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Abstract. According to the holography principle (due to G. `t Hooft, L. Susskind,

J. Maldacena, et al.), quantum gravity and string theory on certain manifolds with

boundary can be studied in terms of a conformal �eld theory on the boundary. Only

a few mathematically exact results corroborating this exciting program are known.

In this paper we interpret from this perspective several constructions which arose

initially in the arithmetic geometry of algebraic curves. We show that the relation

between hyperbolic geometry and Arakelov geometry at arithmetic in�nity involves

exactly the same geometric data as the Euclidean AdS3 holography of black holes.

Moreover, in the case of Euclidean AdS2 holography, we present some results on

bulk/boundary correspondence where the boundary is a non{commutative space.

x0. Introduction

0.1. Holography principle. Consider a manifold Md+1 (\bulk space") with

boundary Nd. The holography principle postulates the existence of strong ties

between certain �eld theories onM and N respectively. For example, in the actively

discussed Maldacena's conjecture ([Mal], [Wi]), Md+1 is the anti de Sitter space

AdSd+1 (or AdSd+1 � Sd+1), Nd its conformal boundary. On the boundary one

considers the large N limit of a conformally invariant theory in d dimensions, and

on the bulk space supergravity and string theory (cf. e.g. [AhGuMOO], [Mal],

[Suss], ['tH], [Wi], [WiY]).

The holography principle was originally suggested by `t Hooft in order to recon-

cile unitarity with gravitational collapse. In this caseM is a black hole and N is the

event horizon. Thus the bulk space should be imagined as (a part of) space{time.

There are other models where the boundary can play the role of space{time

(Plato's cave picture), with the bulk space involving an extra dimension (e. g. the

renormalization group scale) and a Kaluza{Klein type reduction [AlGo], and \brane

world scenarios" where one models our universe as a brane in higher dimensional

space{time, with gravity con�ned to the brane.

In this paper we consider �rst of all a class of Euclidean AdS3 bulk spaces

which are quotients of the real hyperbolic 3{space H3 by a Schottky group. The

boundary (at in�nity) of such a space is a compact oriented surface with conformal

structure, which is the same as a compact complex algebraic curve. Such spaces

are analytic continuations of known (generally rotating) Lorentzian signature black
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hole solutions, and they were recently studied from this perspective by K. Krasnov

(cf. [Kr1]{[Kr4].)

0.2. Arithmetic geometry at in�nity. Consider a projective algebraic curve

X de�ned, say, over the �eld of rational numbers Q. It can be given by equations

with integer coeÆcients which de�nes a scheme XZ, \arithmetical surface". X itself

is the generic �ber of the projection XZ ! SpecZ: Finite points of the \arithmetic

curve" SpecZ are primes p, and the closed �bers of XZ at �nite distance are the

reductions XZmod p. One can also consider in�nitesimal neighborhoods of p and

the respective �bers which are simply reductions of XZ modulo powers pn. The

limit of such reductions as n!1 can be thought of as a p{adic completion of XZ:

A geometric analog of this picture is an algebraic surface �bered over an aÆne

line (replacing SpecZ.) We can complete the aÆne line to the projective one by

adding a point at in�nity, and extend the �bered surface by adding a closed �ber at

in�nity. If we want to imitate this in the arithmetic case, we should add somehow

\the arithmetic in�nity" to SpecZ and enhance the geometry of X by appropriate

structures.

It was long known that the arithmetic in�nity itself is represented by the em-

bedding Q ! C and considering the complex absolute value on an equal footing

with p{adic valuations. In his paper [Ar] S. Arakelov demonstrated that Hermitian

geometry of XC constitutes an analog of p{adic completions of XZ. In particular,

Green's functions for appropriate metrics provide intersection indices of arithmetic

curves at the in�nite �ber. Arakelov's arithmetic geometry was since then tremen-

dously developed and generalized to arbitrary dimensions.

One aspect of p{adic geometry was, however, missing in Arakelov's theory of

arithmetical in�nity: namely, an analog of the closed �ber XZmod p and the related

picture of reductions modulo powers of p approximating the p{adic limit.

In Manin's paper [Man2] it was suggested that this missing structure can be

modeled by choosing a Schottky uniformization of X(C) and treating this Riemann

surface as the conformal boundary of the respective handlebody obtained by factor-

ing out H3 with respect to the Schottky group. Comparing this structure with the

p{adic case, one should keep in mind that only curves with maximally degenerate

reduction (all components of genus zero) admit a p{adic Schottky uniformization

(Mumford's theory). Thus we imagine \the reduction modulo arithmetic in�nity"

to be maximally degenerate: a viewpoint which is supported by other evidence as

well.

We see thus that the 1{adic geometry at arithmetic in�nity, developed in

[Man2], involves exactly the same geometric data bulk space/boundary as the Eu-

clidean AdS3 holography of black holes. Moreover, Arakelov's intersection indices

are built from Green's functions, which form the basic building blocks for Polyakov
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measures as well as the correlation functions of bosonic and fermionic �eld theories

on X (see [ABMNV], [Man1], [Fay], [FeSo].)

In the �rst section of this paper we demonstrate that the expressions for these

Green functions in terms of the geodesic con�gurations in the handlebody given in

[Man2] can be nicely interpreted in the spirit of the holography principle.

A recent attempt to generalize [Man2] to higher dimensions is due to A. Werner

([We]). It would be interesting to discuss her construction as a case of holography.

0.3. Modular curves and non{commutative boundary. The second sec-

tion is dedicated to the holography in 1+1 dimensions which we recognize in the

approach to the theory of modular curves developed, in particular, in [ManMar]. In

this case H3 is replaced by the upper complex half{plane H2, and a Schottky group

by a subgroup G of the modular group. The most interesting new feature is that

the boundary of the quotient space considered in [ManMar] is a non{commutative

space: it is the quotient GnP1(R) treated as a crossed product in the style of

Connes. This might be of interest, because non{commutative boundaries of mod-

uli spaces (e. g. that of instantons) play an increasingly important role in physics

considerations.

In particular, we argue that one reason why little is known on AdS1+1 holog-

raphy, unlike the much better understood case of AdS2+1, is that a treatment of

holography for AdS1+1 and its Euclidean counterpart H2 should take into account

the presence of non{commutative geometry at the boundary.

0.4. Acknowledgment. We are grateful to Alain Connes who suggested the

authors to look at [Man2] from the perspective of the holography principle. We

also thank Kirill Krasnov for several useful and encouraging comments.

x1. Handlebodies as holograms
In this section we review the basic notions of the boundary and bulk geometry

and function theory in the context of Schottky uniformization. Then we state and

interpret the main formulas of [Man2] in the light of the holography principle.

1.1. Green's functions on Riemann surfaces. Consider a compact non{

singular complex Riemann surface X and a divisor A =
P

xmx(x) on it with

support jAj. If we choose a positive real{analytic 2{form d� on X, we can de�ne

the Green function g�;A = gA as a real analytic function on on XnjAj. It is uniquely
determined by the following conditions.

