. We get

�q = (�2 + j j2)q + �(�1
2 (�FA): ; �) + �( ;�1

2 (�FA):�)
+2�(frA ;rA�gT �Y ) + �( ;�r�

A )

= (�2 + j j2)q + �FA(Reh ; �i)
+2�(frA ;rA�gT �Y ) + �( ;�r�

A ):

(9)

Write � = ir + � where r is a real-valued function on Y and Reh�; i i = 0, then

Reh ; �i = Reh ; �i;
�(frA ;rA�gT �Y ) = �(frA ;rA�gT �Y ) + �(frA ; idr 
  gT �Y ):

Hence the equation (9) can be written as

�q = (�2 + j j2)q + �FA(Reh ; �i)
+2�(frA ;rA�gT �Y ) + �( ;�r�+2idr

A  ):
(10)

To complete the proof, we only need to show that �;rA� and � + 2idr can be

written as combinations of linear maps on q and rq. On the set of points where

 6= 0, 
 = Y �  �1(0), we write  = j j�1 where �1 is a unit-length spinor. Choose

a local basis f�1; �2g for the Spinc bundle, so that Cli�ord multiplication in the local

orthonormal coframe fe1; e2; e3g for T �Y is given by

�(e1) =

 
i 0

0 �i

!
; �(e2) =

 
0 �1
1 0

!
; �(e3) =

 
0 i

i 0

!
:
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where fe1; e2; e3g can be expressed as

e1 = �2i�(�1; �1); e2 = 2i�(�1; i�1); e
3 = �2i�(�1; �2):

Write � = u�1 + v�2 for a real-valued function u and a complex-valued function v,

then

q = �( ; �) =
i

2
j j(ue1 � Im(v)e2 +Re(v)e3):

On 
, � = �( ; �) de�nes a bundle isomorphism between

R : � (C : )? ! T �Y 
 iR:

Thus, we obtain that � = ��1 (q), and

r� = (r(��1 ))(q) + ��1 (rq):

Let b = a+ 2idr, then from (3) of the equations (7), we have

b: = �2=@A�;

as � can be written in terms of q and rq, so is b. This completes the proof of Taubes'
Lemma.

3 Monopoles on a 3-manifold with a cylindrical end

In this section we use techniques developed in [23] to study the moduli space of Seiberg-

Witten monopoles on the knot complement V endowed with an in�nite cylindrical end

T 2 � [0;1). Our main aim is to present the proof of Theorem 1.1. Before we give

details, we present an overview of the section introducing notation.

Consider the three-manifolds V and �(K), respectively the knot complement and

the tubular neighbourhood of the knot K in the homology sphere Y . Both are 3-

manifolds with boundary a torus T 2. Equip V with a cylindrical end metric and a

Spinc-structure with trivial determinant along the half cylinder T 2� [0;1). On T 2 we

use the standard 
at metric induced from R
2 .

The perturbed Seiberg-Witten equations on (V; s) are the equations(
�FA = �( ; ) + �;

=@A = 0;
(11)

for a pair (A; ) consisting of a L21;loc U(1) connection on det(W ) and a L21;loc spinor

section  of W . the perturbation term � is a co-closed and imaginary value 1-form
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with compact support contained in a �xed open set U � V � (T 2� [0;1)). We denote

the corresponding class of perturbations by Z(U; iR)

We de�ne the energy of any Seiberg-Witten monopole (A; ) to beZ
V

jFAj2dvolV <1; (12)

LetMV denote the Seiberg-Witten moduli space of solutions of the equations (11) with

�nite energy condition modulo the gauge transformations GV =MapL2
2;loc

(V;U(1)).

The 
at connections on the determinant bundle, modulo the even gauge group

GT 2 =Map(T 2; U(1)), form a torus

�(T 2) = H1(T 2;R)=2H1(T 2;Z);

which is a Z2 � Z2 cover of the standard torus Hom(�1(T
2); U(1)) = R

2=Z2. Let

�(T 2; V ) be the moduli space of 
at connections modulo the subgroup of the gauge

transformations on T 2 which can be extended to V . Let � denote the quotient map

� : �(T 2; V )! �(T 2), which is a Z-covering map.

Suppose we are given a smooth solution (A; ) of the Seiberg-Witten equations,

satisfying the �nite energy condition (12). Then we will see that there is a choice of a

connection ~A in the gauge class of A that approaches a 
at connection on T 2, while the

spinor  vanishes in the limit on the cylindrical end. That is, if s is the coordinate on

[0;1), we will show that lims!1( ~A; ) = (a1; 0) in the appropriate topology, for each

�nite energy solution (A; ) to the Seiberg-Witten equations (11). Thus the asymptotic

limit of the Seiberg-Witten monopoles on the manifold V with a cylindrical end de�nes

a boundary value map

MV
@
1! �(T 2; V )

�! �(T 2): (13)

We will show that, in a suitable topology, this boundary value map is well-de�ned and

continuous. Then, we will describe the structure of the moduli space MV .

3.1 Monopoles on T 2
� [0;1)

We begin with the investigation of the behaviour of the solutions of the Seiberg-Witten

equations on the cylindrical end T 2 � [0;1). Fix a 
at background connection A0 on

the determinant bundle det(W ) with asymptotic limit a0.

Lemma 3.1. Choose the coordinate s 2 [0;1) on the cylindrical end T 2 � [0;1).

Choose the Spinc structure over T 2 � [0;1) to be the pull-back of the Spinc structure

on T 2 with trivial determinant, induced by the complex structure. We can write (A; )

as (
A = A0 + a(s) + h(s)ds;

 = (�(s); �(s)) 2 �0;0 � �0;1 = �(W ):
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where a(s) = a1;0(s)+a0;1(s) 2 �1(T 2; iR), h(s) 2 �0(T 2; iR). Then the Seiberg-Witten

equations (11) can be written in the form

8>>>>>>><
>>>>>>>:

FA0+a =
i

2
(j�j2 � j�j2)!;

@a0;1(s)

@s
= i��� + �@h; 

i(@s + h) �@�
a(s)

�@a(s) �i(@s + h)

! 
�

�

!
= 0:

(14)

where ! is the area 2-form on T 2 with

Z
T 2
! = 1.

Proof. We may choose a trivialization of the cotangent bundle to T 2 � [0;1) so

that, using a full-stop to denote Cli�ord multiplication by a one form, we can make the

identi�cations:

ds: =

 
i 0

0 �i

!
; dx: =

 
0 �1
1 0

!
; dy: =

 
0 i

i 0

!
; (15)

Letting the Hodge * on forms on T 2�[0;1) be denoted by �3, then under the preceding
identi�cations we have

�3(�( ; )) = i

2
(j�j2 � j�j2)! � i(��� + ���) ^ ds

FA = FA0+a + (dT 2h� @sa) ^ ds;

hence we get

8><
>:

FA0+a =
i

2
(j�j2 � j�j2)!;

@a0;1(s)

@s
= i��� + �@h:

The form a(s) 2 �1(T 2; iR) is uniquely determined, as an iR-valued 1-form, by its (0; 1)-

part a0;1 2 �0;1(T 2). Similarly, the Dirac operator on T 2 � [0;1) can be expressed

as

=@a(s)+h(s)ds =

 
i(@s + h) �@�a(s)
�@a(s) �i(@s + h)

!
:

Thus gives the Dirac equation as in the Lemma.
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Let (A; ) be an irreducible solution of the Seiberg-Witten equations on the man-

ifold V . Along the cylindrical end T 2 � [0;1) we can use Lemma 3.1 to write the

Seiberg-Witten equations in the form8>><
>>:

@sa
0;1 = i��� + �@h;

@s� = i�@�a(s)� � h�;

@s� = �i�@a(s)�� h�:

with the constraint Fa =
i

2
(j�j2�j�j2)!: These equations are gauge-equivalent, through

a gauge transformation in GV , to the following equations:8>><
>>:

@sa
0;1 = i���;

@s� = i�@�a(s)�;

@s� = �i�@a(s)�;
(16)

on the con�guration space AT 2 of triples (a; �; �), where a is a U(1)-connection on

det(W ) and (�; �) is a section of Spinc bundleW over T 2. The following Lemma shows

that (16) can be interpreted as a gradient 
ow equation.

Lemma 3.2. The equations (16) are the downward gradient 
ow equations of the

GT 2 =Map(T 2; U(1))-invariant functional

f(a; �; �) = �
Z
T 2
h�; i�@�a�i! (17)

on the space AT 2 , where the product h; i denotes the natural inner product using the

Hodge star operator.

Proof. Direct calculation shows that we have

r f(a; �; �) = (�i��� � i���;�i�@�a�; i�@a�):

Critical points of the functional (17) with the condition Fa =
i

2
(j�j2 � j�j2)! are

all the elements (a1; 0; 0), with a1 a 
at connection. This critical point set is denoted

by �(T 2), the quotient space of the 
at connection by the even gauge transformation.

If (A(s);  (s)) is a solution to the Seiberg-Witten equation on [0;1)� T 2 in temporal

gauge, then

(A(s);  (s)) = (A0 + a1;0 + a0;1; (�; �))

satis�es the gradient 
ow equation of f as given by (16).

The next few lemmata describe some fundamental properties about the solution to

the Seiberg-Witten equation on the cylinder over T 2 in temporal gauge.

13



Lemma 3.3. Let 
(s) = (A(s);  (s)) be a solution to the Seiberg-Witten equation on

[s1; s2]� T 2 in temporal gauge, thenZ s2

s1

krf(
(s))k2L2(T 2)ds =
Z
[s1;s2]�T 2

(jrA j2 + jFAj2)dvol:

Proof. Since (A(s);  (s)) satis�es the Seiberg-Witten equation on [s1; s2]� T 2:(
=@A = 0;

�FA = �( ; )

The Weitzenb�ock formula for the Dirac operator on [s1; s2]� T 2 with 
at metric then

gives

=@�A=@A = r�ArA � 1

2
(�FA): = 0:

Take the inner product of both sides with  , use the Seiberg-Witten equation, and note

that h(� � FA): ;  i = 2h�FA; �( ; )i = 2jFAj2. We obtain

1

2
d�dj j2 + jrA j2 + jFAj2 = 0:

Integrating the above identity over [s1; s2]� T 2, we can write the result asZ
[s1;s2]�T 2

(jrA j2 + jFAj2)dvol

= �1

2

Z
[s1;s2]�T 2

d � dj j2

= �1

2

Z
@([s1;s2]�T 2)

(@sh ; i)!

=

Z
T 2
h�(s1); i�@�A(s1)�(s1)i! �

Z
T 2
h�(s2); i�@�A(s2)�(s2)i!:

Here we write  (s) = (�(s); �(s)) as a spinor on T 2 and use the equation (16) for @s .

Note that 
(s) = (A(s); �(s); �(s)) solves the gradient 
ow equation of f , henceZ s2

s1

krf(
(s))k2L2(T 2)ds

=

Z
T 2
h�(s1); i�@�A(s1)�(s1)i! �

Z
T 2
h�(s2); i�@�A(s2)�(s2)i!

=

Z
[s1;s2]�T 2

(jrA j2 + jFAj2)dvol:
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Lemma 3.4. Let 
(s) = (A(s);  (s)) be a solution to the Seiberg-Witten equation on

N = [t � 1; t + 1] � T 2 in temporal gauge for any t 2 [0;1). If

Z
N

jFAj2dvol = EN ,

then there exists a constant C0 such that the following estimates holdZ
[t� 1

2
;t+ 1

2
]�T 2

jrA j2dvol � C0

p
EN ;

Z t+ 1
2

t� 1
2

krf(
(s))k2L2ds � C0

p
EN +EN :

Moreover, if (A(s);  (s)) is a solution to the Seiberg-Witten equation on [�1;1)� T 2

in temporal gauge with �nite energy, then the corresponding 
owline on AT 2 of f has

�nite variation of f along [0;1)� T 2.

