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Abstract. This paper uses techniques in noncommutative geometry as developed by Alain

Connes [Co2], in order to study the twisted higher index theory of elliptic operators on orb-

ifold covering spaces of compact good orbifolds, which are invariant under a projective action of

the orbifold fundamental group, continuing our earlier work [MM]. We also compute the range

of the higher cyclic traces on K-theory for cocompact Fuchsian groups, which is then applied to

determine the range of values of the Connes-Kubo Hall conductance in the discrete model of the

quantum Hall e�ect on the hyperbolic plane, generalizing earlier results in [Bel+E+S], [CHMM].

The new phenomenon that we observe in our case is that the Connes-Kubo Hall conductance

has plateaux at integral multiples of a fractional valued topological invariant, namely the orbifold

Euler characteristic. Moreover the set of possible fractions has been determined, and is compared

with recently available experimental data. It is plausible that this might shed some light on the

mathematical mechanism responsible for fractional quantum numbers.

Introduction

This paper uses techniques in noncommutative geometry as developed by Alain Connes [Co2] in
order to prove a twisted higher index theorem for elliptic operators on orbifold covering spaces of
compact good orbifolds, which are invariant under a projective action of the orbifold fundamental
group. These higher indices are basically the evaluation of pairings of higher traces (which are
cyclic cocycles arising from the orbifold fundamental group and the multiplier de�ning the pro-
jective action) with the index of the elliptic operator, considered as an element in the K-theory
of some completion of the twisted group algebra of the orbifold fundamental group. This paper
is the continuation of [MM] and generalizes the results there. The main purpose for studying
the twisted higher index theorem on orbifolds is to highlight the fact that when the orbifold is
not smooth, then the twisted higher index can be a fraction. In particular, we determine the
range of the higher cyclic traces on K-theory for general cocompact Fuchsian groups. We adapt
and generalize the discrete model of the quantum Hall e�ect of Bellissard and his collaborators
[Bel+E+S] and also [CHMM], to the case of general cocompact Fuchsian groups and orbifolds,
which can be viewed equivalently as the generalization to the equivariant context. The new phe-
nomenon that we observe in our case is that the Connes-Kubo Hall conductance has plateaux
at integral multiples of a fractional valued topological invariant, namely the orbifold Euler char-

acteristic. The presence of denominators is caused by the presence of cone points singularities
and by the hyperbolic geometry on the complement of these cone points. The negative curvature
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of the hyperbolic structure replaces interaction and simulates, in our single electron model, the
presence of Coulomb interactions. We also have a geometric term in the Hamiltonian (arising
from the cone point singularities) which accounts partly for the e�ect of Coulomb interactions.
This geometric model of interaction is fairly simple, hence the agreement of our fractions with
the experimental values is only partial. Among the observed fractions, for instance, we can derive
5=3, 4=3, 4=5, 2=3, and 5=2 from genus one orbifolds, and 2=5, 1=3, 4=9, 4=7, 3=5, 5=7, 7=5 from
genus zero orbifolds, see x5. However, fractions like 3=7 and 5=9, seem unobtainable in this model,
even including higher genus orbifolds. Their explanation probably requires a more sophisticated
term describing the electron interaction. It is not unreasonable to expect that this term may also
be geometric in nature, but we leave it to future studies.

There are currently several di�erent models which describe the occurrence of fractional quantum
numbers in the quantum Hall e�ect. Usually quantum �eld theoretic techniques are involved.
Most notably, there is a sophisticated Chern-Simons theory model for the fractional quantum
Hall e�ect developed by Frohlich and his collaborators, cf. [Froh]. Also within the quantum �eld
theoretic formalism it can be noticed that possibly di�erent models are needed in order to explain
the occurrence of di�erent sets of fractions. For example, the fraction 5=2 requires by itself a
separate model.

After reviewing some preliminary material in section 1, we establish in section 2 a twisted
higher index theorem which adapts the proofs of the index theorems of Atiyah [At], Singer [Si],
Connes and Moscovici [CM], and Gromov [Gr2], [Ma1], to the case of good orbifolds, that is,
orbifolds whose orbifold universal cover is a smooth manifold. This theorem generalizes the
twisted index theorem for 0-traces of [MM] to the case of higher degree cyclic traces. The result
can be summarized as follows. Let R be the algebra of rapidly decreasing sequences, i.e.

R =

�
(ai)i2N : sup

i2N
ik jaij <1 8 k 2 N

�
Let � be a discrete group and � be a multiplier on �. Let C (�; �) denote the twisted group

algebra. We denote the tensor product C (�; �) 
 R by R(�; �). Let � ! fM ! M denote the

universal orbifold cover of a compact good orbifoldM , so that fM is a smooth manifold. Suppose
given a multiplier � on � and assume that there is a projective (�; ��)-action on L2 sections of

�-invariant vector bundles over fM . By considering (�; ��)-invariant elliptic operators D acting on
L2 sections of these bundles, we will de�ne a (�; �)-index element in K-theory

Ind�(D) 2 K0(R(�; �)):

We will compute the pairing of Ind�(D) with higher traces. More precisely, given a normalized

group cocycle c 2 Zk(�; C ), we de�ne a cyclic cocycle trc 2 ZC
k(C (�; �)) of dimension k on the

twisted group algebra C (�; �), which extends continuously to a k-dimensional cyclic cocycle on
R(�; �). This induces a map on K-theory,

[trc] : K0(R(�; �))! C :

A main theorem established in this paper is a cohomological formula for

Ind(c;�;�)(D) = [trc] (Ind�(D)) :
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Our method consists of applying the Connes-Moscovici local higher index theorem to a family of

idempotents constructed from the heat operator on fM , all of which represent the (�; �)-index.