(i) Laplace equation:

@ �@ gA = �i (deg(A) d�� ÆA)

where ÆA is the standard Æ{current ' 7!
P

xmx'(x):
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(ii) Singularities: if z is a local parameter in a neighborhood of x, then gA �
mxlog jzj is locally real analytic.

(iii) Normalization:
R
X
gAd� = 0.

Let now B =
P

y ny(y) be another divisor, jAj \ jBj = ;: Put g�(A;B) :=P
y nyg�;A(y): This is a number, symmetric and biadditive in A;B.

Generally, g� depends on �. However, if degA = degB = 0; g�;A;B depends

only on A;B. Notice that, as a particular case of the general K�ahler formalism,

to choose d� is the same as to choose a real analytic Riemannian metric on X

compatible with the complex structure. This means that g�(A;B) = g(A;B) are

conformal invariants when both divisors are of degree zero. If moreover A is the

divisor of a meromorphic function wA, then

g(A;B) = log
Y
y2jBj

jwA(y)jny = Re

Z

B

dwA

wA
(1:1)

where 
B is a 1{chain with boundary B. This is directly applicable to divisors of

degree zero on the Riemann sphere P1(C):

This formula admits also a generalization to arbitrary A;B of degree zero on a

Riemann surface of arbitrary genus. The logarithmic di�erential dwA=wA must be

replaced by the di�erential of the third kind !A with pure imaginary periods and

residues mx at x. Then

g(A;B) = Re

Z

B

!A : (1:2)

If we drop the degree zero restriction, we can write an explicit formula for the basic

Green's function g�;x(y) via theta functions in the case when � is the Arakelov

metric constructed with the help of an orthonormal basis of the di�erentials of the

�rst kind. For a characterization of Arakelov's metric in a physical context, see

[ABMNV], pp. 520{521.

1.1.1. Field theories on a Riemann surface X. Green's functions appear

in explicit formulas for correlators of various �eld theories, insertion formulas, and

Polyakov string measure. In [ABMNV] they are used in order to establish the

coincidence of certain correlators calculated for fermionic, resp. bosonic �elds on

X (bosonization phenomenon.) See [Fay] for a thorough mathematical treatment.

1.2. Green's functions and bulk geometry: genus zero case. In this sub-

section X is the Riemann sphere P1(C). It is convenient to start with a coordinate{

free description of all basic objects.

Choose a two{dimensional complex vector space V and de�ne X = XV as the

space of one{dimensional vector subspaces in V . De�ne the respective bulk space
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as a three{dimensional real manifold H3 = HV whose points are classes [h] of

hermitian metrics h on V modulo dilations: h �= h0 i� h = �h0 for some � > 0.

Clearly, PGL(V ) acts on HV and XV : The stabilizer of any [h] is isomorphic to

SU(2). Any point [h] de�nes a unique K�ahler metric on XV which is stabilized by

the same subgroup as [h] and in which the diameter of XV equals one. This metric,

in turn, determines a volume form d� = d�[h] on XV :

The bulk space HV has a natural metric: the distance between [h] and [h0] is

the logarithm of the quotient of volumes of unit balls for h and h0, if one ball

is contained in the other and their boundaries touch. In fact, HV becomes the

hyperbolic three{space of constant curvature �1. Its conformal in�nity XV can

be invariantly described as the space of (classes of) unbounded ends of oriented

geodesics.

We will now give a bulk space interpretation of two basic Green's functions

g((a) � (b); (c) � (d)) and g�(z; w), where d� corresponds to a point u 2 HV as

explained above. To this end, introduce the following notation from [Man2]. If

a; b 2 HV [ XV ; fa; bg denotes the geodesic joining a to b and oriented in this

direction. For a geodesic 
 and a point a, a � 
 is the point on 
 at which 
 is

intersected by the geodesic Æ passing through a and orthogonal to 
. In particular,

the distance from a to 
 is the distance from a to a � 
. If two points p; q lie on

an oriented geodesic 
, we denote by ordist (p; q), or else `
(p; q), the respective

oriented distance.

1.2.1. Lemma. We have

g((a)� (b); (c)� (d)) = �ordist (a � fc; dg; b � fc; dg) ; (1:3)

g�(p; q) = log
e1=2

cosh dist (u; fp; qg) : (1:4)

The following Fig.1 illustrates the con�gurations of geodesics involved.

x

y

u

a

b

c

d

a*{c,d}

b*{c,d}

Fig. 1
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We invite the reader to compare these con�gurations to the Feynman diagrams

in [Wi] illustrating propagation between boundary and/or interior points.

To check, say, (1.3), it is convenient to introduce the standard coordinates (z; y)

identifying H with C �R+. Both sides of (1.3) are PGL(V ){invariant. Hence it

suÆces to consider the case when (a; b; c; d) = (z; 1; 0;1) in P1(C): Then fc; dg =
f0;1g is the vertical coordinate semi{axis, and generally in (z; y) coordinates of

H3 we have

a � fc; dg = (0; jzj); b � fc; dg = (0; 1);

ordist ((0; jzj); (0; 1)) = �log jzj:
On the other hand, using the notation of (1.1), we obtain

g((a)� (b); (c)� (d)) = log
jw(a)�(b)(c)j
jw(a)�(b)(d)j

= log jzj:

The middle term of this formula involves the classical cross{ratio of four points on

a projective line, for which it is convenient to have a special notation:

ha; b; c; di :=
w(a)�(b)(c)

w(a)�(b)(d)
: (1:5)

It is interesting to notice that not only the absolute value, but the argument of

the cross{ratio (1.5) as well admits a bulk space interpretation:

arg
w(a)�(b)(c)

w(a)�(b)(d)
= � fc;dg (a; b) ; (1:6)

Here we denote by  
(a; b) the oriented angle between the geodesics joining a � 

to a and b � 
 to b, which can be measured after the parallel translation to, say, a.

For a proof of this and other details we refer to [Man2], Prop. 2.2.

This expression is relevant in at least two contexts. First, it shows how the

characteristics of rotating black holes are encoded in the complex geometry of the

boundary (cf. (1.8) below for the genus 1 case). Second, it demonstrates that our

formulas for the Green functions g(A;B) given below can be re�ned to provide

the bulk space avatars of the complex analytic expressions such that exp g(A;B)

is the modulus squared of such expression. This is the well known phenomenon of

holomorphic factorization.

We will now introduce a Schottky group � acting upon H3[P1(C) and consider

the respective quotient spaces. The boundary will become a complex Riemann

surface X(C), whose genus equals to number of generators of �, and the bulk space

turns into a handlebody �nH3 \�lling" this surface.
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The boundary/bulk expressions for degree zero Green's functions and related

quantities will be obtained from (1.3) with the help of an appropriate averaging

over �. The geodesic con�guration involved in the right hand side of (1.3) will have

to be supplemented by its �{shifts and then projected into the handlebody. After

such a projection, however, an expression like a � 
 will have to be replaced by an

in�nite sum over all geodesics starting, say, at a boundary point a and crossing


 orthogonally. Interpreting distances between such points involved in (1.3) also

becomes a trickier business: the geodesic along which we measure this distance has

to be made explicit. We will provide the details for the genus one case in 1.3 below.