Proof. From the L2-bound on jFAj, we immediately obtain a L4-bound on  from

the Seiberg-Witten equation,

k k4L4(N) =

Z
N

j j4dvol = 1

4

Z
N

jFAj2dvol:

By the Cauchy-Schwartz inequality, we get

k k2L2(N) �
p
V ol(N)k k2L4(N) =

p
2

2
kFAkL2(N):

Here we use that V ol(N) = 2. In the proof the previous lemma, we found that  

satis�es
1

2
d�dj j2 + jrA j2 + jFAj2 = 0:

Multiplying both sides of the above equation with a cut-o� function � which equals 1

on [t � 1
2 ; t +

1
2 ] � T 2 and vanishes near the boundary of N , and then integrating by

parts, we obtain

krA k2L2([t� 1
2
;t+ 1

2
]�T 2)

� �1

2

Z
N

d�dj j2�dvol � C1k k2L2(N) �
p
2

2
C1kFAkL2(N);

where C1 is a constant depending only on the cut-o� function �. Putting the above

inequalities together we get the estimates as claimed with C0 =

p
2

2
C1.

The �nite variation of f along [0;1) � T 2 for a solution on [�1;1) � T 2 is the

direct consequence of adding up over a sequence of middle tubes of length 2, namely,

f[i� 1; i+ 1]� T 2ji = 0; 1; 2; � � � g, henceZ 1

0

krf(
(s))k2L2(T 2)ds

� 2

Z 1

�1

kFAk2L2(T 2)ds+ 2C0

sZ 1

�1

kFAk2L2(T 2)ds <1:
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Lemma 3.5. Let (a(s); �(s); �(s)) be a monopole on T 2 � [0;1) with �nite energyZ
T 2�[0;1)

jF j2dvol <1:

Then there exists a sequence fsng such that limsn!1(a(sn); �(sn); �(sn)) exists and

represents a point in �(T 2).

Proof. Write the curvature of a(s) on T 2� [0;1) as Fa(s)�@s(a(s))^ds, where Fa(s)
is the curvature on T 2. Then we have the following calculation:Z

T 2�[0;1)

jF j2dvol

=

Z
T 2�[0;1)

(jFa(s)j2 + j@s(a(s))j2)dvol;

which implies that as s!1,

jFa(s)j ! 0; j@s(a(s))j ! 0:

By Uhlenbeck's weak compactness result and the compactness of �(T 2), we know that

a(s) weakly converges to a 
at connection.

By the monopole equation on T 2 � [0;1), we also obtain

j�(s)j2 � j�(s)j2 ! 0; ��(s)�(s)! 0:

This implies that [a(s); �(s); �(s)] converges weakly to a point in �(T 2).

To establish strong convergence to a point in �(T 2) for any �nite energy monopole

on [0;1)�T 2, we need to apply L. Simon's type result of "small energy implying small

length" as in [23]. We will address this issue at the end of this subsection.

Let G0
T 2

be the based gauge group on det(W ), that is, those gauge transformations

which equal the identity at a �xed based point. Denote by B0
T 2

the quotient space of

AT 2 by the free action of G0
T 2
. Note that the gradient 
ow of f preserves the constraint

Fa =
i
2(j�j2 � j�2j)!, hence we can consider gradient 
ow lines of f restricted to

CT 2 =
n
(a; �; �)jFa = i

2
(j�j2 � j�2j)!

o
=G0T 2

as a subset of B0
T 2
.

The space CT 2 is a singular space, the singular set consisting of [a; �; �] where a

is a 
at connection and (�; �) is a spinor section satisfying the pointwise condition

j�j = j�j. We want to study the asymptotic behavior of the �nite energy monopole on

T 2� [0;1), that is, the asymptotic behavior of the gradient 
ow of f restricted to CT 2 .
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If we consider a neighborhood of CT 2 in the whole con�guration space B0
T 2
, this

introduces new critical points which consist of the [�; �; �], with � 2 �(T 2) and (�; �)

satisfying

��� = �@�(�) = �@��(�) = 0:

Note that there is a unique point � 2 �(T 2) with ker(�@� + �@��) non-trivial, which

satis�es

Ker �@� �= Ker �@��
�= C :

Since we are only interested in the behavior of the monopoles on T 2� [0;1), among


owlines of f on B0
T 2
, we only study those that 
ow to the critical manifold �(T 2). The

Hessian operator of f at the critical point [a1; 0; 0] in �(T
2) is given by

Q[a
1
;0;0](a1; �1; �1) =

�
0;�i�@�a

1

�1; i�@a
1

�1

�
: (18)

where (a1; �1; �1) is a L
2
1-tangent vector of B0T 2 at [a1; 0; 0], that is, (a1; �1; �1) satis�es

the condition d�a1 = 0, and we view (0;�i�@�a
1

�1; i�@a
1

�1) as a L
2-tangent vector of

B0
T 2

at [a1; 0; 0]. Then the following lemma is obtained by a direct calculation.

Lemma 3.6. For a1 6= � in �(T 2), f is non-degenerate at a1 in the sense of Morse-

Bott, that is, the Hessian operator Q at [a1; 0; 0] is non-degenerate in the normal

direction to the critical manifold in the tangent space of B0
T 2

at [a1; 0; 0]. At the point

�, the kernel of the Hessian operator is given by

H1(T 2; iR) �Ker �@� �Ker �@��
�= C

3 :

Let U� be a small open neighbourhood of � in �(T 2). For any point

a1 2 �(T 2)nU�, the spectrum of Qa
1

= Q[a
1
;0;0] (as a �rst order elliptic operator

(18)) is discrete, real and without accumulation points. Let �a
1

> 0 be the smallest

absolute value of the non-zero eigenvalues of the Hessian operator Qa
1

. Now we can

establish the decay estimate for the Seiberg-Witten monopoles along the cylindrical

end of V . The �rst exponential decay estimate is for a solution to the Seiberg-Witten

equation on [0; R] � T 2 (R > 1) which is near a critical point in �(T 2).

Lemma 3.7. Suppose that x(s) = [a(s);  (s)] is a 
ow line of f , corresponding to an

irreducible �nite energy monopole on T 2 � [0; R] in temporal gauge. There is a repre-

sentative (A(s);  (s)) which is gauge equivalent to (a1; 0) + (b; �), where [a1; 0] 6= �.

There exist positive constants �; Æ; C1 such that, if (b; �) has L21 -norm less than � on

any s-slice, then

k(b(s); �(s))kL21(T 2) � C1

�
exp(�Æs) + exp(�Æ(R � s))

�
on any constant s-slice (s 2 [0; R]).
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Proof. Write � = (b; �), then � satis�es the following equation:

@s� = Qa
1

�+ n(�);

Here n(�) is second order in � with kn(�)kL2(T 2) � �k�kL2(T 2) and Qa
1

= Q[a
1
;0;0].

Note that the 
owline of f on �(T 2) is static, hence we can establish the analogous

result as Lemma 5.4.1 in [23] as follows.

Let �� denote the projection of � onto the eigenspaces of Qa
1

with positive and

negative eigenvalues. Let k��k be the functions on [0; R] given by the L2(T 2)-norm on

the s-slice of [0; R]� T 2. Then we have

@sk�+k � (�a
1

� �)k�+k+ �k��k � 0;

@sk��k+ (�a
1

� �)k��k � �k�+k � 0:

When � << �a
1

, from the above inequalities together with the comparison principle

(Cf. Lemma 9.4 [32]), we obtain that the L2-norm of � on the s-slice is decaying

exponentially with decay rate Æ � �a
1

=2. Then the claim of the lemma follows from

the standard bootstrapping argument.

Proposition 3.8. Suppose that 
(s) = [a(s);  (s)] is an irreducible 
ow line of f , cor-

responding to an irreducible �nite energy monopole on T 2�[0;1), with asymptotic limit

[a1; 0; 0] where [a1] 6= � 2 �(T 2). Then, there exist gauge representatives (a(s);  (s))

for 
(s) and a1 for [a1; 0; 0] such that (a(s) � a1;  (s)) decays exponentially along

with its �rst derivative as s!1.

Proof. From Lemma 3.4, we know that the variation of f is �nite, that is,Z 1

1

krf(
(s))k2L2(T 2)ds

is �nite. Then we have the following estimate, whose proof is analogous to the proof of

Lemma 6.14 of [24]. We sketch the proof here.

Claim: There exist constants E0 and C such that for any R > 1, and for


(s) = (A(s);  (s)) any solution to the Seiberg-Witten equation in temporal gauge

on [0; R + 1]� T 2 satis�es Z R+1

0

krf(
(s))k2L2(T 2)ds � E0;

then we have the estimateZ R

1

krf(
(s))k2
L21(T

2)ds � C

Z R+1

0

krf(
(s))k2L2(T 2)ds:
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Proof of the Claim Let 
(s) = ((A(s);  (s)) be a solution to the Seiberg-Witten

equation on N = [s1; s2]� T 2 in temporal gauge, then from Lemma 3.3, we haveZ s2

s1

krf(
(s))k2L2(T 2)ds =
Z
[s1;s2]�T 2

(jrA j2 + jFAj2)dvol:

Denote by

E =

Z s2

s1

krf(
(s)k2L2(T 2)ds

=

Z
N

(j@sAj2 + j@s j2)dvol:

Then we have the following estimates

kFAkL2(N) �
p
E; k k2L4(N) = 2kFAkL2(N) � 2

p
E:

We proceed as in Lemma 6.14 of [24] and di�erentiate the Seiberg-Witten equations

to get

d@sA = ��(@s ; )

=@A@s + (@sA) �  = 0:

The gauge �xing condition implies that

d�(@sA) + iImh@s ; i = 0:

Introduce a cuto� function � identically equal to 1 on the middle third piece of N and

vanishes near the boundary such that jd�j is at most M
s2�s1

where M is a universal

constant. Set (V; �) = (�@sA; �@s ). Then we can estimate the quantity

SW (V; �) =
�
dV � ��(�;  ); =@A(�) + V �  ; d�V + iImh�;  i�

by

kSW (V; �)k2L2(N) �
C

(s2 � s1)2

�
k@sAk2L2(N) + k@s k2L2(N)

�
:

Here C is a universal constant depending only on �.

On the other hand, we can estimate

kSW (V; �)k2
L2(N) � 1

2

�
kdV k2

L2(N) + k=@A(�)k2L2(N) + kd�V k2
L2(N)

�
�2
�
k�(�;  )k2

L2(N) + kV �  k2
L2(N)kImh�;  ik2L2(N)

�
:

19



Assume that l = s2 � s1 � 1, then the Sobolev multiplication theorem and Sobolev

embedding theorem imply that there are constants C0 and C1 such that

k�(�;  )k2
L2(N)

� C0k�k2L4(N)
k k2

L4(N)

� C1

p
Ek�k2

L21(N)
:

Similarly, by choosing C1 appropriately, we have

kV �  k2L2(N) � C1

p
EkV k2

L21(N)
;

kImh�;  ik2L2(N) � C1

p
Ek�k2

L21(N)
:

These inequalities imply that

kdV k2
L2(N)

+ k=@A(�)k2L2(N)
+ kd�V k2

L2(N)

� 8C1

p
E
�
kV k2

L21(N)
+ k�k2

L21(N)

�
+ 2kSW (V; �)k2

L2(N)

Standard estimate for the elliptic operator (d+ d�; =@A) can be employed to show that

there is a constant C2 such that

kV k2
L21(N)

+ k�k2
L21(N)

� C2

�
kdV k2

L2(N) + k=@A(�)k2L2(N) + kd�V k2
L2(N)

�
+C2

�
kV k2

L2(N)
+ k�k2

L2(N)

�
:

The Cauchy-Schwartz inequality and the Sobolev embedding theorem imply that there

exists a constant C3 such that�
kV k2L2(N) + k�k2L2(N)

�
� C3

p
s2 � s1

�
kV k2

L21(N) + k�k2
L21(N)

�
:

Put all these inequalities together, we have

kV k2
L21(N)

+ k�k2
L21(N)

� 2CC2

(s2 � s1)2

�
k@sAk2L2(N) + @s k2L2(N)

�
+8C1C2

p
E
�
kV k2

L21(N)
+ k�k2

L21(N)

�
+C2C3

p
s2 � s1

�
kV k2

L21(N)
+ k�k2

L21(N)

�
Then there is a constant E0 and a constant l0 satisfying

1� 8C1C2

p
E0 � C2C3

p
l0 � 1

2

such that if E � E0 and s2� s1 = l0, there is a constant C4 with the following estimate

kV k2
L21(N) + k�k2

L21(N) �
C4

l20

�
k@sAk2L2(N) + k@s k2L2(N)

�
:
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Since on the middle third piece N 0, V jN 0 = @sAjN 0 and �jN 0 = @s jN 0 , this implies that

for any tube N = [s1; s2]�T 2 of length l0 and any solution (A(s);  (s)) on N of energy

at most E0, we have

k@sAk2L21(N 0)
+ k@s k2L21(N 0)

� C4

l20

�
k@sAk2L2(N) + k@s k2L2(N)

�
:

Then the estimate in the claim follows by adding up a sequence of middle third pieces

of tubes (length l0) with the constant C = 3C4=l
2
0 and E0 as above.