Let � be a Fuchsian group of signature (g; �1; : : : ; �n), that is, � is the orbifold fundamental
group of the 2 dimensional hyperbolic orbifold �(g; �1; : : : ; �n) of signature (g; �1; : : : ; �n), where
g 2 Z; g � 0 denotes the genus and 2�=�j ; �j 2 N denotes the cone angles at the cone points of
the orbifold. In [MM] we computed the K-theory of the twisted group C� algebra. Under the
assumption that the Dixmier-Douady invariant of the multiplier � is trivial, we obtained

Kj(C
�(�; �)) �=

8<: Z
2�n+Pn

j=1 �j if j = 0;

Z2g if j = 1:

Here we use a result of [Ji], which is a twisted analogue of a result of Jollissant and which
says in particular that, when � is a cocompact Fuchsian group, then the natural inclusion map
j : R(�; �)! C�(�; �) induces an isomorphism in K-theory

K�(R(�; �)) �= K�(C�(�; �))

Using this, together with our twisted higher index theorem for good orbifolds and some results
in [MM], and under the same assumptions as before, we determine, in section 3, the range of the
higher trace on K-theory

[trc](K0(C
�(�; �))) = �Z;

where �� = 2(1 � g) + (� � n) 2 Q is the orbifold Euler characteristic of �(g; �1; : : : ; �n). Here
we have � =

Pn
j=1 1=�j and c is the area 2-cocycle on �, i.e. c is the restriction to � of the area

2-cocycle on PSL(2;R).

In section 4 we study the hyperbolic Connes-Kubo formula for the Hall conductance in the
discrete model of the Quantum Hall E�ect on the hyperbolic plane, where we consider Cayley
graphs of Fuchsian groups which may have torsion subgroups. This generalizes the results in
[CHMM] where only torsion-free Fuchsian groups were considered. We recall that the results in
[CHMM] generalized to hyperbolic space the noncommutative geometry approach to the Euclidean
quantum Hall e�ect that was pioneered by Bellissard and collaborators [Bel+E+S], Connes [Co]
and Xia [Xia]. We �rst relate the hyperbolic Connes-Kubo Hall conductance cyclic 2-cocycle
and the area cyclic 2-cocycle on the algebra R(�; �), and show that they de�ne the same class
in cyclic cohomology. Then we use our theorem on the range of the higher trace on K-theory
to determine the range of values of the Connes-Kubo Hall conductance cocycle in the Quantum
Hall E�ect. The new phenomenon that we observe in this case is that the Hall conductance has
plateaux at all energy levels belonging to any gap in the spectrum of the Hamiltonian (known as
the generalized Harper operator), where it is now shown to be equal to an integral multiple of a
fractional valued topological invariant �, which is the negative of the orbifold Euler characteristic
of the good orbifold �(g; �1; : : : ; �n). If we �x the genus, then the set of possible denominators
is �nite by the Hurwitz theorem [Sc], and has been explicitly determined in the low genus cases
[Bro]. This provides a topological explanation of the appearance of fractional quantum numbers.
In the last section we compare our results with some observed values.

In section 5, we provide lists of speci�c examples of good 2-dimensional orbifolds for which � is
not an integer. First we observe how the presence of both the hyperbolic structure and the cone
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points is essential in order to have fractional quantum numbers. In fact, � is an integer whenever
the hyperbolic orbifold is smooth, i.e. whenever 1 = �1 = : : : = �n, which is the case considered
in [CHMM]. Similarly, by direct inspection, it is possible to see that all Euclidean orbifolds also
produce only integer values of �. We use the class of orbifolds which are spheres or tori with cone
points, having a (singular) hyperbolic structure, to represent in our physical model some of the
fractions observed in the FQHE. We also list the examples arising from quotients of low genus
surfaces [Bro], and we discuss some phenomenology on the role of the orbifold points and of the
minimal genus g0 of the covering surface.

Summarizing, one key advantage of our model is that the fractions we get are obtained from
an equivariant index theorem and are thus topological in nature. Consequently, as pointed out in
[Bel+E+S], the Hall conductance is seen to be stable under small deformations of the Hamiltonian.
Thus, this model can be easily generalized to systems with disorder as in [CHM]. This is a
necessary step in order to establish the presence of plateaux [Bel+E+S]. The main limitation
of our model is that there is a small number of experimental fractions that we do not obtain in
our model, and we also derive other fractions which do not seem to correspond to experimentally
observed values. To our knowledge, however, this is also a limitation occuring in the other models
available in the literature.

Acknowledgments: We thank J. Bellissard for his encouragement and for some useful comments.
The second author thanks A. Carey and K. Hannabuss for some helpful comments concerning the
section 4. The �rst author is partially supported by NSF grant DMS-9802480. Research by the
second author is supported by the Australian Research Council.

1. Preliminaries

Recall that, if H denotes the hyperbolic plane and � is a Fuchsian group of signature (g; �1; : : : ; �n),
that is, � is a discrete cocompact subgroup of PSL(2;R) of genus g and with n elliptic elements
of order �1; : : : ; �n respectively, then the corresponding compact oriented hyperbolic 2-orbifold of
signature (g; �1; : : : ; �n) is de�ned as the quotient space

�(g; �1; : : : ; �n) = �nH ;

where g denotes the genus and 2�=�j ; �j 2 N denotes the cone angles at the cone points of the
orbifold. A compact oriented 2-dimensional Euclidean orbifold is obtained in a similar manner,
but with H replaced by R2.

All Euclidean and hyperbolic 2-dimensional orbifolds �(g; �1; : : : ; �n) are good, being in fact
orbifold covered by a smooth surface �g0 cf. [Sc], i.e. there is a �nite group G acting on �g0 with

quotient �(g; �1; : : : ; �n), where g
0 = 1 +

#(G)
2 (2(g � 1) + (n� �)) and where � =

Pn
j=1 1=�j .

For fundamental material on orbifolds, see [Sc], [FuSt] and [Bro]. See also [MM], section 1.