After gaining some experience, we can restrict ourselves to working in the covering

bulk spaceH3: it is well known that the geometry of non{simply connected spaces is

best described in terms of the universal cover and its group of deck transformations.

In 1.4 we explain this geometry for genus � 2 case.

1.3. Genus 1 case and Euclidean BTZ black holes. Ba~nados{Teitelboim{

Zanelli black holes ([BTZ]) are asymptotically AdS space{times which are obtained

by global identi�cations of AdS2+1 by a discrete group of isometries � generated

by a single loxodromic element.

The group of isometries of AdS2+1 is SO(2; 2) as can be seen by considering the

hyperboloid model of anti de Sitter space �t2 � u2 + x2 + y2 = �1 in R2;2.

The non{rotating case (see [ABBHP], [Kr1]) corresponds to the case where the

group � lies in a diagonal SO(2; 1) �= PSL(2;R) in SO(2; 2). In this case, there

is a surface of time symmetry. This t = 0 slice is a two{dimensional Euclidean

signature space with constant negative curvature, hence it has the geometry of the

real hyperbolic plane H2. The fundamental domain for the action of � on the t = 0

slice is given by a region in H2 bounded by two non{intersecting in�nite geodesics,

and the group � is generated by the element of PSL(2;R) that identi�es the two

non{intersecting geodesics in the boundary of the fundamental domain, creating

a surface with the topology of S1 � R. The BTZ black hole is then obtained

by evolving this t = 0 surface in the time direction in AdS2+1, until it develops

singularities at past and future in�nity. The time evolution of the two geodesics in

the boundary of the fundamental domain gives geodesic surfaces that are joined at

the past and future singularities. The geodesic arc realizing the path of minimal

length between the two non{intersecting geodesics is the event horizon of the BTZ

black hole (see [ABBHP], [BTZ], [Kr1] for further details).

The Euclidean analog of the BTZ black hole is given by realizing the H2 slice as

a hyperplane in H3 and \evolving" it by continuing the geodesics in H2 to geodesic

surfaces in H3. This produces a fundamental domain of the form illustrated in the

Fig 2.
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Fig. 2

The group � �= qZ is a Schottky group of rank one in PSL(2;C), generated by

the choice of an element q 2 C�, jqj < 1. It acts on H3 by�
q1=2 0

0 q�1=2

�
(z; y) = (qz; jqjy): (1:7)

The quotient Xq = H3=(qZ) is a solid torus with a hyperbolic structure and with

the Jacobi uniformized elliptic curve Xq(C) = C�=(qZ) as its boundary at in�nity.

The fundamental domain depicted on Fig. 2 is jqj2 < jzj � 1, jqj2 < jzj2 + y2 � 1:

The physical meaning of q is clari�ed by the following expression:

q = exp

�
2�(ijr�j � r+)

`

�
; (1:8)

where the parameters r� depend on massM and angular momentum J of the black

hole,

r2� =
1

2

�
M`�

p
M2`2 + J

�
;

and ` determines the cosmological constant � = �1=`2 and normalizes the metric

as

ds2 =
`2

y2
(jdzj2 + dy2):

This can be seen by writing the coordinates in the upper half space model of H3

in terms of Schwarzschild coordinates (r; �; �) with Euclidean time � ,

z =

�
r2 � r2+
r2 � r2�

�1=2

exp

��
r+

`
�� jr�j

`2
�

�
+ i

�
r+

`2
� +

jr�j
`
�

��
;
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y =

�
r2+ � r2�
r2 � r2�

�1=2

exp

�
r+

`
�� jr�j

`2
�

�
:

The transformation (1.6) can then be written as

(z; y) 7! (e2�(ijr�j�r+)=` z; e�2�r+=` y):

This was already observed in [BKSW]. For r� 6= 0, that is, not purely real q,

the quotient space Xq(C) represents a spinning black hole. We normalized our

coordinates so that ` = 1:

1.3.1. Determinant of the Dirac operator and Green's function. There

are explicit formulas in terms of theta functions for the determinant of the Dirac

operator twisted with a 
at bundle on an elliptic curve. For a parameterized family

of Dirac operators DP , with P a Poincar�e line bundle, whose restriction to a �ber

Xq over L 2 Pic0(Xq) is isomorphic to L, it is proved in [RS] that, up to a constant

phase, we have

detDP (q;u; v) = q
B2(v)

2

1Y
n=1

�
1� qn�ve2�iu

� �
1� qn+v�1e�2�iu

�
; (1:9)

with B2(v) = v2 � v + 1=6 the second Bernoulli polynomial. It is shown in [AMV]

that (1.9) is the operator product expansion of the path integral for fermions on

the elliptic curve Xq.

On the other hand, the Arakelov Green function on Xq is essentially the loga-

rithm of the absolute value of this expression:

g(z; 1) = log

 
jqjB2(log jzj= log jqj)=2j1� zj

1Y
n=1

j1� qnzj j1� qnz�1j
!

(1:10)

(see [Man2], (4.6)).

To interpret various terms of (1.10) via geodesic con�gurations, we use (1.3)

and (1.5) for various choices of the cross{ratio, for example, jxj = jhx; 1; 0;1ij,
j1� xj = jhx; 0; 1;1ij. More precisely, we introduce the following notation:

� f0;1g in H3 becomes the closed geodesic 
0 in the solid torus Xq. Its length
is l(
0) = �log jqj (cf. (1.6).)
� Choose a point x on the elliptic curve Xq and denote by the same letter x its

unique lift to C satisfying jqj < jxj � 1: In particular, 1 denotes both the number

and the identity point of Xq.

� Denote by �x the point x � f0;1g and also its image in 
0. Similarly, denote

by �1 = 1 � f0;1g = (0; 1) 2 H3 and the respective point in 
0.

Fig. 3a depicts the relevant con�gurations:
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� Denote the image of f1;1g by 
1. This is the geodesic starting at the boundary
identity point and having 
0 as its limit cycle at the other end. (As was explained

in [Man2], this is one of the avatars of \reducing 1 modulo powers of arithmetic

in�nity".) Denote by �0 the point 0 � f1;1g, and also its image in the solid torus.

� Finally, put �xn = qnx � f1;1g, and denote its image in 
1 by the same letter.

Similarly, ~xn = qnx�1 � f1;1g (cf. Fig. 3b.)

-x-x1-x20
-

x
1

δ 0

γ
0

Xq

q
n

x

x
-
n

0
-

oo
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Fig. 3b
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With this notation, we have:

1.3.2. Proposition. Let g(u; v) be the basic Green function with respect to the

invariant measure of volume 1. Then g(u; v) = g(uv�1; 1), and

g(x; 1) = �1

2
l(
0)B2

�
`
0(�x; �1)

l(
0)

�
+
X
n�0

`
1(
�0; �xn) +

X
n�1

`
1(
�0; ~xn): (1:11)

A contemplation will convince the reader that the meaning of the summation

parameter n in the last expression consists in counting appropriate winding numbers

of geodesics in X starting at x along the closed geodesic 
0.