With this claim and Lemma 3.7, we can prove Proposition 3.8 using the method

of the proof of Proposition 6.16 [24] and the fact that f is a Morse-Bott function

on B0
T 2

and satis�es the Palais-Smale condition on paths coming from monopoles on

[0;1)� T 2.

Since �(T 2)nU� is compact, we can set Æ = 1
2
minf�a

1

ja1 2 �(T 2)nU�g: Then,
when restricted to the cylindrical end, any Seiberg-Witten monopole on V with �nite

energy and with asymptotic limit in �(T 2)nU� has an exponential decay at a rate at

least Æ.

In order to prove that the boundary value map (13) is well-de�ned and continuous,

we need to resort to the \�nite energy implies �nite length" principle of L. Simon([30]

(see Corollary 4.2.5 in [23]).

Remark 3.9. Given that f is a real analytic function, the work of L. Simon as ex-

plained in [23] can be employed to prove a more general  Lojasiewicz inequality for f at

any critical point in �(T 2). Let 
(s) be a 
ow line of f , corresponding to an irreducible

�nite energy solution of the Seiberg-Witten equations on T 2� [0;1). Then, there exist

constants 0 < b � 1 and 0 < c � 1

2
such that, when s > R >> 1, we have

infa
1
2�(T 2) k
(s)� a1kL2 � (krf(x(s))kL2)b;

jf(
(s))j1�c � krf(
(s))kL2 :
(19)

At the smooth critical points in �(T 2), the  Lojasiewicz inequalities have the best expo-

nents b = 1 and c = 1
2 . The direct consequence of these  Lojasiewicz inequalities is the

following �nite length result for 
ow lines:Z s2

s1

k@
(s)
@s

kL2ds �
4

c
jf(
(s1))� f(
(s2))jc:

Now we have a setting analogous to the key results in [23] (pages 60-70) in our

situation. The arguments in [23], adapt to the present context, hence imply that the

boundary value map (13) is well-de�ned and continuous as a map

@1 : M�
V ! �(T 2);
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In the next subsection, we will study the local properties of the map @1 around the

singular point � and the structure of M�
V . We remind the reader that we have estab-

lished the exponential decay property of the monopoles inM�
V with asymptotic limits

away from �.

3.2 Local structure of moduli space of irreducible monopoles

Let U� be a small neighbourhood of � in �(T 2). In this section, we will study the

local structure of the moduli spaces M�
V n(�@1)�1(U�) and (�@1)

�1(U�). Here �@1 is

the composition of @1 and � in (13).

For the structure of the moduli space M�
V n(�@1)�1(U�), the exponential decay

property implies that we can introduce weighted Sobolev norms in order to study

the Fredholm theory of the linearization of the equations. With Æ as in the previous

subsection, we de�ne the space

AV;T 2 =

(
(A; )

����� (1) A is an extended L22;Æ-connection on det(W )

(2)  is an L22;Æ-spinor on W

)
; (20)

where extended L22;Æ-connection means that there exists an imaginary-valued harmonic

1-form A1 inH1(T 2; iR) such that A�A1 is an L22;Æ-connection on det(W ), where L22;Æ
denotes the Sobolev norm with weight as in [17]. To be precise, we choose the weight

function eÆ(t) = e
~Æ(t)=2, where ~Æ(t) is a smooth function with bounded derivatives, such

that ~Æ(t) � �Æt for t � �1 and ~Æ(t) � Æt for t � 1, and for some �xed positive number

Æ de�ned as

Æ =
1

2
minf�a

1

ja1 2 �(T 2)nU�g:

The L2k;Æ norm is de�ned as kfk2;k;Æ = keÆfk2;k. The weight eÆ imposes an exponential

decay as an asymptotic condition along the cylinder. We de�ne the gauge group GV;T 2
to be the L23;loc{gauge transformations such that there exists g1 2 U(1) with g�11 g � 1

an L23;Æ-gauge transformation.

Assume that x = (A; ) 2 AV;T 2 is an irreducible ( 6= 0) perturbed Seiberg-Witten

monopole on V with �nite energy, where the perturbation is in the form of Section 2

with compact support. Then from the results of previous subsection, we can assume

further that A1 represents a 
at connection a1 in �(T 2)nU�. Then the irreducible

part of the �ber (�@1)
�1(a1) has a deformation complex

0! �0
L2
3;Æ
(V; iR)

G! �1
L2
2;Æ
(V; iR) � L22;Æ(W )

L! �1
L2
1;Æ
(V; iR) � L21;Æ(W ) (21)

where G is the map which gives the in�nitesimal gauge transformations:

G j(A; ) (f) = (�df; f )
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and L is the linearization

LA; (�; �) =

( �d� � �( ; �)

=@A�+
1
2�: ;

(22)

of the perturbed Seiberg-Witten equations (11) on V . We can assemble the deformation

complex (22) into the following operator:

(G�Æ ; L) : �1
L2
2;Æ
(V; iR) � L22;Æ(W )! �0

L2
1;Æ
(V; iR) � �1

L2
1;Æ
(V; iR) � L21;Æ(W ) (23)

where (G�Æ ; L)(�; �) is given by

(e�1Æ d�(eÆ�) + iImh ; �i; �d� � �( ; �); =@A�+
1

2
�: ):

With the choice of eÆ as in the previous section, (G
�
Æ ; L) is a Fredholm operator of index

0.

The deformation complex for the moduli space MV n(�@1)�1(U�) is given by

0! TidGV;T 2 G! TxAV;T 2
L! �1

L2
1;Æ
(V; iR) � L21;Æ(W ): (24)

These two complexes are related by the fact that (21) is a sub-complex of (24) with

the quotient complex

0! Lie(Stab(a1))
0! H1(T 2; iR) ! 0:

Therefore, the virtual dimension of MV n(�@1)�1(U�) at x = (A; ) is

dim(�@1)
�1(a1) + dimH1(T 2; iR) � dimStab(a1) = 1;

where dim(�@1)
�1(a1) is the virtual dimension of the �ber.

Theorem 3.10. Fix an open set U in V � (T 2 � [0;1)). There exists a Baire set P0
of perturbations � on V with compact supports in U , such that the perturbed Seiberg-

Witten moduli space M�
V n(�@1)�1(U�) is a smooth, oriented manifold of dimension 1.

Moreover,

@1 :M�
V n(�@1)�1(U�)! �(T 2)

is an immersion and transversal to any given immersed curves in �(T 2)

Proof. The transversality argument is the same as in the closed case, see the

proof of Proposition 2.2, namely, we look at the deformation complex (24) for the

parametrized moduli space MV;Z(U;iR) to get the transversality for the parametrized
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moduli space MV;Z(U;iR). We then apply the in�nite dimensional version of Morse-

Smale theory to the projectionMV;Z(U;iR) ! Z(U; iR), we obtain that, for � in a Baire

space P0 � Z(U; iR), the moduli space M�
V;�n(�@1)�1(U�) is a smooth manifold of

dimension given by virtual dimension calculated as above.

We �rst show that for a generic perturbation � (a co-closed imaginary valued 1-

form with compact support in U), the map (G�Æ ; L) as given by (23) is surjective. At

an irreducible monopole [A; ] in (�@1)
�1(a1) for a1 2 �(T 2)nU�, we will show that

L : KerG�Æ � Z(U; iR) ! KerG�Æ

is surjective. Suppose that (�1; �1) is L
2
Æ-orthogonal to the image of the above map,

then (�; �) = e2Æ(t)(�1; �1) is L
2-orthogonal to the image of the above map, hence,

(�; �) is in L21;�Æ and satis�es the equations (7) as in the proof of Proposition 2.2.

Hence, there is a real valued function f on V (with in�nite cylindrical end) such that

� = if , � = �2idf and

2d�df + j j2f = 0:

df 2 L21;�Æ implies that on T 2 � [0;1),
@f

@t
is in L2

�Æ, then by Cauchy-Schwartz

inequality

jf(t)� f(0)j2 �
Z t

0

e2Æsds

Z t

0

je�Æs @f
@t

(s)j2ds

this implies that for T >> 0,Z
@V (T )

jf j2 � C0e
2TÆk@f

@t
k2
L2
�Æ
� Ce2TÆ; (25)

for some constants C0; C. [A; ] 2 (�@1)
�1(a1), whose asymptotic behaviour has been

studied in the previous subsection, we see that there exist gauge representatives (A; )

and a1 of [A; ] and [a1], so that (A; ) decays to (a1; 0) exponentially at the rate at

least
�a

1

2
, where �a

1

is the smallest absolute value of the non-zero eigenvalue of Qa
1

(Cf. (18)). On T 2 � [0;1), write � = ��(a1) + �1 + �0dt with �i 2 
i(T 2; iR), using

the analysis in Appendix of [25], we get

k�0kC0(T 2�[T;T+1]) � C1e
�T
�a

1

2 ;

from some constant C1. As �2i@f
@t

= �0, we obtain

����@f@t j@V (T )
���� � C2e

�T
�a

1

2 ; (26)
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for some constant C2. From two inequalities (25) and (26), and note that Æ � �a
1

=2,

we have ����
Z
V

d�d(f2)dvol

����
� limT!1

Z
@V (T )

2jf j � j@f
@t
jdvol

� limT!1 2(

Z
@V (T )

jf j2dvol) 12 (
Z
@V (T )

j@f
@t
j2dvol) 12

� limT!1 2CC1e
T (Æ� �a

1

=2) = 0:

Now multiply 2d�df + j j2f = 0 by f and integrate it by parts, we get f = 0, hence

(�1; �1) = 0.

The proof of that@1 is an immersion and transversal to any given immersed curves

follows from the Sard-Smale theorem.

An orientation of MV is obtained from a trivialization of the determinant line

bundle of the assembled operator of the deformation complex (24). The trivialization

of the determinant line bundle of the complex of (21) is obtained from the orientation

of H0
Æ (V )�H1

Æ (V ), the cohomology groups of Æ-decaying forms. In fact, we can deform

the operator H(A; ) with a homotopy � , � 2 [0; 1]. The asymptotic operator Q[a
1
;0;0]

is preserved in the deformation. Thus, if the weight Æ is chosen in such a way that

Æ=2 is not in the spectrum of Q[a
1
;0;0], then ([17], [23] Lemma 8.3.1) we can ensure

that the operator H(A;� ) is Fredholm, for all � 2 [0; 1]. Since the Dirac operator is

complex linear and it preserves the orientation induced by the complex structure on

the spinor bundle, a trivialization of the determinant line bundle at � = 0 is obtained

by the orientation of H0
Æ (V ) �H1

Æ (V ). This in turn determines a trivialization of the

determinant line for � = 1, hence an orientation of MV .

Similar results were obtained by [8] [15].

Now we need to understand the local structure of M�
V around (�@1)

�1(�). The

center manifold technique developed in [23] is a useful model to study the structure of

(�@1)
�1(U�).

We brie
y recall a few facts about center manifolds [23]. In general, suppose we are

given a system of the form

_x = Qx+N(x); (27)

with Q a linear operator acting on a Hilbert space X . Assume we also have the decom-
position X = X+

h � Xc � X�
h determined by the positive, negative, and zero spectrum

of the operator Q. Let Xh = X+
h �X�

h , and consider the projections �c : X ! Xc and
�h : X ! Xh. We denote by Q�h and Qc the induced operators on X�

h and Xc. By
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construction Qc is trivial. The evolution semigroups e�sQ
+
h and esQ

�

h , for s � R0 > 0,

satisfy

sup
s�R0

maxfeÆske�sQ+
h k; e�ÆskesQ�h kg � C; (28)

for some constant C > 0. This follows from the bound

1

2
inffj�j j � 2 spec(Q�); � 6= 0g = Æ > 0:

The center manifold theorem (in [23]) states that there exists a map ' : Xc ! Xh
that vanishes to second order at the origin, and such that an element ~x(s) is a solution

of (27) if and only if the projection �c~x(s) is a solution of the equation

_xc = �cN(xc + '(xc)): (29)

The center manifold H is de�ned as H = fxc + '(xc)jxc 2 Xcg.
We now describe explicitly the center manifold and the stable set for the unper-

turbed equations (16). In this case, we are considering the operator Q�, the Hessian

of the functional f at the degenerate critical point �. The center manifold H� for

the functional f at the degenerate critical point � is a C2-manifold which is invariant

under the gradient 
ow of f , contains a small neighbourhood U� of �, and has tangent

space at � given by

H1
� = H1(T 2; iR) � ker �@� � ker �@��

�= C
3 :

Lemma 3.11. At every point x = (a; �; �) 2 H1
�, the gradient vector rf(a; �; �) is

tangent to H1
�, hence H1

� is a center manifold of f around �.