Let M be a good, compact orbifold, and E ! M be an orbifold vector bundle over M , andeE ! fM be its lift to the universal orbifold covering space �! fM !M , which is by assumption
a simply-connected smooth manifold. We have a (�; ��)-action (where � is a multiplier on � and ��

denotes its complex conjugate) on L2(fM),where we choose ! = d� an exact 2-form on fM such that
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! is also �-invariant, although � is not assumed to be �-invariant, and the Hermitian connection

r = d+ i�

on the trivial line bundle over fM , with curvature r2 = i!. The projective action is de�ned as
follows:

Firstly, observe that since e! is �-invariant, 0 = 
�e! � e! = d(
�� � �) 8
 2 �. So 
�� � � is a

closed 1-form on the simply connected manifold fM , therefore


�� � � = d�
 8
 2 �

where �
 is a smooth function on fM satisfying in addition,

� �
(x) + �
0(
x)� �
0
(x) is independent of x 2 fM 8
; 
0 2 �;

� �
(x0) = 0 for some x0 2 fM 8 2 �.

Then ��(
; 
0) = exp(i�
(

0 � x0)) de�nes a multiplier on � i.e. �� : � � � ! U(1) satis�es the

following identity for all 
; 
0; 
00 2 �

��(
; 
0)��(
; 
0
00) = ��(

0; 
00)��(
0; 
00)

For u 2 L2(fM; eE), let S
u = ei�
u and U
u = 
�u and T
 = U
 � S
 be the composition. Then T

de�nes a projective (�; ��)-action on L2-spinors, i.e.

T
T
0 = ��(
; 
0)T

0 :

This de�nes a (�; ��)-action, provided that the Dixmier-Douady invariant �(�) = 0, see [MM].

As in [MM], we shall consider the twisted group von Neumann algebraW �(�; �), the commutant
of the left ��-regular representation on `2(�) and W �(�) as the commutant of the (�; ��)-action on

L2(fM; Ŝ� 
E).

We have an identi�cation (see [MM])

W �(�) �=W �(�; �)
B(L2(F ; eEjF ))
whereB(L2(F ; eEjF )) denotes the algebra of all bounded operators on the Hilbert space L2(F ; eEjF ),
and F is a relatively compact fundamental domain in fM for the action of �. We have a semi�nite
trace

tr : W �(�)! C

de�ned as in the untwisted case due to Atiyah [At],

Q!

Z
M

tr(kQ(x; x))dx

where kQ denotes the Schwartz kernel of Q. Note that this trace is �nite whenever kQ is continuous

in a neighborhood of the diagonal in fM � fM .
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We also consider, as in [MM], the subalgebra C�(�) of W �(�), whose elements have the addi-
tional property of some o�-diagonal decay, and one also has the identi�cation (cf. [MM])

C�(�) �= C�(�; �)
K(L2(F ; eEjF ))
In [MM] we considered the C� algebra

C�(M) = C(P )o SO(m);

where P is the bundle of oriented frames on the orbifold tangent bundle. The relevent K-theory
is the orbifold K-theory

K0
orb(M) � K0(C

�(M)) = K0(C(P )o SO(m)) �= K0
SO(m)(P ):

In the case whenM is a good orbifold, one can show that the C� algebras C�(M) and C0(X)oG
are strongly Morita equivalent, where X is smooth and G ! X ! M is an orbifold cover. In
particular,

K0
orb(M) �= K0(C0(X)oG) = K0

G(X):

The relevant cohomology is the orbifold cohomology H
j
orb(M) = Hj(X;G), for j = 0; 1, which

is the delocalized equivariant cohomology for a �nite group action on a smooth manifold [BC].
The Baum-Connes equivariant Chern character is a homomorphism

chG : K0
G(X)! H0(X;G):

Let B� = �nE� be the classifying space of proper actions, as de�ned in [BCH]. In our case,
the orbifold �(g; �1; : : : ; �n), viewed as the quotient space �nH , is B�(g; �1; : : : ; �n). Equiva-
lently, B�(g; �1; : : : ; �n) can be viewed as the classifying space of the orbifold fundamental group
�(g; �1; : : : ; �n).

Let S� denote the set of all elements of � which are of �nite order. Then S� is not empty, since
1 2 S�. � acts on S� by conjugation, and let F� denote the associated permutation module over
C , i.e.

F� =

(X
�2S�

��[�]
��� �� 2 C and �� = 0 except for a �nite number of �

)

Let Ck(�; F�) denote the space of all antisymmetric F�-valued �-maps on �k+1, where � acts

on �k+1 via the diagonal action. The coboundary map is

@c(g0; : : : ; gk+1) =

k+1X
i=0

(�1)ic(g0; : : : ; ĝi : : : gk+1)

for all c 2 Ck(�; F�) and where ĝi means that gi is omitted. The cohomology of this complex is

the group cohomology of � with coe�cients in F�, Hk(�; F�), cf. [BCH]. They also show that

Hk(�; F�) �= Hj(�; C ) �m Hk(Z(Cm); C ), where S� = f1; Cmjm = 1; : : : g and the isomorphism
is canonical.
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Also, for any Borel measurable �-map � : E�! �, there is an induced map on cochains

�� : Ck(�; F�)! Ck(E�;�)

which induces an isomorphism on cohomology, �� : Hk(�; F�) �= Hk(E�;�) [BCH]. Here
Hj(E�;�) denotes the Z-graded (delocalised) equivariant cohomology of E�, which is a re�nement
of what was discussed earlier, and which is de�ned in [BCH] using sheaves (and cosheaves), but
we will not recall the de�nition here.