One can similarly write a more informative formula calculating the whole de-

terminant of the Dirac operator (1.9) which involves winding numbers around 
0.

using the formula (1.6) which provides the phases of cross-ratios in terms of angles

and parallel translations of the relevant geodesic con�gurations. We leave this as

an exercise for the reader.

1.4. Genus � 2 case and Krasnov's Euclidean black holes. The construc-

tion of the BTZ black hole with Lorentzian signature can be generalized to other

asymptotically AdS2+1 solutions, by prescribing global identi�cations on the t = 0

slice H2 of AdS2+1, obtained by the action of a discrete subgroup of PSL(2;R).

Solutions of this type are described in [ABBHP]. They admit a Euclidean version

which is a global quotient of H3 by the action of a discrete group of isometries �.

We are especially interested in the case where � � PSL(2;C) is a geometrically

�nite Schottky group. Such solutions were studied by Krasnov [Kr1], [Kr4], so we

refer to them as Krasnov black holes. For this class of space{times, in the Euclidean

case, the bulk space is a hyperbolic handlebody of genus g � 2, and the surface

at in�nity is a compact Riemann surface of genus g, with the complex structure

determined by the Schottky uniformization.

1.4.1. Schottky groups and handlebodies. (i) Loxodromic elements. As in

1.2, we choose a 2{dimensional complex vector space V and study the group PGL(2)

and various spaces upon which it acts. A loxodromic element g 2 PGL(2; V ), by

de�nition, has two di�erent �xed points in P (V ) = P1(C), the attracting one z+(g)

and the repelling one z�(g). The eigenvalue q(g) of g on the complex tangent space

to z+(g) is called the multiplier of g. We have jq(g)j < 1:

(ii) Schottky groups. A Schottky group is a �nitely generated discrete subgroup

� � PGL(V ) consisting of loxodromic elements and identity. It is always free; its

minimal number of generators p is called genus. Each Schottky group of genus p

admits a marking. By de�nition, this is a family of 2p open connected domains

D1; : : : ; D2p in P (V ) and a family of generators g1; : : : ; gp 2 � with the following
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properties. The boundary Ci of Di is a Jordan curve homeomorphic to S1, closures

of Di are pairwise disjoint; moreover, gk(Ck) � Cp+k, and gk(Dk) � P (V ) nDp+k:

A marking is called classical, if all Di are circles. Every Schottky group admits a

marking, but there are groups for which no classical marking exists.

(iii) �{invariant sets and their quotients. Any Schottky group � of genus p acts

on HV faithfully and discretely. The quotient X� := � � HV is (the interior of) a

handlebody of genus p.

Choose a marking and put

X0;� := P (V ) n [pk=1(Dk [Dk+p); 
� := [g2� g(X0;�):

� acts on 
� faithfully and discretely, X0;� is a fundamental domain for this action,

and the quotient � n 
� is a complex Riemann surface of genus p. Every Riemann

surface admits in�nitely many di�erent Schottky covers.

In the representation above, � acts upon 
� as on the boundary of a tubular

neighborhood of a Cayley graph of � associated with generators gk. Since they are

free, the Cayley graph is an in�nite tree each vertex of which has multiplicity 2p:

cf. Fig. 4 illustrating this for the case p = 2:

Fig. 4
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As above, X� can be identi�ed with the boundary at in�nity of X�: the set

of equivalence classes of unbounded ends of geodesics in X� modulo the relation

\distance = 0."

A marking of � induces a marking of the 1{homology group H1(X�;Z). Con-

cretely, denote by ak the class of the image of Cp+k (with its natural orientation.)

Choose some points xk 2 Ck, k = 1; : : : ; p; and pairwise disjoint oriented paths

from xk to gk(xk) lying in X0;�: Denote by bk their classes in H1(X�;Z). Clearly,

fak; blg form a basis of this group, satisfying (ak; al) = (bk; bl) = 0, (ak; bl) = Ækl:

Moreover, ak generate the kernel of the map H1(X�;Z) ! H1(X �;Z) induced by

the inclusion of the boundary.

The complement �� := P (V ) n 
� is the minimal non{empty �{invariant set.

Equivalently, it is the closure of the set of all �xed points z�(g), g 2 �; g 6= id, or

else the set of limit points of any orbit �z0, z0 2 HV [ P (V ):

If g = 1, �� consists of two points which can be chosen as 0;1: For g � 2, ��

generally is an uncountable Cantor set (fractal). This is the main source of compli-

cations (and interesting developments). Denote by a(�) the Hausdor� dimension

of �(�): It can be characterized as the convergence abscissa of any Poincar�e series

X
g2�

����dg(z)dz

����
s

where z is any coordinate function on P (V ) with a zero and a pole in 
�: Generally

0 < a(�) < 2: Convergence of our holography formulas below will hold only for

a(�) < 1: For other characterizations of a(�), see [Man2], p. 236, and the references

therein.

Geodesics in the bulk space HV with ends on �� become exactly all bounded

geodesics in the quotient X�. Their convex hull C� is called the convex core of X�:

The group � is geometrically �nite if the convex core C� is of �nite volume. In this

case, the core C� is a compact 3{manifold with boundary, which is homeomorphic

to and a strong deformation retract of X�.

1.4.2. AdS and Euclidean black holes. Consider a Fuchsian Schottky group

� acting on H2. The resulting quotient space is a non{compact Riemann surface

with a certain number of in�nite ends. The genus of the surface and the number

of ends depend on the Schottky group, for instance, both topologies shown in the

Fig. 5 arise as quotients of H2 by a Schottky group with two generators.



14

Fig. 5

An asymptotically AdS non{spinning black hole is obtained by extending these

identi�cations globally to AdS2+1, or, in other words, by evolving the t = 0 slice

forward and backward in time. The geodesic surfaces extending the geodesics in

the boundary of the fundamental domain in the t = 0 slice develop singularities in

both forward and backward direction (see [ABBHP], [Kr1]) as illustrated in Fig. 6.

Fig. 6

The procedure used by Krasnov [Kr1] to construct the Euclidean version of these

black holes follows the same line as in the case of the BTZ black hole, namely, the

t = 0 slice is identi�ed with a hyperplane inH3 and the geodesics in this hyperplane

are continued to geodesic surfaces in H3. The resulting quotients are special cases

(non{rotating black holes) of the handlebodies X� constructed above in 1.4.1, in

the case of real Schottky parameters. The general case of 1.4.1 includes also the

more general case of spinning black holes considered by Krasnov in [Kr4].

Since Fuchsian Schottky groups are classical Schottky groups, the black holes

obtained by the construction of Krasnov as Euclidean versions of the AdS black

holes of [ABBHP] are quotients ofH3 by a classical Schottky group on p generators,

and the fundamental domain is a region in H3 delimited by 2p pairwise disjoint

geodesic half spheres.

As observed in [BKSW], the kinematic part of the Maldacena correspondence for

spacetimes that are global quotients of H3 by a geometrically �nite discrete group

of isometries is provided by the correspondence between hyperbolic structures on
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the bulk space and conformal structures on the boundary at in�nity, [Sul]. (cf. also

[Kh] on the correspondence between hyperbolic and conformal geometry viewed

in the light of holography.) Below we will complement this by providing some

dynamical content for the case of the Krasnov black holes.