Proof. Using the natural complex structure on T 2, we can identify H1
� as the space

of constant sections of

�1(T 2; iR) � �0;0(T 2; C ) � �0;1(T 2; C ):

For (a; �; �) 2 H1
�, we have rf(a; �; �) = (�i���;�i�@�a�; i�@a�); which is a constant

section. Take (z1; z2; z3) as the coordinates on H1
�
�= C

3 , we have

rf(z1; z2; z3) =
���z2z3;� �z1z3

2
;�z1z2

2

�
:
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The downward gradient 
ow of f on H1
� is given by8>>>>><

>>>>>:

@z1

@s
= �z2z3;

@z2

@s
=

�z1z3
2
;

@z3

@s
=
z1z2

2
:

(30)

Note that this gradient 
ow is invariant under the U(1)-action (the constant gauge

transformation):

(z1; z2; z3)
ei�2U(1)! (z1; e

i�z2; e
i�z3):

Lemma 3.12. The quantities jz2j2 � jz3j2, jz1j2 � jz2j2 � jz3j2 and Im(z1z2�z3) are

preserved under the gradient 
ow on H�.

Proof. This is a direct calculation using the gradient 
ow equations (30).

The stable set of (a1; 0) 2 H� is de�ned to be

Sa
1

= fx 2 H� such that the 
owline of (30) starting at x converges to (a1; 0)g:

The stable set S of f in H� is the union of these Sa
1

, for (a1; 0) 2 H�.

Lemma 3.13. Let (a; �) = (z1; z2; z3) 2 H�. Then (a; �) 2 S if and only if we have8>><
>>:
jz2j2 � jz3j2 = 0;

jz1j2 � jz2j2 � jz3j2 = ja1j2 � 0;

Im(z1z2�z3) = 0:

(31)

In particular, (a; �) = (z1; z2; z3) 2 S� (the stable set of the point �) if and only if8>><
>>:
jz2j2 � jz3j2 = 0;

jz1j2 � jz2j2 � jz3j2 = 0;

Im(z1z2�z3) = 0:

(32)

These equations describe a cone over a torus T 2 with vertex at �. Furthermore,

Snf(�; 0)g is a 4-dimensional manifold with boundary S�nf(�; 0)g.

Proof. It follows from Lemma 3.12 that (a; �) 2 S converges to some (a1; 0) as

t!1. The equations (32) de�ne a torus over � and, as ja1j2 ! 0, points de�ned by

(31) approach points in S�.
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As in [23], the restriction of the gradient 
ow of f to the center manifold provides

a model for the structure of the space of 
ows with asymptotic values in a small

neighbourhood U� of �, in the following sense. Given a point x in H�, the stable set

Sx at x is de�ned as

Sx = fy 2 H� such that the 
owline starting at y converges to xg:
The stable set S = [x2H�

Sx de�nes a re�nement of the boundary value map, as

described in the following commutative diagram:

(�@1)
�1(U�)

�@
1 //

�
%%KKKKKKKKKK

U�

S

�
>>~~~~~~~~

(33)

Here � is a map de�ned by taking a 
ow line on the stable set S that is exponentially

close to a monopole in (�@1)
�1(U�). The map � is the limit value map under the 
ow

line of f on S.
The results of [23] show that if the projection �c~x(s) of a 
ow line ~x(s) satis�es an

estimate

k@s�c~x(s)�rf(�c~x(s))k < Ce�Æs; (34)

for all s � R0, then there exists a unique 
ow line xc(s) in the center manifold H� that

is exponentially close to �c~x(s) for large s � R0, with the same exponent Æ determined

by the smallest absolute value of the non-zero eigenvalues of Q�. Moreover, for a 
ow

line ~x(s) satisfying

k�c~x(s)� a1kL22(T 2�fsg) + k�h~x(s)kL22(T 2�fsg) � C

for all s � R0, the projection �h~x(s) is exponentially small for large s, with exponent

Æ. The condition (34) follows from our explicit construction of the center manifold.

This shows that every 
ow line in (�@1)
�1(U�) is exponentially close to a 
ow line in

the center manifold. Thus, the re�nement � of the boundary map is well de�ned and

continuous.

The results of the previous discussion and the arguments in [23] (Page 82-100) imply

the following structure theorem for our moduli space MV near
�
�@1
��1

(�).

Theorem 3.14. Fix a metric g and perturbation P 2 P as in Theorem 3.10. Let

K � M�
V;P be de�ned as K =

�
�@1
��1

(�), and let K0 denote the subset ��1(�; 0; 0),

with � de�ned as in (33). Then, generically, the following holds.

(1) K0 is empty and K consists of only �nitely many points.

(2) There is a neighbourhood U� of � in �(T 2), such that the following holds. The

moduli space M�
V \

�
�@1
��1

(U�) is a smooth manifold of dimension 1, with boundary

K =
�
�@1
��1

(�).
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Proof. By the center manifold theorem in [23], the restriction of any �nite energy

monopole

[A; ] 2MV;�(U�) =
�
�@1
��1

(U�)

to the tube T 2 � [T0;1) (for a �xed large T0) is exponentially close to a 
ow line in

the center manifold starting from the point �([A; ]) given by the re�nement boundary

map (33). The exponential weight is at least a half of the smallest absolute value of the

non-zero eigenvalues of ( �@�+ �@��). Theorem 3.10 shows that, for a generic choice of the

perturbation, the moduli space M�
V (U�) is a smooth manifold of dimension 1, away

from ��1(S�). From the analysis of the center manifold theorem, since Snf(�; 0)g is

a 4-manifold with boundary S�nf(�; 0)g, we know that generically K0, if non-empty,
is a smooth manifold of dimension given by the virtual dimension: dimM�

V � 4 = �3,
so K0 must be empty and M�

V (U�) is a smooth oriented 1-dimensional manifold with

boundary K =
�
�@1
��1

(�).

One useful observation that we can derive directly from the analysis of the center

manifold is the following estimate of the rate of decay of solutions approaching the

singular point �.

Remark 3.15. Let x(s) = (a(s); �(s); �(s)) be an irreducible �nite energy solution of

the Seiberg-Witten equations on V , with asymptotic value �, that is, [x] 2 @�11 (�).

Then the rate of decay in the s!1 direction is polynomial with

k(a(s) ��; �(s); �(s))kL2(T 2�fsg) �
1

s
:

3.3 Proof of Theorem 1.2

From the discussions in the previous subsection, in order to complete our analysis of

the structure of the moduli space MV , we only need to prove the following result.

Lemma 3.16. M�
V is compact except for �nitely many open ends limiting to �(V ),

the reducible moduli space of V and, generically, �@1(M�
V ) can be made transversal at

any interior points to any given �nite set of curves in �(T 2; V ).

Proof. We �rst analyse the set of reducible solutions of the monopole equations on V .

The reducible moduli spaceMred
V can be identi�ed with the space �(V ) of deformed 
at

connections over V , modulo gauge transformations, which is di�eomorphic to a circle.

The asymptotic value map @1 is simply the restriction map, which is an embedding

@1 :Mred
V = �(V ) ,! �(T 2; V ):
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Let �(V ) ,! �(T 2; V ) be the circle of reducibles on V modulo gauge equivalence,

embedded via the restriction map inside the cylinder �(T 2; V ). Fix a smooth param-

eterization a(t) of �(V ), consider the family of Dirac operators =@a(t) on V , twisted

with the connection a(t). We can perturb �(V ) such that �(V ) ,! �(T 2; V ) is away

from a small neighbourhood of the singular point �, then we know that the Dirac

operator �@a(t) + �@�a(t) on T
2 has trivial kernel. The 3-dimensional Dirac operator =@a(t)

(a(t) 2 �(V ) ) on V may acquire a non-trivial kernel, however, this only happens at

�nitely many points on �(V ), for a generic perturbation in P0 (cf. [20] x7). We show

that, if these occur, then the irreducible set M�
V has an open end limiting to such

points. If the irreducible set M�
V has an open end limiting to the reducible set �(V ),

then the 3-dimensional Dirac operator =@a(t) has a non-trivial kernel: this can be seen

by studying the linearization of the spinor part of the Seiberg-Witten equations. On

the other hand, suppose that there is a point a(t0) on �(V ), where the operator =@a(t0)
acquires a non-trivial kernel. We can proceed as in Section 7.3 of [20] to analyse the

local model of the moduli space MV = M�
V [ �(V ) in a neighbourhood of [a(t0); 0],

which shows that there exists an open end limiting to a(t0).

Thus, the rest of the proof of compactness for MV = M�
V [ �(V ) is now reduced

to the (by now standard) proof of compactness for Seiberg-Witten moduli spaces [13]

[16] [22]. Transversality at the interior of the �@1(M�
V ) to any given �nite set of curves

in �(T 2; V ) can also be achieved by a generic choice of perturbation on V .

Thus, we have completed the proof of the structure theorem forMV (Theorem 1.2).

4 Gluing of 3-dimensional monopoles

Now we begin to discuss the gluing theory. Suppose that V (r) = V � (T 2 � [r;1))

lies in a closed 3-manifold Z such that T 2 splits Z into two components (for example,

V (r)[T 2�(K)). We identify the solutions of the Seiberg-Witten equations on V di�ering

only by those gauge transformations V which can be extended to Z, and denote the

resulting moduli space by M�
V;Z . Then the boundary value map in Theorem 1.2 has a

re�nement:

M�
V;Z �! �(T 2; Z)

where the notation �(T 2; Z) indicates the moduli space of 
at connections on a trivial

line bundle over T 2 modulo the gauge transformations on T 2 which can be extended

to Z. This gives a re�ned boundary value map and the moduli spaces M�
V;Z enjoy all

the properties described in Theorem 1.2 for M�
V .

Assume that Z = V (r)[T 2 �(K) where �(K) is a tubular neighbourhood of a knot

K in Z. We denote by �(�(K); Z) the moduli space of 
at connections on �(K) modulo
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the gauge transformations on �(K) which can be extended to Z. There is a natural

map �(�(K); Z) ,! �(T 2; Z), which realizes �(�(K); Z) as a line in the aÆne space

�(T 2; Z).

Thus we can de�ne the following �ber product:

M�
V;Z ��(T 2;Z) �(�(K); Z): (35)

This is the main object in the gluing Theorem 1.3. We shall present the argument for

the case of the homology sphere Y . The argument is analogous in the case of Y1 and,

up to minor modi�cations that we shall point out, in the case of Y0 as well.

Consider a tubular neighborhood �(K) � Z endowed with a metric with suÆciently

large positive curvature inside �(K) and 
at near the boundary. When stretching the

neck in Z(r), using the standard pointwise estimate on the spinor for Seiberg-Witten

monopoles we can ensure that, on �(K) endowed with an in�nite cylindrical end, the

only �nite energy solutions of the unperturbed Seiberg-Witten equations are reducibles

(with vanishing spinor part). Modulo gauge transformations, these correspond to the

moduli space of 
at connections on �(K). In Lemma 4.11, we will show that, if we

choose such a metric for �(K) � Y , it is still possible to have a metric with the same

properties for �(K) � Y1 and �(K) � Y0.

Recall that we have a splitting of Y along the torus T 2 as Y = V [T 2 �(K), with

@V = @�(K) = T 2. Assume that the metric g on Y is the product metric on a small

neighbourhood of T 2, and can be extended to a metric on �(K) with positive scalar

curvature. On both V and �(K) we consider as underlying Spin structure the one

induced from the restriction of the trivial Spin structure on Y . This induces a non-

trivial Spin structure on T 2. The corresponding Spinc structures s
0, s00 on V and �(K)

have trivial determinant. In gluing the Spinc structures s
0 and s

00 on V and �(K) we

can only obtain the unique trivial Spinc structure on Y since Y is a homology sphere.