Let M be a good orbifold with orbifold fundamental group �. We have seen that the universal

orbifold cover fM is classi�ed by a continuous map f : M ! B�, or equivalently by a �-map

f : fM ! E�. The induced map is f� : Hj
orb(B�; C ) � Hk(E�;�)! Hk(fM;�) � Hk

orb(M; C ) and
therefore in particular one has f�([c]) 2 Hk

orb(M; C ) for all [c] 2 Hk(�; C ). This can be expressed
on the level of cochains by easily modifying the procedure in [CM], and we refer to [CM] for
further details.

Finally, we add here a brief comment on the assumption used throughout [MM] on the vanishing
of the Dixmier-Douady invariant of the multiplier �. We show here that the condition is indeed
necessary, since we can always �nd examples where �(�) 6= 0. Let � be the Fuchsian group of
signature (g; �1; : : : ; �n), as before. Consider the long exact sequence of the change of coe�cient
groups, as in [MM],

� � �H1(�; U(1))
�
! H2(�;Z)

i�
! H2(�;R)

e
2�
p�1

�
!

H2(�; U(1))
�
! H3(�;Z)! H3(�;R):

(1)

The argument of [MM] shows that H3(�;R) = 0 and H2(�;R) = R . Moreover, we observe

that H1(�;Z) = Hom(�;Z) �= Z2g, H1(�;R) = Hom(�;R) �= R2g and H1(�; U(1)) =
Hom(�; U(1)) �= U(1)2g �n

j=1 Z�j . Now H2(�;Z) = Z�j Z�j , see [Patt], which is consistent

with the result in [MM] that the group of the orbifold line bundles over the orbifold �nH has
1�n+

Pn
j=1 �j generators. It is also proved in [Patt] that H

2(�; U(1)) = U(1)�n
j=1Z�j . Using the

long exact sequence and the remarks above, we see thatH3(�;Z) = Tor(H2(�; U(1))) = �n
j=1Z�j .

Thus, in the sequence we have Ker(i�) = �j Z�j , Im(i�) = Z = Ker(e2�
p�1

� ), Im(e2�
p�1

� ) =

U(1). So we can identify all the classes of multipliers with trivial Dixmier{Douady invariant with
U(1) = Ker(�). Finally, we have

Im(�) = H3(�;Z) = H2(�; U(1))=Ker(�) = �j Z�j :

The calculations of the cohomology of the Fuchsian group � = �(g; �1; : : : ; �n) are summarized
in the following table.

j Hj(�;Z) Hj(�;R) Hj(�;U(1))

0 Z R U(1)

1 Z2g R2g U(1)2g �j Z�j
2 Z�j Z�j R U(1) �j Z�j
3 �j Z�j 0
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2. Twisted higher index theorem

In this section, we will de�ne the higher twisted index of an elliptic operator on a good orbifold,
and establish a cohomological formula for any cyclic trace arising from a group cocycle, and which
is applied to the twisted higher index. We adapt the strategy and proof in [CM] to our context.

2.1. Construction of the parametrix and the index map. Let M be a compact, good

orbifold, that is, the universal cover � ! fM ! M is a smooth manifold and we will assume,

as before, that there is a (�; ��)-action on L2(fM) given by T
 = U
 � S
 8
 2 �. Let eE ; eF be

Hermitian vector bundles onM and let eE ; eF be the corresponding lifts to �-invariants Hermitian

vector bundles on fM . Then there are induced (�; ��)-actions on L2(fM; eE) and L2(fM; eF) which
are also given by T
 = U
 � S
 8
 2 �.

Now let D : L2(fM; eE) ! L2(fM; eF) be a �rst order (�; ��)-invariant elliptic operator. Let

U � fM be an open subset that contains the closure of a fundamental domain for the �-action onfM . Let  2 C1c (fM ) be a compactly supported smooth function such that supp( ) � U , andX

2�


� = 1:

Let � 2 C1c (fM ) be a compactly supported smooth function such that � = 1 on supp( ).

Since D is elliptic, we can construct a parametrix J for it on the open set U by standard
methods,

JDu = u�Hu 8u 2 C1c (U; eEjU )
where H has a smooth Schwartz kernel. De�ne the pseudodi�erential operator Q as

Q =
X

2�

T
�J T
�

(2)

We compute,

QDw =
X

2�

T
�J DT
�

w 8w 2 C1c (fM; eE);(3)

since T
D = DT
 8
 2 �. Since D is a �rst order operator, one has

D( w) =  Dw + (D )w

so that (3) becomes

=
X

2�

T
�JD T
�

w �

X

2�

T
�J(D )T
�

w:

Using (2), the expression above becomes

=
X

2�

T
 T
�

w �

X

2�

T
�H T
�

w �

X

2�

T
�J(D )T
�

w:

Therefore (3) becomes

QD = I �R0
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where

R0 =
X

2�

T
 (�H + J(D )) T �


has a smooth Schwartz kernel. It is clear from the de�nition that one has T
Q = QT
 and
T
R0 = R0T
 8
 2 �. De�ne

R1 =
t R0 +DRt

0Q�DQ(tR0):

Then T
R1 = R1T
 8
 2 �, R1 has a smooth Schwartz kernel and satis�es

DQ = I �R1:

Summarizing, we have obtained the following

Proposition 2.1. Let M be a compact, good orbifold and �! fM !M be the universal orbifold

covering space. Let E ; F be Hermitian vector bundles on M and let eE ; eF be the corresponding

lifts to �-invariants Hermitian vector bundles on fM . We will assume as before that there is a

(�; ��)-action on L2(fM ) given by T
 = U
 � S
 8
 2 �, and induced (�; ��)-actions on L2(fM; eE)
and L2(fM; eF) which are also given by T
 = U
 � S
 8
 2 �.