1.5. Abelian di�erentials and Green functions on Schottky covers. In

this subsection, we will calculate Green's functions of the form (1.2) for curves with

a Schottky cover. The di�erentials of the third kind which can be obtained by a

direct averaging of simple functions do not necessarily have pure imaginary periods.

To remedy this, we will have to subtract from them some di�erentials of the �rst

kind. Therefore we will start with the latter.

1.5.1. Di�erentials of the �rst kind. In the genus one case, if z is the

projective coordinate whose divisor consists of the attractive and repelling point of

a generator of �, a di�erential of the �rst kind can be written as

! = d log z = d log
w(0)�(1)(z)

w(0)�(1)(z0)
= d log h0;1; z; z0i

where z0 is any point 6= 0;1. Generally, an appropriate averaging of this formula

produces a di�erential of the �rst kind !g for any g 2 �: In the following we assume

that a marking of � is chosen. Denote by C(jg) a set of representatives of �=(gZ),

by C(hjg) a similar set for (hZ) n �=(gZ), and by S(g) the conjugacy class of g in

�. Then we have for any z0 2 
�:

1.5.2. Proposition. (a) If a(�) < 1; the following series converges absolutely

for z 2 
� and determines (the lift to 
� of) a di�erential of the �rst kind on X�:

!g =
X

h2C(jg)

dz log hhz+(g); hz�(g); z; z0i : (1:12)

This di�erential does not depend on z0, and depends on g additively.

If the class of g is primitive (i. e. non{divisible in H), !g can be rewritten as

!g =
X

h2S(g)

dz log hz+(h); z�(h); z; z0i : (1:13)

(b) If gk form a part of the marking of �, and ak are the homology classes

described in 1.4.1 (iii), we have

Z
ak

!gl = 2�i Ækl: (1:14)
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It follows that the map gmod [�;�] 7! !g embeds H := �=[�;�] as a sublattice in

the space of all di�erentials of the �rst kind.

(c) Denote by fblg the complementary set of homology classes in H1(X�;Z) as

in 1.4.1. Then we have for k 6= l, with an appropriate choice of logarithm branches:

�kl :=

Z
bk

!gl =
X

h2C(gkjgl)

log hz+(gk); z�(gk); hz+(gl); hz�(gl)i : (1:15)

Finally

�kk = log q(gk) +
X

h2C0(gkjgk)

log hz+(gk); z�(gk); hz+(gk); hz�(gk)i : (1:16)

where in C0(gkjgk) is C(gkjgk) without the identity class.

For proofs, see [Man2], x8, and [ManD]. Notice that our notation here slightly

di�ers from [Man2]; in particular, �kl here corresponds to 2�i�kl of [Man2].

In the holography formulas below we will use (1.15) and (1.16) in order to cal-

culate Re �kl: The ambiguity of phases can then be discarded, and the cross{ratios

must be replaced by their absolute values. Each resulting term can then be inter-

preted via a con�guration of geodesics in the bulk spaces H3 and X�, similar to

those displayed in Fig. 3a and Fig. 3b.

1.5.3. Di�erentials of the third kind and Green's functions. Let now

a; b 2 
�: Again assuming a(�) < 1; we see that the series

�(a)�(b) :=
X
h2�

dzlog ha; b; hz; hz0i (1:17)

absolutely converges and represents the lift to 
� of a di�erential of the third kind

with residues �1 at the images of a; b: Moreover, its ak periods vanish. Therefore,

any linear combination �(a)�(b) �
P

lXl(a; b)!gl with real coeÆcients Xl will have

pure imaginary ak{periods in view of (1.14). If we �nd Xl so that the real parts

of the bk{periods of !(a)�(b) := �(a)�(b) �
P

lXl(a; b)!gl vanish, we will be able to

use this di�erential in order to calculate conformally invariant Green's functions.

Hence our �nal formulas look as follows.

Equations for calculating Xl(a; b):

pX
l=1

Xl(a; b) Re �kl = Re

Z
bk

�(a)�(b) =
X

h2S(gk)

log jha; b; z+(h); z�(h)ij : (1:18)
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Here k runs over 1; : : : ; p; Re �kl are calculated by means of (1.15) and (1.16), and

bk{periods of �(a)�(b) are given in x8 of [Man2].

Moreover,

Re

Z c

d

�(a)�(b) =
X
h2�

log jha; b; hc; hdij ; (1:19)

Re

Z c

d

!gl =
X

h2S(gl)

log jhz+(h); z�(h); c; dij ; (1:20)

Hence �nally

g((a)� (b); (c)� (d)) =

X
h2�

log jha; b; hc; hdij �
pX
l=1

Xl(a; b)
X

h2S(gl)

log jhz+(h); z�(h); c; dij : (1:20)

Here we have to thank Annette Werner for correcting the last formula in [Man2].

1.6. Discussion. (i) The most straightforward way to interpret formulas (1.3),

(1.4), (1.11), (1.20) is to appeal to the picture of holographic particle detection of

[BR]. In this picture, Green functions on the boundary detect geodesic movement

and collisions of massive particles in the bulk space. Particles, being local objects,

exist in the semiclassical limit.

More precisely, consider in the bulk space the theory of a scalar �eld of mass m.

The propagator, in the notation of [BR] p.7, is

G(B(z); B(�z)) =
Z
DPei�`(P ); (1:21)

where `(P ) is the length of the path P ,� = 1+
p
1 +m2, and the points B(�z) in

the bulk space correspond to some parameterized curve b(�z) on the boundary at

in�nity, in the sense that the B(�z) lie on a hypersurface obtained by introducing

a cuto� on the bulk space.

In the semiclassical WKB approximation, the right hand side of (1.21) localizes

at the critical points of action. Thus, it becomes a sum over geodesics connecting

the points B(�z),
G(B(z); B(�z)) =

X



e��`(
): (1:22)

This has a logarithmic divergence when the cuto� � ! 0, that is, when the points

B(�z) approach the corresponding points on the boundary at in�nity.
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On the other hand, for the CFT on the boundary (in the case where the bulk

space is just AdS3), the boundary propagator is taken in the form in the form (pp.

6{7 of [BR])

hO(x); O(x0)i = 1

jx� x0j2� :

In the case where the bulk space is globally AdS3, there is an identi�cation of the

propagators as the cuto� parameter �! 0

T (z) � logG(B(z); B(�z));

after removing the logarithmic divergence, where

T (z) = loghO(b(z)); O(b(�z))i:

The appearance of the geodesic propagator (1.21) in the bulk space, written in the

form (1.22) is somewhat similar to our exact formulas written in terms of geodesic

con�gurations.

Moreover, passing to the Euclidean case, and reading our formula (1.3) for the

genus zero case in this context provides a neater way of identifying propagators on

bulk and boundary which does not require any cuto�. For assigned points on the

boundary P1(C), instead of choosing corresponding points in the bulk space B(�z)
with the help of a cuto� function and then comparing propagators in the limit, any

choice of a divisor (a)� (b) determines the points in the bulk space a � fc; dg and
b � fc; dg in H3, for boundary points c; d 2 P1(C), and a corresponding exact

identi�cation of the propagators.