The same holds for Y1. In the case of Y0, the gluing of the trivial structures s
0 and

s
00 on V and �(K) by gauge transformations along the common boundary T 2 provides

di�erent Spinc structures on Y0, which are classi�ed by

H1(T 2;Z)=fIm(H1(V;Z);H1(T 2;Z)) + Im(H1(�(K);Z);H1(T 2;Z))g �= H2(Y0;Z):

Thus, there are a Z-family of Spinc structures corresponding to H2(Y0;Z)�= Z.

Let Y (r) = V [T 2 ([�r; r] � T 2) [T 2 �(K). We can also consider the manifolds V

and �(K) with in�nite cylindrical ends as

V [T 2 ([0;1) � T 2); ((�1; 0]� T 2) [T 2 �(K):

We continue to use the same notation V and �(K) for the manifolds with in�nite

cylindrical ends, as we did in the previous sections.
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The proof of the gluing Theorem 1.3 consists of several steps. First, we show

that, upon stretching the neck [�r; r] � T 2 to in�nity, the Seiberg-Witten monopoles

(Ar;  r) on Y (r) approach a pair of �nite energy solutions (A0;  0), and (A00; 0) on the

two manifolds V and �(K) with in�nite cylindrical ends. Then we construct a gluing

map, under the hypothesis that the gluing takes place away from � in the character

variety �(T 2). At the end of this section, we justify the assumption that gluing at �

can be avoided.

4.1 Convergence of monopoles on a 3-manifold with a long neck

We need to introduce some ad hoc assumptions on the class P of perturbations for

the Seiberg-Witten monopoles on Y (r), so that it behaves nicely under the splitting

r ! 1. We consider perturbations of the monopole equations as in (4), induced by

the perturbations of the Chern-Simons-Dirac functional. Notice that, if we choose a

perturbation with compact support on the manifold V with in�nite cylindrical end,

this perturbation induces a perturbation on Y (r), for suÆciently large r >> r0, which

is supported inside the knot complement in Y (r) (which we still denote by V ).

The convergence result we prove in this section depends on a uniform pointwise

bound on the solutions (Ar;  r) inMY (r) which is independent of r. The argument for

the manifold Y1(r) is the same. The case of the manifold Y0(r) is also analogous, when-

ever Y0 is endowed with a Spinc structure that restricts to the trivial Spinc structures

on V and �(K).

In order to derive the estimates we need, we consider �rst, for Y a 3{manifold

(either without boundary, or with boundary T 2) a functional on the con�guration

space of U(1){connections and spinors of the form

EY;�(A; ) =

Z
Y

�
jrA j

2 +
�

4
j j2 +

1

2
jFAj

2 +
1

2
j�( ;  ) + �j2

�
dv: (36)

Here we consider compactly supported perturbations � of the form described in Section

2.

Lemma 4.1. If (A; ) is a solution of the perturbed SW equations

(�FA � �( ; ) � �; =@A ) = (0; 0);

on a compact 3{manifold Y without boundary, then we obtain

EY;�(A; ) =
Z
Y

FA ^ �: (37)

If we consider an open submanifold Z � Y with boundary @Z = T 2, such that the

perturbation � is supported away from @Z, then for the functional EZ;� we have

EZ;p(A; ) =
Z
Z

FA ^ ��
Z
@Z

h�; i�@�a�i; (38)
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where we write the connection and spinor as (a; �; �) on T 2 = @Z. In particular for a

cylinder region Z = T 2 � [s0; s1], and perturbation term � supported away from Z, we

have

f(a(s1); �(s1); �(s1))� f(a(s0); �(s0); �(s0)) = EZ;�(A; ); (39)

where we write (A; ) in the form (a(s); �(s); �(s)) on the cylinder Z.

Proof. First notice that we haveZ
Y

j=@A j2 dv =
Z
Y

jrA j2 + �

4
j j2 � 1

2
h�FA �  ; i:

Here the term 1
2
h�FA �  ; i can be written as �FA ^ �( ; ). We also haveZ

Y

j � FA � �( ; ) � �j2 dv =
Z
Y

jFAj2 + j�( ; ) + �j2 dv + 2

Z
Y

FA ^ (�( ; ) + �):

Thus, we can rewrite the functional (36) in the form

E�(A; ) =
Z
Y

j=@A j2 + 1

2
j � FA � �( ; ) � �j2 dv +

Z
Y

FA ^ �:

The identity (37) for a compact manifold then follows. In the case of (38) for Z with

@Z = T 2, see the proof of Lemma 3.3, the boundary term is the di�erence ofZ
Z

�j=@A j2 � h=@�A=@A ; i� dv
and Z

Z

�jrA j2 � hr�ArA ; i
�
dv:

The last case (39) for a cylinder follows, since by the assumption on the perturbation

term
R
FA ^ � is trivial, and the boundary terms give the variation of the functional f

along the cylinder.

Notice that the above result allows us to obtain estimates for the L2 norms of  ,

rA , and FA.

Lemma 4.2. Suppose we are given solutions (Ar;  r) of the perturbed Seiberg-Witten

equations (4) on the compact 3-manifold Y (r), with a perturbation � supported in the

knot complement V � Y (r) for all r � r0. Then we have pointwise bounds

j r(y)j � �(Y ); jFAr(y)j � C(�(Y ))2;

for y 2 Y (r), where C; �(Y ) are constants independent on r.
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Proof. Consider �(Y (r)) = maxy2Y (r)f��(y) + C; 0g, where �(y) is the scalar curva-
ture and C is a constant depending only on the perturbation �. Notice that, by our

assumptions on the choice of the perturbation, we can assume that C is independent

of r. The minimum of the scalar curvature also remains constant upon stretching the

cylinder T 2 � [�r; r], so that we have �(Y (r)) = �(Y ) for all r > 0.

The Weitzenb�ock formula provides a uniform bound on the spinors in terms of the

scalar curvature, namely at a point y where j r(y)j achieves a maximum we have either

 r(y) = 0 or j r(y)j2 � ��(y) + C: The pointwise bound for the curvature form FAr
follows from the bound on j rj and from the equations.

Using these pointwise estimates and the results of Lemma 4.1, we obtain L2 and L21
estimates.

Lemma 4.3. Suppose we are given solutions (Ar;  r) of the perturbed Seiberg-Witten

equations (4) on the compact 3-manifold Y (r), with a perturbation � supported in the

knot complement V � Y (r), for r � r0.

(i) Consider an open submanifold Z � Y (r), with @Z = T 2 a slice in the product

region of Y (r). Then the values f(ar; �r; �r) on @Z are uniformly bounded in r � r0.

Here the (ar; �r; �r) are restrictions to @Z of the solutions (Ar;  r).

(ii) The total variation of the functional f along a cylinder Zr = T 2�[�r; r] � Y (r)

is uniformly bounded in r � r0.

Proof. Applying (37) of the previous Lemma together with the assumptions on the

perturbation, we obtain

c � ��(Y (r0))
4

k rk2L2(Y (r0)) � EY (r);�(Ar;  r) =
Z
Y (r0)

FAr ^ � � C 0;

with �(Y (r0)) = max(��(y) + C; 0), for y 2 Y (r0). We are using the fact that the

scalar curvature satis�es � � 0 on the cylinders T 2 � [�(r � r0); r � r0], and the lower

and upper bounds by constants c; C 0 > 0 independent of r � r0 follow by the pointwise

bound on  r and FAr . The constant C
0 depends on the perturbation �.

Now consider the case of a compact set Z = V [T 2 [0; r0] � T 2 in Y (r). Applying

(38) of the previous Lemma we estimate

c � ��(Y (r0))
4

k rk2L2(Z) � EZ;�(Ar;  r) = f j@Z +

Z
Z

FAr ^ �;

with the boundary term

f j@Z = f(ar; �r; �r) = �
Z
@Z

h�r; i�@��ri dvT 2 :
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By the assumptions on the metric and on the perturbation we know that on

Zc = Y (r)nZ we have EZc;� � 0, and � � 0, hence EZc;� = f j@Zc = �f j@Z � 0.

Moreover, for Z of the form as above, we have

�C 0 �
Z
Z

FAr ^ � =

Z
Y (r0)

FAr ^ � � C 0:

Thus we have an estimate

c� C 0 � f(ar; �r; �r) � 0:

In the case of the cylinder region Zr, by considering the two components in the com-

plement Zcr and arguing as above, we obtain uniform bounds on f(ar(r); �r(r); �r(r))

and f(ar(�r); �r(�r); �r(�r)). The variation

f(ar(r); �r(r); �r(r))� f(ar(�r); �r(�r); �r(�r)) = EZr;p(Ar;  r)

is therefore uniformly bounded in r � r0.

Lemma 4.4. Suppose we are given solutions (Ar;  r) of the perturbed Seiberg-Witten

equations (4) on the compact 3-manifold Y (r), with a perturbation � supported in the

knot complement in Y (r), for r � r0. Suppose given a compact set Z of the form

V [T 2 [0; r0]�T 2 or �(K)[T 2 [�r0; 0]�T 2 in Y (r) with r > r0. Then we have uniform

bounds

krAr rk2L2(Z) � C(�; �); kFArk2L2(Z) � C(�; �)

where C(�; �) is a positive constant, depending on the scalar curvature and on the

perturbation, independent of r � r0.

Proof. In order to derive the estimate for the L2{norm of rA , we use the result of

Lemma 4.3. We have

c � krAr rk2L2(Z) +
Z
Z

�

4
j rj2dv � C 0

and

c � 1

2
kFArk2L2(Z) +

Z
Z

�

4
j rj2dv � C 0:

Since the second term is uniformly bounded in r � r0, we obtain the result.
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Notice that the uniform bound on the curvature justi�es our choice of the �nite

energy condition (12) for monopoles on the manifold V with in�nite cylindrical end.

Now we can establish the convergence result for the Seiberg-Witten monopoles on

Y (r) as r!1.

Proposition 4.5. Assume that the metric on Y (r) and the perturbation are chosen as

speci�ed in the beginning of this section. Suppose the moduli spaces M�
Y (r)(sr) are non-

empty for r >> 0, and let (Ar;  r) be a solutions representing elements in M�
Y (r)

(sr).

(a) For any �xed compact set Z = V [T 2 (T 2�(0; r0]) � Y (r), there exist gauge trans-

formations �r on Y (r), such that a subsequence of �r(Ar;  r) converges smoothly

on Z to either a solution (A0;  0) with [A0;  0] in MV (s
0), or to a solution (a001; 0),

with [a001; 0] in Mred
�(K)(s

00) = �(�(K); Y ):

(b) The solutions �r(Ar;  r) restricted to the cylinder [�r; r]� T 2 converge smoothly

on compact sets to a constant 
at connection a1 on T 2.

(c) Let @1[A
0;  0] = a01 be the asymptotic limit, that is, an element of �(T 2; V ).

Then there exist two gauge transformations �0 and �00 on T 2 that extend to V and

�(K) respectively, such that we have �00a001 = �0a01 in �(T 2; Y ).

(d) In the case of Y0, we obtain similarly �00a001 = �0a01 in �(T 2; Y0). The gauge trans-

formation (�0)�1�00 over T 2 determines a cohomology class in H2(Y0;Z) which is

the element uniquely associated to the Spinc structure s on Y0.

Proof.

(a) Suppose we are given a �xed compact set Z = V [T 2 (T 2 � (0; r0]) in Y (r).

We show that a sequence of elements [Ar;  r] of M(Y (r); sr) has a subsequence that

converges smoothly on Z to a solution of the equations. The same result holds for

compact sets Z of the form T 2 � [�r0; r0] [T 2 �(K). These results were essentially

established in [13].

The estimates of Lemma 4.3 and Lemma 4.4 show that there is a uniform bound

for the L2 norms

k rkL2(Z) � C(�; �); kFArkL2(Z) � C(�; �):

This implies an L21 bound on the connections

kAr �A0kL21(Z) � ~C � C(�; �);

with the constant ~C depending on the �xed compact set Z, and independent of r � r0.

The bound

krAr rkL2(Z) � C(�; �)
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of Lemma 4.4, together with the L2 bound on the spinors, implies a bound on the

L21-norms of the spinors by the elliptic estimate.