Now let D : L2(fM; eE) ! L2(fM; eF) be a �rst order (�; ��)-invariant elliptic operator. Then

there is an almost local, (�; ��)-invariant elliptic pseudodi�erential operator Q and (�; ��)-invariant
smoothing operators R0; R1 which satisfy

QD = I �R0 and DQ = I �R1:

De�ne the idempotent

e(D) =

�
R20 (R0 +R20)Q
R1D 1�R21

�
:

Then e(D) 2M2(R(�; �)), where R(�; �) = C (�; �) 
R is as de�ned in x1.

The R(�; �)-index is by �at

Ind�(D) = [e(D)] � [E0] 2 K0(R(�; �))
�

where E0 is the idempotent

E0 =

�
0 0
0 1

�
:

It is not di�cult to see that Ind�(D) is independent of the choice of (�; ��)-invariant parametrix
Q that is needed in its de�nition.

Let j : R(�; �)! C�r (�; �) be the canonical inclusion, which induces the morphism inK-theory

j� : K�(R(�; �))! K�(C�r (�; �)):

Then we have,

De�nition. The C�r (�; �)-index of a (�; ��)-invariant elliptic operator D : L2(fM; eE)! L2(fM; eF)
is de�ned as

Ind(�;�)(D) = j�(Ind�(D)) 2 K0(C
�
r (�; �))
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2.2. Heat kernels and the index map. Given D as before, for t > 0, we use the standard
o�-diagonal estimates for the heat kernel. Recall that the heat kernels e�tD

�D and e�tDD
�
are

elements in the R(�; �) (see the appendix). De�ne the idempotent et(D) 2M2(R(�; �)) (see the
appendix) as follows

et(D) =

 
e�tD

�D e�t=2D
�D (1�e�tD�D)

D�D D�

e�t=2DD
�
D 1� e�tDD

�

!
:

It is sometimes known as the Wasserman idempotent.

The relationship with the idempotent e(D) constructed earlier can be explained as follows.
De�ne for t > 0,

Qt =

�
1� e�t=2D

�D�
D�D

D�

Then one easily veri�es that QtD = 1�e�t=2D
�D = 1�R0(t) and DQt = 1�e�t=2DD

�
= 1�R1(t).

That is, Qt is a parametrix for D for all t > 0. Therefore one can write

et(D) =

�
R0(t)

2 (R0(t) +R0(t)
2)Qt

R1(t)D 1�R1(t)
2

�
:

In particular, one has for t > 0

Ind�(D) = [et(D)]� [E0] 2 K0(R(�; �)):

We use the same notation as in [MM]. A �rst order elliptic di�erential operator D on M ,

D : L2(M; E)! L2(M;F)

is by �at a �-equivariant �rst order elliptic di�erential operator eD on the smooth manifold fM ,eD : L2(fM; eE)! L2(fM; eF):
Given any connection r

fW on fW which is compatible with the � action and the Hermitian metric,

we de�ne an extension of the elliptic operator eD, to act on sections of eE 
fW , eF 
fW ,eD 
r
fW : �(M; eE 
fW )! �(M; eF 
fW )

as in [MM].

2.3. Group cocycles and cyclic cocycles. Using the pairing theory of cyclic cohomology and
K-theory, due to [Co], we will pair the (�; �)-index of a (�; ��)-invariant elliptic operator D onfM with certain cyclic cocycles on R(�; �). The cyclic cocycles that we consider come from

normalised group cocycles on �. More precisely, given a normalized group cocycle c 2 Zk(�; C ),
for k = 0; : : : ;dimM , we de�ne a cyclic cocycle trc of dimension k on the twisted group ring
C (�; �), which is given by

trc(a0�g0 ; : : : ; ak�gk) =

8<: a0 : : : akc(g1; : : : ; gk) tr(�g0�g1 : : : �gk) if g0 : : : gk = 1

0 otherwise.
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where aj 2 C for j = 0; 1; : : : ; k. To see that this is a cyclic cocycle on C (�; �), we �rst de�ne, as
done in [Ji], the twisted di�erential graded algebra 
�(�; �) as the di�erential graded algebra of
�nite linear combinations of symbols

g0dg1 : : : dgn gi 2 �

with module structure and di�erential given by

(g0dg1 : : : dgn)g =

nX
j=1

(�1)n�1�(gj ; gj+1)g0dg1 : : : d(gjgj+1) : : : dgndg

+ (�1)n�(gn; g)g0dg1 : : : d(gng)

d(g0dg1 : : : dgn) = dg0dg1 : : : dgn

We now recall normalised group cocycles. A group k-cocycle is a map h : �k+1 ! C satisfying
the identities

h(gg0; : : : ggk) = h(g0; : : : gk)

0 =

k+1X
i=0

(�1)ih(g0; : : : ; gi�1; gi+1 : : : ; gk+1)

Then a normalised group k-cocycle c that is associated to such an h is given by

c(g1; : : : ; gk) = h(1; g1; g1g2; : : : ; g1 : : : gk)

and it is de�ned to be zero if either gi = 1 or if g1 : : : gk = 1. Any normalised group cocycle
c 2 Zk(�; C ) determines a k-dimensional cycle via the following closed graded trace on 
�(�; �)Z

g0dg1 : : : dgn =

8<: c(g1; : : : ; gk) tr(�g0�g1 : : : �gk) if n = k and g0 : : : gk = 1

0 otherwise.

Of particular interest is the case when k = 2, when the formula above reduces toZ
g0dg1dg2 =

8<: c(g1; g2)�(g1; g2) if g0g1g2 = 1;

0 otherwise.

The higher cyclic trace trc is by �at this closed graded trace.

2.4. Twisted higher index theorem- the cyclic cohomology version. LetM be a compact

orbifold of dimension n = 4`. Let � ! fM p
! M be the universal cover of M and the orbifold

fundamental group is �. Let D be an elliptic �rst order operator on M and eD be the lift of D tofM , eD : L2(fM; eE)! L2(fM; eF):
Note that eD commutes with the �-action on fM .