If we then let a ! c and b ! d, in (1.3) both the Green function and the

geodesic length have a logarithmic divergence, as the points a � fc; dg and b � fc; dg
also tend to the boundary points c and d, and this recovers the identi�cation of

the propagators used by the physicists as a limit case of formula (1.3), without any

need to introduce cuto� functions.

Notice, moreover, that the procedure of x1.5.3, and in particular our (1.18) to

compute the coeÆcients Xl(a; b) is analogous to the derivation of the bosonic �eld

propagator for algebraic curves in [FeSo], with the sole di�erence that, in the linear

combination

!(a)�(b) := �(a)�(b) �
X
l

Xl(a; b)!gl;

cf. equation (3.6) of [FeSo], the di�erentials of the third kind �(a)�(b) are determined

in our (1.17) by the data of the Schottky uniformization, while, in the case consid-

ered in [FeSo], they are obtained by describing the algebraic curve as a branched

cover of P1(C). Then our (1.18) corresponds to (3.9) of [FeSo], and Proposition
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1.5.2 shows that the bosonic �eld propagator on the algebraic curve X(C), de-

scribed by the Green function, can be expressed in terms of geodesics in the bulk

space.

(ii) K. Krasnov in [Kr1] (cf. also [Kr2]{[Kr4]) establishes another holography

correspondence which involves CFT interpreted as geometry of the Teichm�uller or

Schottky moduli space rather than that of an individual Riemann surface and its

bulk handlebody. In his picture, the relevant CFT theory is the Liouville theory

(existence of which is not yet fully established). An appropriate action for Liouville

theory in terms of the Schottky uniformization was suggested L. Takhtajan and

P. Zograf in [TaZo]. Krasnov identi�es the value of this action at the stationary

(\uniformizing") point with the regularized volume of the respective Euclidean

bulk space. According to [TaZo], this value provides the K�ahler potential for the

Weil{Petersson metric on the moduli space.

It would be interesting to clarify the geometric meaning of Krasnov's regularized

volume. Can it be calculated through the volume of the convex core of the bulk

space? In the genus one case the answer is positive: both quantities are proportional

to the length of the closed geodesic.

A recent preprint of J. Brock [Br1] establishes an approximate relationship be-

tween the Weil{Petersson metric and volumes of convex cores in a di�erent, but

related situation. Namely, instead of giving a local formula for the WP{distance

\at a point" X, it provides an approximate formula for this distance between two

Riemann surfaces X;Y which are far apart. The handlebody X �lling X is replaced

by the quasi{Fuchsian hyperbolic 3{manifold Q(X;Y ) arising in the Bers simulta-

neous uniformization picture ([Be]) and having X [ Y as its conformal boundary

at in�nity. It turns out that at large distances `WP (X;Y ) is comparable with the

volume of coreQ(X;Y ):

We expect that an exact formula relating these two quantities exists and might

be derived using a version of Krasnov's arguments.

In fact, the Krasnov black holes also have a description in terms of Bers simul-

taneous uniformization. By the results of Bowen [Bow], a collection C0 of pairwise

disjoint recti�cable arcs in X0;� with ends at xk 2 Ck and gk(xk), as described

in x1.4.1(iii), determine a quasi{circle C = [
2�
C0. The quotient (C \ 
�)=�

consists of a collection of closed curves in X� whose homology classes give the bk of

x1.4.1(iii). The quasi{circle C divides P1(C) into two domains of Bers simultaneous

uniformization, with the handlebody X� (topologically a product of a non{compact

Riemann surface and an interval) in the role of Q(X;Y ). This �ts in with the re-

sults of Krasnov on the generally rotating case of Krasnov black holes discussed in

[Kr4].
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1.7. Non{archimedean holography. According to various speculations,

space{time at the Planck scale should be enriched with non{archimedean geom-

etry, possibly in ad�elic form, so that space{time can be seen simultaneously at

all non{archimedean and archimedean places. From this perspective, it is worth

observing that the holography correspondence described in x1 admits a natural ex-

tension to the non{archimedean setting. In fact, the results of [Man2] on the Green

functions on Riemann surfaces with Schottky uniformization and con�gurations of

geodesics in the bulk space were motivated by the theory of p{adic Schottky groups

and Mumford curves: cf. [Mum], [ManD], [GvP].

In the non{archimedean setting, we consider a �nite extension K of Qp. Anti

de Sitter space, or rather its Euclidean analog H3, is replaced by the Bruhat{Tits

tree T with the set of vertices

T 0 = fA{lattices of rank 2 in a 2{dim K{space V g=K� (1:22)

where A is the ring of integers of K. Vertices have valence jP1(A=m)j, where m is

the maximal ideal, and the length of each edge connecting two nearby vertices is

log jA=mj. The set of ends of the tree T can be identi�ed with P1(K): this is the

analog of the conformal boundary.

The analog in [ManD] of the formulas of Lemma 1.1.3, gives a quantitative

formulation of the holographic correspondence in this non{archimedean setting,

with the basic Green function on T given by

G�(u)(x; y) = distT (u; fx; yg); (1:23)

where the metric on the Bruhat{Tits tree T is de�ned by assigning the length

log jA=mj to each edge, so that (1.23) computes the length of the shortest chain of

edges connecting the vertex u to the doubly in�nite path in the tree containing the

vertices x; y.

A triple of points in P1(K) determines a unique vertex v 2 T 0 where the three

ends connecting v to the given points in P1(K) start along di�erent edges. This

con�guration of edges is called a \cross{roads" in [Man2]. It provides an analog of

the Feynman diagram of x2.4 of [Wi], where currents are inserted at points on the

boundary and the interaction takes place in the interior, with half in�nite paths in

the Bruhat{Tits tree acting as the gluon propagators. Such propagators admit a

nice arithmetic description in terms of reduction modulo the maximal ideal m.

For a subgraph of T given by the half in�nite path starting at a given vertex

v 2 T 0 with end x 2 P1(K), let fv0 = v; v1; : : : ; vn : : : g be the sequence of vertices
along this path. We can de�ne a `non{archimedean gluon propagator' as such

a graph together with the maps that assign to each �nite path fv0; : : : ; vng the

reduction of x modulo mn.
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Consider the example of the elliptic curve with the Jacobi{Tate uniformization

K�=(qZ), with q 2 K�, jqj < 1. The group qZ acts on T like the cyclic group

generated by an arbitrary hyperbolic element 
 2 PGL(2; K). The unique doubly

in�nite path in T with ends at the pair of �xed points x� of 
 in P1(K) gives rise

to a closed ring in the quotient T =�.
The quotient space T =� is the non{archimedean version of the BTZ black hole,

and this closed ring is the event horizon. From the vertices of this closed ring

in�nite ends depart, which correspond to the reduction map X(K)! X(A=m).

Subgraphs of the graph T =� correspond to all possible Feynman diagrams of

propagation between boundary sources on the Tate elliptic curve X(K) and interior

vertices on the closed ring.