Notice that here Z is a compact set of the following form

V [T 2 [0; r0]� T 2; or �(K) [T 2 [�r0; 0] � T 2;

thus we have elliptic estimates in the form

k rkL2
k
(Z) � C(krAr rkL2

k�1
(Z0) + k rkL2

k�1
(Z));

where Z 0 is a smaller set Z 0 = V [T 2 [0; r00]� T 2, for some r00 < r0, cf. [20] x4.1. Since
we are only taking estimates on a �xed compact set Z of the form speci�ed above, the

constant C in the elliptic estimate depends on Z but does not depend on the parameter

r of the underlying manifold Y (r). For the elliptic estimate for the connections, we

choose any smooth connection A0 on det(s) over Z and gauge transformations �r in the

identity connected component of the gauge group GY (r), such that the forms �rAr�A0

are co-closed and annihilate the normal vector at the boundary T 2. We use an elliptic

estimate of the form considered above for the operator d + d�. Thus, we can bound

the L22-norms of the connections on Z, and use a bootstrapping argument to bound the

higher Sobolev norms as in [13] [20] [22].

Upon passing to a subsequence, we have obtained elements (Ari ;  ri) that converge

smoothly on Z to a solution of the equations. This de�nes a solution (A0;  0) on V

with the cylindrical end T 2 � [0;1). The case of �(K) is analogous. With our choice

of metric on �(K), a �nite energy solution on �(K) will necessarily be reducible.

To complete the proof of (a) we need to show that the resulting solution on V with

in�nite end satis�es the �nite energy condition (12). This follows from the curvature

estimate in Lemma 4.4

(b) To prove the second claim, consider the elements xr = (Ar;  r) restricted to the

cylinder [�r; r]� T 2. Up to a gauge transformation, they can be written in the form

xr(s) = (ar(s); �r(s); �r(s)):

The functional f is monotone along the cylinder, with variation

f(ar(r); �r(r); �r(r))� f(ar(�r); �r(�r); �r(�r)) =Z r

�r

krf(ar(s); �r(s); �r(s))k2ds:

By the result of Lemma 4.3, there is a uniform bound, independent of r for the variation

of the functional f along the cylinder,

f(ar(r); �r(r); �r(r))� f(ar(�r); �r(�r); �r(�r)) � C:
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This uniform bound for

c � EZr;�(Ar;  r) � C;

with Zr = T 2 � [�r; r], gives bounds on compact sets Z � Zr for the L2{norms

krAr rk, k rk, kFArk, as well as for the L4 norm of the spinor. This is enough to start

the bootstrapping argument, with elliptic estimates as before, hence we obtain smooth

convergence on compact sets in Zr to a solution of the unperturbed SW equations on

T 2 � R. Such solution must be a 
at connection and the trivial spinor. This implies

EZr;�(Ar;  r) ! 0, hence, using again Lemma 4.1 together with the estimate (19), we

obtain that the limit is actually a critical point a1 of f .

Thus, up to gauge transformations, the sequence of solutions (Ar;  r) has a subse-

quence (Ari ;  ri) that converges smoothly on compact sets to a pair ((A0;  0); (a001; 0)).

In the asymptotic limit we get

lim
s!1

�0(A0;  0) = �0a01 = �00a001:

In the case of the manifold Y0,

[�0a01] = [�00a001]

in �(T 2; Y0) imply that xr = [Ar;  r] 2 M�
Y0(r)

(sk) where sk corresponds to the coho-

mology class

[(�0)�1�00] 2 H1(T 2;Z)=H

for

H = Im(H1(V;Z);H1(T 2;Z)) + Im(H1(�(K);Z);H1(T 2;Z)):

This completes the proof of the convergence part of the gluing theorem 1.3 for

generators. Namely, we have shown that a gauge class in the moduli space MY (r)(s),

for a suÆciently large r, and perturbation as prescribed, determines an element in

M�
V;Y ��(T 2;Y ) �(�(K); Y ):

4.2 Proof of Theorem 1.3

In this subsection we will construct an approximate monopole on Y (r) from any element

inM�
V;Y ��(T 2;Y )�(�(K); Y ), and study the gluing that will produce the corresponding

monopole on Y (r) for a suÆciently large r.

First, we de�ne a pre-gluing operation, where we splice together solutions in M�
V

and �(�(K)) with matching asymptotic values, via a smooth cuto� function. This
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produces an approximate solution (A0;  0)#r(a
00
1; 0) of the monopole equations on Y (r)

for ((A0;  0); (a001; 0)) representing an element in M�
V;Y ��(T 2;Y ) �(�(K); Y ).

We can assume that (A0;  0)jT 2�[0;1)�V is in temporal gauge with asymptotic limit

(a1; 0), and there is a gauge transformation �00 on �(K) such that �00(a001) = a1 as a


at connection on T 2. Let (A0;  0) = a1+(a0(s);  0(s)) on T 2� [0;1). We can choose

smooth cuto� functions �r(s) (s 2 [�2; 2]) with values in [0; 1], satisfying �r(s) � 1 for

s 2 [�2;�1] and �r(s) � 0 for s 2 [1; 2] with 0 � �0(s) � 1.

De�ne the pre-gluing map with values in B(Y (r)) by setting

xr = (A; )

= (A0;  0)#0
r(a

00
1; 0)

=

8><
>:

(A0;  0) on V (r � 2)

a1 + �r(s)�
00(a0(s+ r);  0(s+ r)) s 2 [�2; 2]

�00(a001; 0) on �(K)(�r + 2)

(40)

De�nition 4.6. An approximate solution is by de�nition an element in the image

of the pre-gluing map (40). We use the notation

M�
V;Y (a1) := @�11 (a1) �M�

V;Y :

Then U(a1; r) is de�ned to be the image of the pregluing map (40)

#0
r :M�

V;Y (a1)� [a001; 0]! B(Y (r)):

In order to show that the approximate solutions in U(a1; r) can be deformed to

actual solutions of the monopole equations on Y (r), we consider the span of eigenvectors

corresponding to the small eigenvalues of the linearization operator at the approximate

solutions.

Consider the linearization operator of the Seiberg-Witten equations on Y (r) at the

approximate solution (A0;  0)#0
r(a

00
1; 0)

H(A0; 0)#0
r(a

00

1
;0)(f; �; �) =

(
L(A0; 0)#0

r(a
00

1
;0)(�; �) +G(A0; 0)#0

r(a
00

1
;0)(f)

G�
(A0; 0)#0

r(a
00

1
;0)
(�; �):

We also need the linearization operators of the Seiberg-Witten equations on V and

�(K) with in�nite cylindrical ends, as de�ned in the deformation complex (21), acting

on L2 forms and spinors:

H(A0; 0)(f; �; �) =

(
L(A0; 0)(�; �) +G(A0; 0)(f)

G�(A0; 0)(�; �)

H(a00
1
;0)(f; �; �) =

(
L(a00

1
;0)(�; �) +G(a00

1
;0)(f)

G�(a00
1
;0)(�; �)

;
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where the operator L is de�ned as in (22). We think of H(A0; 0)#0
r(a

00

1
;0) as acting on

the elements (�; �) in the L2 tangent space of the con�guration space over the closed

manifold Y (r). We continue to denote by H(A0; 0) and H(a00
1
;0) the operators de�ned

in the deformation complex (24) acting on the extended L2 spaces of connections and

spinors, over V and �(K) respectively.

Now we discuss the eigenfunctions corresponding to slowly decaying eigenvalues of

these operators. The model for our analysis of the operator H(A0; 0)#0
r(a

00

1
;0) is based on

the work of Capell, Lee, and Miller [3],[4]. With operators di�ering from a translation

invariant operator by exponentially decaying terms, we shall adopt the more general

setting as in the work of Nicolaescu, [28].

We use the following result, which is the analogy in our context of Theorem A of

[3].

Proposition 4.7. Assume that a1 is a point in �(T 2) away from a small neighbour-

hood U� of �. Let

N(r) = dimKerL2(H(A0; 0)) + dimKerL2(H(a00
1
;0)) + dimKer(Qa

1

):

Then, there exists an N(r)-dimensional family of eigenvectors of the operator

H(A0; 0)#0
r(A

00; 00) with eigenvalues satisfying �(r)! 0 as r !1 at the rate at most 1=r.

The dimension N(r; r�(1+�)) of the span of eigenvectors of the operator H(A0; 0)#0
r(a

00

1
;0)

with eigenvalues � < r�(1+�) is given by

N(r; r�(1+�)) = dimKerL2(H(A0; 0)) + dimKerL2(H(a00
1
;0)) + dim `1 \ `2;

where `1 and `2 are the two Lagrangian submanifolds in Ker(Qa
1

) = H1(T 2;R), de-

termined by the extended L2 solutions of H(A0; 0)(�; �) = 0 and H(a00
1
;0)(�; �) = 0.

Proof. In order to prove the �rst claim it is suÆcient to check that elements of

H1(T 2;R) = Ker(Qa
1

) give rise to approximate eigenfunctions on Y (r) with slowly

decaying eigenvalues, that is, with eigenvalues �(r) satisfying �(r) ! 0 at most like

1=r. The �rst statement is then an analogue, in our case, of Proposition 6.B of [3].

Suppose we are given an element � 2 Ker(Qa
1

). If �(s) is a cuto� function

supported in [r=2� �; 3r=2 + �] satisfying �(s) � 1 on [r=2; r], we have an estimate

k(@s +Qa
1

)��kL2(Y (r))
k��kL2(Y (r))

� C

r
:

This implies a similar estimate for the operator H(A0; 0)#0
r(a

00

1
;0) on Y (r), for r � r0

large enough, since we are assuming that this operator di�ers from @s+Qa
1

by terms

that are exponentially small in r. This is the setting used in [28].
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The second part of the statement can be derived from the asymptotically exact

sequence

0! K(r�(1+�))! KerextL2 (H(A0; 0))�KerextL2 (H(a00
1
;0))

�! `1 � `2 ! 0;

as in the Main Theorem of [28]. Here K(r�(1+�)) denotes the span of the eigenvectors

of H(A0; 0)#0
r(A

00; 00) with small eigenvalues that decay at a rate of at least r�(1+�). We

use the notation Kerext
L2

for the extended L2-solutions, and `i for the asymptotic values

of the extended L2-solutions.

Proposition 4.7 yields the following.

Corollary 4.8. There are no fast decaying eigenvalues, that is, in our problem

N(r; r�(1+�)) = 0. However, there is a non{trivial family of eigenvectors of the lin-

earization H(A0; 0)#0
r(a

00

1
;0) at the approximate solution (A0;  0)#0

r(a
00
1; 0), with slowly

decaying eigenvalues, satisfying �(r)! 0 at most like 1=r.

Proof. We have

dimKerL2(H(A0; 0)) = dimKerL2(H(a00
1
;0)) = 0:

Moreover, for a generic choice of the perturbation of the monopole equations on

V , the Lagrangian subspaces `1 and `2 intersect transversely. Thus, we have

N(r) = dimKer(Qa
1

) and N(r; r�(1+�)) = 0. The previous Proposition shows that the

span of eigenvectors with slowly decaying eigenvalues is non{trivial. In fact, it shows

the existence of (at least) a two dimensional family parameterized by the elements of

H1(T 2;R) = Ker(Qa
1

).

Suppose we are given an element (a; �) on Y (r) such that xr + (a; �) is a solution

of the monopole equations on Y (r). Then (a; �) satis�es

Hxr(a; �) +Nxr(a; �) + �(xr) = 0;

where � is the error term de�ned by

�(xr) =

 
�FA � �( ; ) � �

=@A 

!
;

as by equation (4), and N is the non{linear term

NA; (a; �) =

 
�(�; �)

a:�

!
:
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Though we do not treat the more general case in this paper, we mention that one

can consider the same argument with an additional perturbation term P (A; ). In this

case, an additional term P (A; ) enters the expression for the error term �(xr), and

an additional non-linear part NPA; of the perturbation

NPA; = P ((A; ) + (a; �)) �DPA; (a; �)

is added to the expression of NA; . This case will be discussed elsewhere.

Choose � = �(r) > 0 such that �(r) is not an eigenvalue of Hxr = H(A0; 0)#0
r(a

00

1
;0),

for all approximate solutions xr = (A0;  0)#0
r(a

00
1; 0) in U(a1; r). Consider the projec-

tion maps �(�(r); xr) onto the span of the eigenvectors of Hxr with eigenvalues smaller

than �(r).

The condition that, for a given approximate solution xr, the element xr + (a; �) is

an actual solution of monopole equations can be written as a system of two equations:

�(�(r); xr)(N(a; �) + �(xr)) = 0 (41)

Hxr(a; �) + (1��(�(r); xr))(N(a; �) + �(xr)) = 0: (42)

If the equation (42) admits a unique solution (a; �), then the condition that

xr + (�; �) is a solution of the monopole equations on Y (r) can be rephrased as the

condition that (41) is satis�ed, with (a; �) the unique solution of (42).