12 MATILDE MARCOLLI AND VARGHESE MATHAI

Now let ! be a closed 2-form on M such that e! = p�! = d� is exact on fM . De�ne r =

d + i�. Then r is a Hermitian connection on the trivial line bundle over fM , and the curvature

of r; (r)2 = i e!. Then r de�nes a projective action of � on L2 spinors on fM as in section 1.

Consider the twisted elliptic operator on fM ,eD 
r : L2(fM; eE)! L2(fM; eF)
Then eD 
r no longer commutes with �, but it does commute with the projective (�; ��) action.
In x2.1, we have de�ned the higher index of such an operator,

Ind�( eD 
r) 2 K0(R(�; �)):

Given a group cocycle c 2 Z2q(�), one can de�ne the associated cyclic cocycle �c on R(�; �) as
in x2.3. Then �c induces a homomorphism on K-theory

[�c] : K0(R(�; �)) ! R :

The real valued higher index is the image of the higher index under this homomorphism, i.e.

Ind(c;�;�)( eD 
r) = [�c](Ind�( eD 
r))

To introduce the next theorem, we will brie
y review some material on characteristic classes for

orbifold vector bundles. Let M be a good orbifold, that is the universal orbifold cover �! fM !

M of M is a smooth manifold. Then the orbifold tangent bundle TM of M can be viewed as the

�-equivariant bundle TfM on fM . Similar comments apply to the orbifold cotangent bundle T �M
and, more generally, to any orbifold vector bundle onM . It is then clear that, choosing �-invariant

connections on the �-invariant vector bundles on fM , one can de�ne the Chern-Weil representatives

of the characteristic classes of the �-invariant vector bundles on fM . These characteristic classes
are �-invariant and so de�ne cohomology classes on M . For further details, see [Kaw].

Theorem 2.2. Let M be a compact, even dimensional, good orbifold, and let � be its orbifold

fundamental group. Let eD be a �rst order, �-invariant elliptic di�erential operator acting on L2

sections of �-invariant vector bundles on fM , where �! fM ! M is the universal orbifold cover

of M . Then, for any group cocycle c 2 Z2q(�), one has

Ind(c;�;�)( eD 
r) =
q!

(2�i)q(2q!)
hTd(M) [ ch(symb(D)) [ f�(�c) [ e!; [T �M ]i(4)

where Td(M) denotes the Todd characteristic class of the complexi�ed orbifold tangent bundle of

M which is pulled back to the orbifold cotangent bundle T �M , ch(symb(D)) is the Chern character

of the symbol of the operator D, �c is the Alexander-Spanier cocycle on B� that corresponds to the

group cocycle c and f : M ! B� is the map that classi�es the orbifold universal cover fM ! M ,

cf. section 1.

Proof. Choose a bounded, almost everywhere smooth Borel cross-section � :M ! fM , which can
then be used to de�ne the Alexander-Spanier cocycle �c corresponding to c 2 Z2q(�), and such
that [�c] = f�[c] 2 H2q(M). As in x2.2, for t > 0, there is an index idempotent,

et(D) =

�
R0(t)

2 (R0(t) +R0(t)
2)Qt

R1(t)D 1�R1(t)
2

�
2M2(R(�; �));
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where for t > 0,

Qt =

�
1� e�t=2D

�D�
D�D

D� ; R0(t) = e�t=2D
�D; R1(t) = e�t=2DD

�
:

Then as in x2.2, one sees that R0(t), R1(t) are smoothing operators and Qt is a parametrix for D
for all t > 0. The R(�; �)-index map is then

Ind�( eD 
r) = [et( eD 
r)]� [E0] 2 K0(R(�; �)):

where E0 is the idempotent

E0 =

�
0 0
0 1

�
:

Let Rt = et( eD 
r)�E0. We adapt the strategy and proof in [CM] to our situation.

Ind(c;�;�)( eD 
r) = trc(Rt; Rt; : : : Rt)

=

Z
M2q+1

X

1;:::
2q2�

c(1; 
1; : : : ; 
2q)�

tr(Rt(�(x0); 
1�(x1)) : : : Rt(
2q�(x2q); �(x0)))dx0 : : : dx2q

(5)

where � :M ! fM denotes a boundedmeasurable section. Notice that the phase term tr(�
1 : : : �
2q )
appearing in the expression for the cocycle trc cf. x2.3, is exactly cancelled by the twisted product
of the integral kernels Rt, cf. [CHMM] x3. Notice also that the right hand side of equation (5) is
independent of the choice of the section �, since upon changing � to 
 � �, we obtain

Rt(
�(x0); 
1
�(x1)) : : : Rt(
2q
�(x2q); 
�(x0)) = ei 
 (�(x0))Rt(�(x0); 

�1
1
�(x1))e

�i 
 (

�1
1
�(x1)) : : :

ei 
 (

�1
2q
�(x2q))Rt(


�1
2q
�(x2q); �(x0))e
�i 
 (�(x0))

= Rt(�(x0); ~
1�(x1)) : : : Rt(~
2q�(x2q); �(x0));

where ~
i = 
�1
i
 which is exactly as in the case when the multiplier is trivial.