In the case of higher genus, the Schottky group � is a purely loxodromic free

discrete subgroup of PSL(2; K) of rank g � 2. The doubly in�nite paths in T with

ends at the pairs of �xed points x�(
) of the elements 
 2 � realize T� as a subtree

of T . This is the analog of realizing the union of fundamental domains [

(F) as
a tubular neighborhood of the Cayley graph of � in the archimedeam case. The

ends of the subtree T� constitute the limit set �� � P1(K). The complement


� = P1(K)r �� gives the uniformization of the Mumford curve X(K) ' 
�=�.

This, in turn, can be identi�ed with the ends of the quotient graph T =�.
The quotients X� = T =� are non{archimedean Krasnov black holes, with bound-

ary at in�nity the Mumford curve X(K). Currents at points in X(K) propagate

along the half in�nite paths in the black hole that reaches a vertex on T�=�. Propa-
gation between interior points happen along edges of T�=�, and loops in this graph

give rise to quantum corrections to the correlation functions of currents in the

boundary �eld theory, as happens with the Feynman diagrams of [Wi].

1.8. Holography and arithmetic topology. We have seen that, for an

arithmetic surface XZ ! SpecZ, it is possible to relate the geometry at arithmetic

in�nity to the physical principle of holography. Over a prime p, in the case of curves

with maximally degenerate reduction, it is also possible to interpret the resulting

Mumford theory of p{adic Schottky uniformization in terms of an arithmetic version

of the holography principle. One can therefore formulate the question of whether

some other arithmetic analog of holography persists for closed �bers XZ mod p.

A very di�erent picture of the connection between 3{manifolds and arithmetics

exists in the context of arithmetic topology, a term introduced by Reznikov [Rez] to

characterize a dictionary of analogies between number �elds and 3{manifolds. See

also a nice overview by McMullen [Mc].

According to this dictionary, if L is a number �eld and OL its ring of algebraic

integers, then B = SpecOL is an analog of a 3{manifold, with primes representing



22

loops (knots in a 3{manifold). In our case, with B = SpecZ, the local fundametal

group Gal(�Fp=Fp) �= Ẑ is generated by the Frobenius �p : x 7! xp acting on �Fp.

The �ber of X over a prime p, in the dictionary of arithmetic topology, may

be regarded as a 3{manifold that �bers over a circle. In fact, for a �xed prime

`, let S be the union of ` and the set of primes where X has bad reduction. Let

B = SpecS�1Z. This satis�es �̂1(B) = Gal( �QS=Q). For p =2 S, the `{adic Galois
representation

�̂` : Gal( �QS=Q)! AutH1(X;Z`) = GL(2g;Z`)

gives an arithmetic version of the monodromy, see [Mc], with the Frobenius �p that

lifts to an element of Gal( �QS=Q). In the arithmetic topology dictionary, a prime p

corresponds to a \loop" in the \3{manifold" B, hence the �ber XZ mod p together

with the Frobenius element �p can be regarded as the data of a 3{manifold that

�bers over the \circle" p.

The question of a holographic correspondence for these arithmetic analogs of

mapping tori may be related to results of J.Brock [Br2] on 3{manifolds that �ber

over the circle, where the hyperbolic volume is related to the translation length of

the monodromy, in the same way that relates the hyperbolic volume of the convex

core to the Weil{Petersson distance of the surfaces at in�nity in the case of Bers'

simultaneous uniformization in the main result of [Br1].

In our perspective, this result of [Br2] can be regarded as an extension of a

form of holographic correspondence from the case of hyperbolic 3{manifolds with

in�nite ends and asymptotic boundary surfaces, to the case of a compact hyperbolic

3{manifolds which �bers over the circle, with the information previously carried by

the boundary at in�nity now residing in the �ber and monodromy. Thus, it is

possible to ask whether, under the dictionary of arithmetic topology, a similar

form of holographic correspondence exists for the �bers XZ mod p regarded as

arithmetic analogs of a 3{manifold �bering over the circle with monodromy �p. It

is possible that such correspondence may be related to another analogy of arithmetic

topology, which interprets the quantity jTr(�p)j as a measure of the \hyperbolic

length" of the loop representing the prime p (cf. [Mc] Remark on p.134).

x2. Modular curves as holograms

In this section we suggest a di�erent type of holography correspondence, this

time related to AdS1+1 and its Euclidean version H2.

In the case we consider, the bulk spaces will be modular curves. They are global

quotients of the hyperbolic plane H2 by a �nite index subgroup G of PSL(2;Z).

We identifyH2 with the upper complex half{plane endowed with the metric dx2=y2

of curvature �1. Its boundary at in�nity is then P1(R).
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Modular curves have a very rich arithmetic structure, forming the essential part

of the moduli stack of elliptic curves. In this classical setting, the modular curves

have a natural algebro{geometric compacti�cation, which consists of adding �nitely

many points at in�nity, the cusps GnP1(Q). Cusps are the only boundary points

at which G acts discretely (with stabilizers of �nite index). The remaining part

of the conformal boundary (after factorization) is not visible in algebraic (or for

that matter analytic or C1) geometry, because irrational orbits of G in P1(R) are

dense.

In [ManMar] and [Mar] some aspects of the classical geometry and arithmetics

of modular curves, such as modular symbols, the modular complex, and certain

classes of modular forms, are recovered in terms of the non{commutative boundary

GnP1(R) which is a non{commutative space in the sense of Connes, that is, a C�{

algebra Morita equivalent to the crossed product of G acting on some function ring

of P1(R). This way, the full geometric boundary of P1(R) of H2 is considered as

part of the compacti�cation, instead of just P1(Q). We argue here that this is the

right notion of boundary to consider in order to have a holography correspondence

for this class of bulk spaces. In particular, since we strive to establish that the

bulk spaces and their boundaries carry essentially the same information, we call

the quotients GnP1(R) non{commutative modular curves.

2.1. Non{commutative modular curves. In the following � = PSL(2;Z)

and G is a �nite index subgroup of �. Denoting by P the coset space P = �=G, we

can represent the modular curve XG := GnH2 as the quotient

XG = �n(H2 �P); (2:1)

and its non{commutative boundary as the C�{algebra

C(P1(R)�P)o � (2:2)

Morita equivalent to C(P1(R))oG.

There is a dynamical system associated to the equivalence relation de�ned by

the action of a Fuchsian group of the �rst kind on its limit set, as in the case of our

GnP1(R). The dynamical system can be described as a Markov map TG : S1 ! S1

as in [BowSer].

In [ManMar] we gave a di�erent formulation in terms of a dynamical system

related to the action of � on P1(R) � P. This dynamical system generalizes the

classical shift of the continued fraction expansion in the form

T : [0; 1]�P! [0; 1]�P

T (x; t) =

�
1

x
�
�
1

x

�
;

�
�[1=x] 1

1 0

�
� t
�
: (2:3)



24

Some aspects of the non{commutative geometry at the boundary of modular curves

can be derived from an analysis of the ergodic theory of this dynamical system,

cf. [ManMar], [Mar].