The second equation (42) can be written as the �xed point problem

(a; �) = �H�1
xr (1��(�(r); xr))(N(a; �) + �(xr)): (43)

The following result proves existence and uniqueness of the solution to (43).

Lemma 4.9. There exists a positive constant C > 0, such that, if a given approxi-

mate solution xr satis�es k�(xr)kL2(Y (r)) � C�(r)2, for some small and positive �(r)

satisfying �(r) <
�(r)
2C , then the map

Tr(a; �) := �H�1
xr (1��(�(r); xr))(N(a; �) + �(xr))

maps the ball B�(r) = f(a; �)j k(a; �)k2
L21(Y (r))

� �(r)g to itself and is a contraction on

B�(r).

Proof. Let C > 0 be a constant such that the quadratic term satis�es the estimate

kN(a; �) �N(~a; ~�)kL2 � C(k(a; �)kL21 + k(~a; ~�)kL21)k(a; �) � (~a; ~�)kL21 ;

independent of r � r0. This follows from the Sobolev multiplication theorem in dimen-

sion 3.
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On the image of (1��(�(r); xr)), the operator H
�1
xr is bounded with norm bounded

by �(r)�1. We have an estimate for (a; �) 2 B�(r)

kTr(a; �)kL21(Y (r))
� 1

�(r)
kN(a; �) + �(xr)kL2(Y (r))

� C�(r)2

�(r)
+

k�(xr)kL2(Y (r))
�(r)

� 2C�(r)2

�(r)
� �(r);

which implies that Tr maps the ball B�(r) to itself.
Let (a1; �1); (a2; �2) 2 B�(r), we have

kTr(a1; �1)� Tr(a2; �2)kL21(Y (r))
� 1

�(r)kN(a1; �1)�N(a2; �2)kL2
� C

�(r)
k(a1; �1) + (a2; �2)kL21k(a1; �1)� (a2; �2)kL21

� 2C�(r)
�(r)

k(a1; �1)� (a2; �2)kL21 :

Thus, from �(r) <
�(r)
2C as chosen, we obtain that Tr is a contraction on B�(r).

Proposition 4.10. For suÆciently large r � r0, and for all approximate solutions xr

in U(a1; r), there exists a unique solution (a; �) of (42), such that equation (41) is

trivially satis�ed.

Proof. For all approximate solutions xr in U(a1; r), we have an estimate on the error

term

k�(xr)kL2(Y (r)) � C 0e�Ær;

for r � r0, which follows from the exponential decay estimate proved in Proposition

3.8. Thus, we can apply Lemma 4.9, with �(r) = O(r�(1+�)) and �(r) = O(e�Ær=2).

By Corollary 4.8 we know that, for �(r) = O(r�(1+�)), the projection �(�(r); xr) � 0,

hence the solution (a; �) of (42), provided by Lemma 4.9 also satis�es trivially equation

(41).

Thus, the resulting element xr + (a; �) is a true monopole solution on Y (r), close

to the approximate solution xr. This completes the proof of the gluing theorem 1.3.
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4.3 Metric

Concerning the metric after surgery, on �(K) inside Y1 we consider the metric g1 as in

the following Lemma 4.11, which is due to Liviu Nicolaescu [29].

Let g = du2 + dv2 with
R
T 2
du ^ dv = 4�2, where the torus T 2 is the boundary of

the tubular neighbourhood of the knot �(K) in Y . We introduce a choice of a metric

on �(K) inside Y1, for which we can still derive the result that the moduli space of

monopoles on �(K) inside Y1 consists of the circle of reducibles.

Lemma 4.11. (Nicolaescu) Let A be an element in SL(2;Z). Suppose we are given

� > 0 suÆciently small. Consider the 
at metric on T 2 given by g0 = A�g. There exists

a constant c and a smooth path g(s) (s 2 R) of 
at metrics on T 2 with the following

properties:

(i) g(s) � 1
Æ2
g0, for all s � � and g(s) = g1 for all s � 1� �;

(ii) g1 = g(1) is a metric of the form g1 = k1du
2+ k2dv

2 with positive constants ki;

(iii) The scalar curvature of the metric ĝ := g(s) + ds2 on T 2 � R is non-negative;

(iv) The metric g1 can be extended to a metric inside the solid torus �(K) with

positive scalar curvature.

Proof of Nicolaescu's Lemma: Choose a unit vector @u with respect to the metric 1
c g0,

and complete it to an oriented orthonormal frame. Let f'1; '2g � 
1(T 2) be the dual

coframe. This is related to fdu; dvg by
'1 = du+ a0dv '2 = k dv;

for some positive constant k > 0.

The path g(s) is de�ned by requiring that the coframe

'1(s) = du+ a(s)dv '2(s) = k dv

be orthonormal with respect to g(s), where a(s) is a smooth function satisfying a(s) � 0

for all s � 1�� and a(s) = a0 for all s � �. The only conditions that need to be veri�ed

are (iii) and (iv).

We have an orthonormal coframe f'0; '1; '2g on X = T 2 � R, with respect to

the metric ĝ, with '0 = ds, and a corresponding orthonormal frame fe0; e1; e2g. The
Levi-Civita connection is of the form

� =

0
B@ 0 x y

�x 0 z

�y �z 0

1
CA x; y; z 2 
1(X):

The Cartan structural equation gives d~' = � ^ ~', with ~' = ('0; '1; '2). By the

expression of 'i, we have

d'0 = d'2 = 0; d'1 =
_a

k
'0 ^ '2;
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hence we obtain

x ^ '1 + y ^ '2 = 0;

_a
k
'0 ^ '2 = �x ^ '0 + z ^ '2;
�y ^ '0 � z ^ '1 = 0:

These equations imply

� =
_a

2k

0
B@ 0 '2 '1

�'2 0 '0

�'1 �'0 0

1
CA :

Thus, we can compute the scalar curvature of ĝ = g(s)+ds2 on T 2�R which is 3( _a=k)2

by direct calculation.

Claim (iv) then follows by noticing that any diagonal metric of the form

g1 = k1du
2 + k2dv

2

realizes the torus T 2 metrically as the product of two circles of di�erent radii. Each can

bound a hemisphere, endowed with a positive scalar curvature metric, thus extending

g1 to a metric on a solid torus, with positive scalar curvature.

4.4 Lines in �(T 2)

In this subsection we justify why it is suÆcient to consider the gluing map in Theorem

1.3 away from the singular point � 2 �(T 2).

Lemma 4.12. The intersection points @1M�
V \ �(�(K)), with �(�(K)) � �(T 2) the

circle of reducibles for �(K) in either Y , Y1, or Y0, are contained in �(T 2)nU�, for

some neighborhood U� of the singular point �. Thus, the gluing of Theorem 1.3 happens

away from the reducible point.

Proof. The torus T 2 inside Y inherits from the trivial Spin structure of Y the non-

trivial Spin structure in which both circles (longitude and meridian) bound, that is,

the one determined by the element (1; 1) in H1(T 2;Z2). Introduce the coordinates u

and v on H1(T 2;R), de�ned by the property that, under the projection to �(T 2), they

satisfy the following condition. For [A] 2 �(T 2), v([A]) is the holonomy around the

meridian m and u([A]) is the holonomy around the longitude l. Under this coordi-

nate system, the singular point � is given by (1; 1) in �(T 2), and the reducible circle

�(V ) =Mred
V is given by fu = 0g: Also for the unperturbed Seiberg-Witten equations
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on �(K) � Y , with the metric of non-negative scalar curvature, strictly positive away

from the boundary, the reducible circle �(�(K); Y ) is given by

LY := fv = 0g � �0(T
2; Y ):

Similarly, in the case of Y1, choose a metric with a long cylinder [�r; r] � T 2, which

agrees with the original metric on Y when restricted to the knot complement V , and

such that the induced metric in the torus neighbourhood �(K) is as described in Lemma

4.11, then the reducible circle �(�(K); Y1) is given by

LY1 := fv � u = 1g � �0(T
2; Y1):

We might have expected that the reducible case would be LY1 := fv � u = 0g from

the +1-surgery manifold Y1. The shift is due to the fact that +1-surgery changes the

underlying Spin structure (1; 1) by tensoring with a 
at Z2-bundle of class (0; 1) in

H1(T 2;Z2). In the case of Y0, the reducible circle �(�(K); Y0) for the unperturbed

equations is mapped to a circle fu = 0g � �(T 2). This is because

�(T 2; �(K)) = �(T 2; V ) = �(T 2; Y0) �= R � S1;

so that �(�(K); Y0) consist of a Z-family of circles given by fu = 2k; k 2 Zg where u is

the coordinate of R in R � S1. The gluing map on the �ber product

M�
V;Y0 ��(T 2;Y0) fu = 2kg

would correspond to the moduli space MY0(sk) where sk is the Spinc structure with

c1(detsk) 2 H2(Y0;Z). For the trivial Spinc structure s0, there would be a circle of

reducible monopoles inMY0(s0) resulting from gluing the reducibles �(V; Y )#fu = 0g,
we need to introduce a small perturbation inside �(K) such that �(�(K); Y0) = fu = �g
where � is small number in R for the trivial Spinc structure s0.

Clearly, in all the cases, �(�(K)) does not go through the singular points f��1(�)g,
hence there is no need to consider the gluing map at the singular point �. Note that,

after perturbing the metric inside a compact set on the manifold V with an in�nite

cylindrical end, we can make the open ends inMV not limit to any intersection points

of �(V ) =Mred
V = fu = 0g with any circle �(�(K)) for either Y; Y1 or Y0.

Thus, with our choice of metric as in the previous subsection, and with the choice

of perturbation as in Theorem 3.10, we see that the gluing result stated in Theorem

1.3 holds for the manifolds Y , Y1, and Y0. This completes the proof of Theorem 1.3.

Remark 4.13. Note that gluing the reducible monopoles on V and �(K) with matching

boundary condition just gives the extension of the 
at connections to the whole manifold
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(after a possible gauge transformation). We call this the trivial gluing. The unique

reducible point �Y in MY is obtained by the trivial gluing of the unique intersection point

between the lines LY = fv = 0g and fu = 0g = ��1(�(V )) � �(T 2; Y ). The unique

reducible point �Y1 in MY1 is obtained by the trivial gluing of the unique intersection

point between the lines LY = fv � u = 1g and fu = 0g = ��1(�(V )) � �(T 2; Y0).

5 The geometric triangle and proof of Theorem 1.1

In the previous section, we showed that the moduli spaces for irreducible monopoles

on Y; Y1 and Y0 are given by the gluing maps on the following �ber products:

M�
Y (r)

�=M�
V;Y ��(T 2;Y ) fv = 0g;

M�
Y1(r)

�=M�
V;Y1

��(T 2;Y1) fv � u = 1g;
M�

Y0(r)
(sk) �=M�

V;Y0
��(T 2;Y0) fu = 2kg; for k 6= 0;

M�
Y0(r)

(s0) �=M�
V;Y0

��(T 2;Y0) fu = �g;

(44)

where (u; v) is the coordinate system on �(T 2) and its covering spaces, � > 0 is a small

parameter, and r >> 0 is a suÆciently large number. We can study these moduli

spaces on the common character variety �(T 2; Y0) which can be identi�ed as a cylinder

R
1 � S1. Speci�cally we take it to be the domain (see Figure 1)

f(u; v)ju 2 R; v 2 [�1; 1]g=f(u;�1) s (u; 1)g

in which the lines corresponding to LY ; LY1 and LY0(sk)(k 2 Z) are drawn.

LY 0
(s0 )

LY 0
(s1 )LY 0

(s-1 )LY1

(0,0)

v=f ’(u)

LY ={v =0}

Figure 1: The geometric triangles

In this section, we introduce a suitable perturbation of the curvature equation,

supported in the solid torus D2�S1, that simulates the e�ect of surgery such that the

reducible line corresponding to �(K) � Y is given by the curve v = f 0(u) as shown in

Figure 1.