Observe that if �U : U ! fM is a smooth local section, then there is a unique element
(
1; : : : ; 
2q) 2 �2q such that (�(x0); 
1�(x1); : : : 
2q�(x2q)) 2 �U (U)

2q+1. Moreover, we have
the equality c(1; 
1; : : : ; 
2q) = �c(x0; x1; : : : x2q) (and �c = 0 otherwise), where �c denotes the

�-equivariant (Alexander-Spanier) 2q-cocycle on fM representing the pullback f�(c) of the group
2-cocycle via the classifying map f . Since Rt is mainly supported near the diagonal as t! 0, and
using the equivariance of Rt, one sees that

Ind(c;�;�)( eD 
r) = lim
t!0

Z
M2q+1

�c(x0; x1; : : : x2q)tr(Rt(x0; x1) : : : Rt(x2q; x0))dx0dx1 : : : dx2q;

where we have identi�ed M with a fundamental domain for the � action on fM . The proof is
completed by applying the local higher index Theorems 3.7 and 3.9 in [CM], to obtain the desired

cohomological formula (4) for Ind(c;�;�)( eD 
r).
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3. Twisted Kasparov map and range of the higher trace on K-theory

In this section, we compute the range of the 2-trace trc on K-theory of the twisted group C�

algebra, where c is a 2-cocycle on the group, generalising the work of [CHMM]. Suppose as before
that � is a discrete, cocompact subgroup of PSL(2;R) of signature (g; �1; : : : ; �n). That is, �
is the orbifold fundamental group of a compact hyperbolic orbifold �(g; �1; : : : ; �n) of signature
(g; �1; : : : ; �n). Then for any multiplier � on � such that �(�) = 0, one has the twisted Kasparov

isomorphism,

�� : K
�
orb(�(g; �1; : : : ; �n))! K�(C�r (�; �));

Proposition 2.14 in [MM]. Its construction is recalled in this section, as we need to re�ne it by
factoring it through the K-theory of the dense subalgebra R(�; �) of C�r (�; �). This is necessary
in order to be able to use the pairing theory of Connes [Co], [CM] between higher cyclic traces and
K-theory. We note that using a result of [Ji], thatR(�; �) is indeed a dense subalgebra of C�r (�; �)
in our case. In particular, given any projection P in C�r (�; �) there is both a projection ~P in the
same K0 class but lying in the dense subalgebra R(�; �). This fact will also be utilized in the
next section. On the other hand, by the results of the current section, given any such projection
P there is a higher topological index that we can associate to it cf. Theorem 3.3. The main result
we prove here is that the range of the 2-trace trc on K-theory of the twisted group C� algebra
is always an integer multiple of a rational number. This will enable us to compute the range of
values of the Hall conductance in the quantum Hall e�ect on hyperbolic space, generalizing the
results in [CHMM].

3.1. Twisted Kasparov map. Let � be as before, that is, � is the orbifold fundamental group
of the hyperbolic orbifold �(g; �1; : : : ; �n). Then for any multiplier � on �, we will factor the
twisted Kasparov isomorphism,

�� : K
�
orb(�(g; �1; : : : ; �n))! K�(C�r (�; �))(6)

in [MM] through the K-theory of the dense subalgebra R(�; �) of C�r (�; �).

Let E ! �(g; �1; : : : ; �n) be an orbifold vector bundle over �(g; �1; : : : ; �n) de�ning an ele-

ment [E ] in K0(�(g; �1; : : : ; �n)). As in [Kaw], one can form the twisted Dirac operator 6 @+E :

L2(�(g; �1; : : : ; �n);S
+ 
 E) ! L2(�(g; �1; : : : ; �n);S

� 
 E) where S� denote the 1
2 spinor bun-

dles over �(g; �1; : : : ; �n). One can lift the twisted Dirac operator 6@+E as above, to a �-invariant

operator f6@+E on H = e�(g; �1; : : : ; �n), which is the universal orbifold cover of �(g; �1; : : : ; �n),f6@+E : L2(H ; Ŝ+ 
 E)! L2(H ; Ŝ� 
 E)

For any multiplier � of � with �([�]) = 0, there is a R-valued 2-cocycle � on � with [�] 2

H2(�;R) such that [e2�
p�1� ] = [�]. By the argument of [MM], section 2.2, we know that we

have an isomorphism H2(�;R) �= H2(�g0 ;R), and therefore there is a 2-form ! on �g0 such that

[e2�
p�1!] = [�]. Of course, the choice of ! is not unique, but this will not a�ect the results that

we are concerned with. Let e! denote the lift of ! to the universal cover H . Since the hyperbolic
plane H is contractible, it follows that e! = d� where � is a 1-form on H which is not in general
� invariant. Now r = d+ i� is a Hermitian connection on the trivial complex line bundle on H .



TWISTED HIGHER INDEX THEORY ON GOOD ORBIFOLDS 15

Note that the curvature of r is r2 = i~!. Consider now the twisted Dirac operator e6@+E which is
twisted again by the connection r,f6@+E 
r : L2(H ; Ŝ+ 
 E)! L2(H ; Ŝ� 
 E):

It does not commute with the � action, but it does commute with the projective (�; ��)-action
which is de�ned by the connection r as in x1. In section 2.1, we have de�ned the higher index of
such an operator

Ind�(
f6@+E 
r) 2 K0(R(�; �));

where as before, R denotes the algebra of rapidly decreasing sequences on Z2.

Then the twisted Kasparov map (6) is

��([E ]) = j�(Ind�(
f6@+E 
r)) = Ind(�;�)(

f6@+E 
r) 2 K0(C
�(�; �));

where j : R(�; �) = C (�; �) 
R ! C�r (�; �) 
 K is the natural inclusion map, and as before, K
denotes the algebra of compact operators. Then

j� : K0(R(�; �))! K0(C
�
r (�; �))

is the induced map on K0. The twisted Kasparov map was de�ned for certain torsionfree groups
in [CHMM] and the general case in [Ma1]. It is related to the Baum-Connes assembly map [BC],
[BCH], as is discussed in [Ma1].