2.2. Holography. The 1 + 1{dimensional Anti de Sitter space{time AdS1+1

has SL(2;R) as group of isometries. Passing to Euclidean signature, AdS1+1 is

replaced byH2, so that we can regard the modular curves XG as Euclidean versions

of space{times obtained as global quotients of AdS1+1 by a discrete subgroup of

isometries. Notice that, unlike the case of spacetimes with AdS2+1 geometry, the

case of AdS1+1 space{times is relatively little understood, though some results on

AdS1+1 holography are formulated in [MMS], [Str]. We argue that one reason for

this is that a picture of holography for AdS1+1 space{times should take into account

the possible presence of non{commutative geometry at the boundary.

There are three types of results from [ManMar] that can be regarded as man-

ifestations of the holography principle. On the bulk space, these results can be

formulated in terms of the Selberg zeta function, of certain classes of modular

forms of weight two, and of modular symbols, respectively.

2.2.1. Selberg zeta function. In order to formulate our �rst results, we

consider the Ruelle transfer operator for the shift (2.3),

(Lsf)(x; t) =

1X
k=1

1

(x+ k)2s
f

�
1

x+ k
;

�
0 1

1 k

�
� t
�
: (2:4)

On a suitable Banach space of functions (cf. [May], [ManMar]), the operator Ls
is nuclear of order zero for Re(s) > 1=2, hence it has a Fredholm determinant

det(1� Ls) = exp

 
�

1X
`=1

TrL`s
`

!
: (2:5)

The Selberg zeta function for the modular curve XG encodes the length spectrum

of the geodesic 
ow. Via the Selberg trace formula, this function also encodes

information on the spectral properties of the Laplace{Beltrami operator. In terms

of closed geodesics, we have

ZG(s) =
Y


2Prim

1Y
m=0

�
1� e�(s+m) length(
)

�
; (2:6)

where Prim is the set of primitive closed geodesics in XG. We have the following

result [ManMar] (see also [ChMay], [LewZa1], [LewZa2], [May]).



25

2.2.2. Proposition. Consider a �nite index subgroup G � �, with � = PSL(2;Z)

or PGL(2;Z). In the case � = PGL(2;Z) we have

ZG(s) = det(1� Ls); (2:7)

and in the case � = PSL(2;Z) we have

ZG(s) = det(1� L2
s): (2:8)

We can interpret this statement as an instance of holography correspondence,

if we regard the left hand side of (2.7) and (2.8) as a partition function on the

bulk space, and the right hand side as the corresponding boundary �eld theory.

More precisely, the results of [Lew], [LewZa1], [LewZa2] provide an explicit corre-

spondence between eigenfunctions of the transfer operator Ls and eigenfunctions

of the Laplacian (Maass wave forms). This explicit transformation provides a kind

of holography correspondence between �elds on the bulk space and a theory on the

boundary, which can be interpreted as a lattice spin system with the shift operator

(2.3).

To make a connection to the point of view of Arakelov geometry considered in x1,
it is known that the Arakelov Green function evaluated at two di�erent cusps can

be estimated in terms of the constant term of the Laurent expansion around 1 of the

logarithmic derivative of the Selberg zeta function, e.g. in the case of G = �0(N).

This means that, by Proposition 2.2.1, such estimates can be given in terms of the

transfer operator Ls, which only depends on the boundary (2.2) of XG.

2.2.3. Modular symbols. In the classical theory of modular curves, modular

symbols are the homology classes

'(s) = fg(0); g(i1)gG 2 H1(XG; cusps;Z) (2:9)

with gG = s 2 P, determined by the image in XG of geodesics in H with ends at

points of P1(Q).

In [ManMar] we have shown that the homology H1(XG; cusps;Z) can be de-

scribed canonically in terms of the boundary (2.2) in the following way.

2.2.4. Proposition. In the case � = PSL(2;Z) = Z=2 � Z=3, the Pimsner six

term exact sequence ([Pim]) for the K{theory of the crossed product C�{algebra

(2.2) gives a map

� : K0(C(P
1(R)�P))! K0(C(P

1(R)�P)o Z=2)�K0(C(P
1(R)�P)o Z=3):

The kernel of this map satis�es

Ker(�) �= H1(XG; cusps;Z): (2:10)
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In particular, the modular symbols (2.9) are identi�ed with elements in Ker(�):

fg(0); g(i1)gG $ Æs � Æ�(s); (2:11)

where Æs is the projector in C(P1(R) � P) given by the function equal to one on

the sheet P1(R)� fsg and zero elsewhere.

Via the six terms exact sequence, the elements of Ker(�) can be identi�ed with

(the image of) elements in K0(C(P
1(R)�P)o�). Thus, modular symbols, that is,

homology classes of certain geodesics in the bulk space correspond to (di�erences

of) projectors in the algebra of observables on the boundary space.

2.2.5. Modular forms. Finally, we discuss from this perspective some re-

sults of [ManMar], [Mar], which give a correspondence between certain classes of

functions on the bulk space and on the boundary.

As the class of functions on the boundary, we consider functions

`(f; �) =

1X
k=1

f(qk(�); qk�1(�)): (2:12)

Here f is a complex valued function de�ned on pairs of coprime integers (q; q0) with

q � q0 � 1 and with f(q; q0) = O(q��) for some � > 0, and qk(�) are the successive

denominators of the continued fraction expansion of � 2 [0; 1]. The summing over

pairs of successive denominators is what replaces modularity, when \pushed to the

boundary".

We consider the case of G = �0(N), and the function

f(q; q0) =
q + q0

q1+t

Z
n
0; q

0

q

o
�0(N)

!; (2:13)

with ! such that the pullback ��G(!)=dz is an eigenform for all Hecke operators.

Consider the corresponding `(f; �) de�ned as in (2.12). We have the following

result.

2.2.6. Proposition. For almost all �, the series (2.12) for the function (2.13)

converges absolutely. Moreover, we have

C(f; �) :=

1X
n=1

qn+1(�) + qn(�)

qn+1(�)1+t

�
0;

qn(�)

qn+1(�)

�
�0(N)

(2:14)

which de�nes, for almost all � a homology class in H1(XG; cusps;R) satisfying

`(f; �) =

Z
C(f;�)

! (2:15)
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with integral average

Z
[0;1]

`(f; �) d� =

 
�(1 + t)

�(2 + t)
� L

(N)
! (2 + t)

�(N)(2 + t)2

! Z i1

0

�(z)dz; (2:16)

with L
(N)
! the Mellin transform of � with omitted Euler N{factor, and �(s) the

Riemann zeta, with corresponding �(N).

Results of this type can be regarded, on the one hand, as an explicit corre-

spondence between a certain class of �elds on the bulk space (Mellin transforms of

modular forms of weight two), and the class of �elds (2.12) on the boundary. It

also provides classes (2.14) which correspond to certain con�gurations of geodesics

in the bulk space. These can be interpreted completely in terms of the boundary.

In fact the results of Proposition 2.2.4 can be rephrased also in terms of cyclic

cohomology (cf. [ManMar], [Nis]), so that the classes (2.14) in H1(XG; cusps;R)

can be regarded as elements in the cyclic cohomology of the algebra (2.2). Thus,

expressions such as the right hand side of (2.16), which express arithmetic proper-

ties of the modular curve can be recast entirely in terms of a suitable �eld theory

on the boundary (2.2).
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