For a generic perturbation we can assume the curves @1(M
�
V ) stay away from the

intersection points fLY \LY1 ; LY \LY0 ; LY1 \LY0g, hence @1(M�
V ) is away from small

neighbourhood U of those intersection points. Then we can choose a function f : R ! R

such that the curve v = f 0(u) is arbitrarily close to LY1 and LY0 away from the region

U . This curve is illustrated in Figure 1. The closeness can be measured by a small
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parameter �, such that as � ! 0, v = f 0(u) approaches LY1 and LY0 away from the

region U . We suppress the dependence of v = f 0(u) on �.

Fix a U(1)-connection A0 representing (0; 0) on �(T
2). For any U(1)-connection A,

de�ne TA to be

Tz(A) = �i
Z
fzg�S1

(A�A0); (z 2 D2):

Choose a compactly supported 2-form � representing the generator of H2
cpt(D

2 � S1),

such that we have
R
D2�fptg

� = 1 for any point on S1. Under the isomorphism

H2
cpt(�(K)) �= H1(�(K)), given by Poincar�e duality, this form corresponds to the gen-

erator [�] = PD�(K)(l). The class of � in H2(D2 � S1) is trivial, and we can write

� = d�, where � is a 1-form satisfying
R
S1�fptg

� = 1, i.e. � = PDT 2(l).

Now perturb the Chern-Simons-Dirac functional on �(K) � Y (r) by adding the

term Z
D2

f(Tz(A))�:

Then the perturbed Seiberg-Witten equations can be written in the following way:(
FA = ��( ; ) + f 0(TA)�

=@A( ) = 0
: (45)

Denote the moduli space of (45) (with generic perturbation from P0) on Y (r) byMY;�.

With respect to the chosen metric on �(K), with suÆciently large positive scalar cur-

vature on the support of �, the only solutions of the perturbed monopole equations on

�(K) � Y (r) are reducibles (A; 0), that satisfy

FA = f 0(TA)�: (46)

With these preliminary results in place, we can prove the main theorem (Theorem

1.1) of this paper.

Proof of Theorem 1.1. This now follows from the previous discussions and the

gluing map (cf Theorem 1.3). From Theorem 1.3 and the surgery perturbation (45) on

�(K) � Y (r), we have

M�
Y; �

�=M�
V;Y ��(T 2;Y ) fv = f 0(u)g:

Since we are gluing away from the lattice of ��1(�), the limiting points of the open

ends ofM�
V and the neighbourhood U of the intersections between the character lines,

we obtain that solutions of the equations (45) can be identi�ed with

M�
Y; �

�=M�
V ��(T 2;Y ) f either v � u = 1; or u = 2k; 0 6= k 2 Z or u = �g;
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when the curve v = f 0(u) is suÆciently close to the line fv � u = 1g on �(T 2; Y1) and

the line

fu = 2k; 0 6= k 2 Zg; and fu = �g

on �(T 2; Y0) (see Figure 1) away from U . This shows that

M�
Y; �

�=MY1 [
[
sk

MY0(sk);

as claimed in Theorem 1.1.

6 Relative grading

In this section we show that the grading of the Floer complex C�(Y; �), de�ned with

respect to the unique reducible point �Y , induces compatible gradings on the Floer

complexes C�(Y1) and C�(Y0; sk). The main tools we need in this Section are splitting

formulae for the spectral 
ow, as in [4], [9], [26]. We shall �rst set up the necessary

notation.

On the space �(T 2; Y0) whose tangent space at any point is H
1(T 2;R), we introduce

the symplectic structure: (a; b) 7! R
T 2
a^ b, for a; b 2 H1(T 2;R), consider the following

Lagrangian submanifolds of �(T 2; Y0)

`Y1 = ��(@1(M�(K);Y1)) = f(u; v) 2 R2 jv � u = 1g;

where

� : �(T 2; Y0)! �(T 2; �(K))

is the covering map. We can identify this Lagrangian submanifold with a constant path

of Lagrangian subspaces in H1(T 2;R), given by the tangent spaces along `Y1 , which we

denote ~̀
1(t). Similarly, we can consider the lines

`Y0(k) = f(2k; v)jv 2 Rg;

for any �xed 0 6= k 2 Z, and

`Y0(0) = f(�; v)jv 2 Rg;

then we have

[k2Z`Y0(k) = @1(M�(K);Y0):

Each Lagrangian submanifold `Y0(k) in �(T 2; Y0) determines a path ~̀
Y0(k) of La-

grangian subspaces in the tangent space H1(T 2;R).
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Moreover, there is a smooth curve

`� = ��(@1(M�(K);Y1)) = f(u; v) 2 R2 jv = f 0(u)g;
with � : �(T 2; Y0) ! �(T 2; �(K)): We can form smoothly varying Lagrangians of

H1(T 2;R), by taking the tangent space along the curve. We denote the resulting

Lagrangians by ~̀
�.

Given any choice of two Lagrangians ~̀
� in the tangent space H1(T 2;R)

at the same point on �(T 2; Y0) we can de�ne the operators that linearize the

monopole equations on the manifolds with boundary V (r) = V [T 2 T 2 � [0; 2r] and

�(K)(r) = �(K) [T 2 T 2 � [0; 2r]. More precisely, for a suÆciently large r � r0, the

gluing theorem gives a splitting (A; ) = (A0;  0)#r(a; 0), and we can consider the

operators (Cf. Section 4.2) on the extended L21 spaces

H(A0; 0);~̀+
: L21(P+ � ~̀

+)! L2

H(A0; 0);~̀
�

: L21(P� � ~̀
�)! L2;

where P� are APS boundary conditions [1] on the extended L21 forms and spinors.

Suppose we are given a path ~̀(�) of Lagrangians in H1(T 2;R), which can be written

in the form ~̀(�) = Ta(�)`, for some Lagrangian submanifold ` of �(T 2; Y0) with a regu-

lar parameterization a(�). Assume that, for 0 � � � 1 the arc a(�) of the Lagrangian

submanifold ` avoids the lattice of f��1(�)g and the limiting points of @1(M
�
V ) on

the circle �(V ). Moreover, we assume that we have a and b in ` \ `Y1 and that ` and

`Y1 intersect transversely. Assume the arc of `Y1 between these endpoints is parame-

terized over the same interval 0 � � � 1. Moreover, for small enough � in the surgery

perturbation �, there are distinct points a� and b� in `\ `�. We can assume that, for �

suÆciently small, also ` and `� intersect transversely, and there are parameterizations

of the arcs of Lagrangians ` and `� with endpoints a� and b�.

We have the following result, which is the key lemma in the comparison of the

Maslov indices.

Lemma 6.1. With the hypothesis as above, we have

Maslov(~̀(�); ~̀Y1) =Maslov(~̀(�); ~̀�(�));

where the �rst Maslov index is computed with respect to the parameterizations with

endpoints a and b, and the second with respect to the parameterizations with endpoints

a� and b�, as speci�ed above.

Proof. By applying the properties of the Maslov index (cf. [5], Section 1), we can see

that the claim follows, upon showing that we have

Maslov(~̀�(�); ~̀Y1) = 0

which is obvious by the choice of `�(�) and `Y1 .
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As a consequence of this result, we obtain the following proposition relating the rel-

ative gradings onM�
Y;� andM�

Y1
respectively. Given a path f(A0(�);  0(�))j� 2 [0; 1]g,

and a corresponding path f(a(�); 0)j� 2 [0; 1]g, we can consider the corresponding paths
of operators H(A0(�); 0(�)), H(a(�);0), and H(A0(�); 0(�))#r(a(�);0).

Proposition 6.2. Suppose we are given two irreducible critical points a = [Aa;  a] and

b = [Ab;  b] in M�
Y1

, and the corresponding elements a� = [A�a;  
�
a] and b� = [A�b;  

�
b] in

M�
Y;�. Then we have

degY;�(a
�)� degY;�(b

�) = degY1(a)� degY1(b):

Proof. Under the pre-gluing map, we can assume that (A�a;  
�
a) and (A�b;  

�
b) are

connected by a path (A0(�);  0(�))#r(a(�); 0) (� 2 [0; 1]), where we have

(A�a;  
�
a) = (A0(0);  0(0))#r(a(0); 0);

(A�b;  
�
b) = (A0(1);  0(1))#r(a(1); 0):

Then by de�nition,

degY;�(A
�
a;  

�
a)� degY;�(A

�
b;  

�
b) =

1

r2
SFY (r)(H(A0(�); 0(�))#r(a(�);0));

We can compute this spectral 
ow with the splitting formula on Y (r) from (Theorem

C of [4]). We obtain

�SF (H(A0(�); 0(�));~̀(�)) +Maslov(~̀(�); ~̀�) + �SF (H(a(�);0);~̀�
):

With the analogous splitting formula on Y1(r), by applying the Capell-Lee-Miller de-

composition of the spectral 
ow (Theorem C of [4]), we obtain

degY1(Aa;  a)� degY1(Ab;  b)

= �SF (H(A0(�); 0(�));~̀(�)) +Maslov(~̀(�); ~̀1) + �SF (H(a(�);0);~̀1
):

In both cases, we can assume that we consider the same boundary value problem (the

same choice of Lagrangians) for the operator on the knot complement V . We choose
~̀
� or ~̀1 for the operator on the tubular neighbourhood of the knot �(K). The previous

Lemma shows that the quantities �SF (H(a(�);0);~̀1
) and �SF (H(a(�);0);~̀�

) coincide, and

that the two Maslov indices are also the same.
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Similarly, we can now compare the relative grading of two solutions in MY0(sk)

with the relative grading of the corresponding solutions in MY;�.

Again, suppose we are given a path ~̀(�) of Lagrangians in the tangent space

H1(T 2;R), of the form ~̀(�) = Ta(�)`, for some Lagrangian submanifold ` of �(T 2; V )

with a regular parameterization a(�). Assume that, for 0 � � � 1 the arc a(�) of

the Lagrangian submanifold ` avoids the lattice of f��1(�)g and the limiting points

@1(M�
V ) on the circle �(V ). Moreover, we assume that we have a and b in ` \ `Y0(k)

and that ` and `Y0(k) intersect transversely. Assume the arc of `Y0(k) between these

endpoints is parameterized over the same interval 0 � � � 1. Moreover, for small

enough � in the surgery perturbation �, there are points a� and b� in ` \ `�. We can

assume that, for � suÆciently small, also ` and `� intersect transversely, and there are

parameterizations of the arcs of Lagrangians ` and `� with endpoints a� and b�.

With these hypothesis we have the following lemma, whose proof is analogous to

the proof of Lemma 6.1.

Lemma 6.3. With the hypothesis as above, we have

Maslov(~̀(�); ~̀Y0(k)) =Maslov(~̀(�); ~̀�(�));

where the �rst Maslov index is computed with respect to the parameterizations with

endpoints a0 and b0, and the second with respect to the parameterizations with endpoints

a�0 and b�0, as speci�ed above.

We have the following proposition relating the relative gradings onM�
Y;� andMY0;sk

(for k 2 Z) respectively.

Proposition 6.4. Suppose we are given a = [Aa;  a] and b = [Ab;  b] representing

two elements in MY0;sk , and let a� = [A�a;  
�
a] and b� = [A�b;  

�
b] be the corresponding

elements in M�
Y;�. We have

degY0;sk(Aa;  a)� degY0;sk(Ab;  b) = degY;�(A
�
a;  

�
a)� degY;�(A

�
b;  

�
b) mod 2k:

Proof. With the notation as in the Lemma 6.3, we have

(Aa;  a) = (A0(0);  0(0))#(a(0); 0);

and

(Ab;  b) = (A0(1);  0(1))#(a(1); 0):
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We can calculate the relative grading using the splitting formula on Y0(r)

degY0;sk(Aa;  a)� degY0;sk(Ab;  b)

= (�SF )(H(A0(�); 0(�));~̀(�)) +Maslov(~̀(�); ~̀0(�)) + �SF (H(a(�);0);~̀0(�)
)
:

We can then compare directly these terms with the corresponding terms in the splitting

formula for the spectral 
ow of the operators on Y (r), as in the case of Corollary 6.2.

The result of Lemma 6.3 guarantees that we obtain the same result.

Notice that the results of Lemma 6.3 and Corollary 6.4 imply that the grading

degY;� de�nes a choice of an integer lift of the Z2k-valued relative grading of C�(Y0; sk)

given by

degY0;sk(Aa;  a)� degY0;sk(Ab;  b) = degY;�(Aa;  a)� degY;�(Ab;  b);

under the identi�cation MY0;sk ,!MY;�. We will discuss the properties of the integer

lift C(�)(Y0; sk) of C�(Y0; sk) elsewhere.
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