3.2. Range of the higher trace on K-theory. The �rst step in the proof is to show that given
a bounded group cocycle c 2 Z2(�) we may de�ne canonical pairings with K0(�(g; �1; : : : ; �n))
and K0(C

�
r (�; �)) which are related by the twisted Kasparov isomorphism, by adapting some of

the results of Connes and Connes-Moscovici to the twisted case. As �(g; �1; : : : ; �n) = B� is
a negatively curved orbifold, we know (by [Mos] and [Gr]) that degree 2 cohomology classes in
H2(�) have bounded representatives i.e. bounded 2-cocycles on �. The bounded group 2-cocycle
c may be regarded as a skew symmetrised function on �� �� �, so that we can use the results
in section 2 to obtain a cyclic 2-cocycle trc on C (�; �) 
R by de�ning:

trc(f
0 
 r0; f1 
 r1; f2 
 r2) = Tr(r0r1r2)

X
g0g1g2=1

f0(g0)f
1(g1)f

2(g2)c(1; g1; g1g2)�(g1; g2):

Since the only di�erence with the expression obtained in [CM] is �(g1; g2), and since j�(g1; g2)j = 1,
we can use Lemma 6.4, part (ii) in [CM] and the assumption that c is bounded, to obtain the
necessary estimates which show that in fact trc extends continuously to the bigger algebraR(�; �).
By the pairing of cyclic theory and K-theory in [Co], one obtains an additive map

[trc] : K0(R(�; �))! R:

Explicitly, [trc]([e] � [f ]) = etrc(e; � � � ; e) � etrc(f; � � � ; f), where e; f are idempotent matrices with

entries in (R(�; �))� = unital algebra obtained by adding the identity to R(�; �) and etrc denotes
the canonical extension of trc to (R(�; �))�. Let f6@+E 
r be the Dirac operator de�ned in the
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previous section, which is invariant under the projective action of the fundamental group de�ned

by �. Recall that by de�nition, the (c;�; �)-index of f6@+E 
r is

Ind(c;�;�)(
f6@+E 
r) = [trc](Ind�(

f6@+E 
r)) = h[trc]; ��([E ])i 2 R:

It only depends on the cohomology class [c] 2 H2(�), and it is linear with respect to [c]. We
assemble this to give the following theorem.

Theorem 3.1. Given [c] 2 H2(�) and � 2 H2(�; U(1)) a multiplier on �, there is a canonical

additive map

h[c]; i : K0
orb(�(g; �1; : : : ; �n))! R;

which is de�ned as

h[c]; [E ]i = Ind(c;�;�)(
f6@+E 
r) = [trc](Ind�(

f6@+E 
r)) = h[trc]; ��([E ])i 2 R:

Moreover, it is linear with respect to [c].

The area cocycle c of the Fuchsian group � is a canonically de�ned 2-cocycle on � that is de�ned
as follows. Firstly, recall that there is a well known area 2-cocycle on PSL(2;R), cf. [Co2],
de�ned as follows: PSL(2;R) acts on H such that H �= PSL(2;R)=SO(2). Then c(g1; g2) =
Area(�(o; g1:o; g2

�1:o)) 2 R , where o denotes an origin in H and Area(�(a; b; c)) denotes the
hyperbolic area of the geodesic triangle in H with vertices at a; b; c 2 H . Then the restriction of
c to the subgroup � is the area cocycle c of �.

Corollary 3.2. Let c; [c] 2 H2(�), be the area cocycle, and E ! �(g; �1; : : : ; �n) be an orbifold

vector bundle over the orbifold �(g; �1; : : : ; �n). Then in the notation above, one has

h[c]; [E ]i = � rank E 2 �Z:

where �� = 2(1 � g) + (� � n) 2 Q is the orbifold Euler characteristic of �(g; �1; : : : ; �n) and
� =

Pn
j=1 1=�j.

Proof. By Theorem 2.2, one has one has

[trc](Ind�(
f6@+E 
r)) =

1

2�#(G)

Z
�g0

Â(
) tr(eR
E
)e! �(~c);(7)

where �g0 is smooth and G! �g0 ! �(g; �1; : : : ; �n) is a �nite orbifold cover. Here  : �g0 ! �g0

is the lift of the map f : �(g; �1; : : : �n)! �(g; �1; : : : �n) (since B� = �(g; �1; : : : �n) in this case)
which is the classifying map of the orbifold universal cover (and which in this case is the identity
map) and [~c] degree 2 cohomology class on �g0 that is the lift of c to �g0 . We next simplify the

right hand side of (7) using the fact that Â(
) = 1 and that

tr(eR
E
) = rank E + tr(RE);

 �(~c) = ~c;

e! = 1 + !:

We obtain

[trc](Ind�(
f6@+E 
r)) =

rankE

2�#(G)
h[~c]; [�g0 ]i:
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When c; [c] 2 H2(�), is the area 2-cocycle, then ~c is merely the restriction of the area cocycle on
PSL(2;R) to the subgroup �g0 . Then one has

h[~c]; [�g0 ]i = �2��(�g0) = 4�(g0 � 1):

The corollary now follows from Theorem 3.1 above together with the fact that g0 = 1+
#(G)
2

(2(g�

1) + (n� �)), and � =
Pn

j=1 1=�j .

We next describe the canonical pairing ofK0(C
�
r (�; �)), given [c] 2 H

2(�). Since �(g; �1; : : : ; �n)
is negatively curved, we know from [Ji] that

R(�; �) =

8<:f : �! C j
X

2�

jf(
)j2(1 + l(
))k <1 for all k � 0

9=; ;

where l : � ! R+ denotes the length function, is a dense and spectral invariant subalgebra of
C�r (�; �). In particular it is closed under the smooth functional calculus, and is known as the
algebra of rapidly decreasing L2 functions on �. By a theorem of [Bost], the inclusion map
R(�; �) � C�r (�; �) induces an isomorphism

Kj(R(�; �)) �= Kj(C
�
r (�; �)); j = 0; 1:(8)

The desired pairing is the one obtained from the canonical pairing ofK0(R(�; �)) with [c] 2 H
2(�)

using the canonical isomorphism. Therefore one has the equality

h[c]; ��1� [P ]i = h[trc]; [P ]i

for any [P ] 2 K0(R(�; �)) �= K0(C
�
r (�; �)). Using the previous corollary, one has

Theorem 3.3 (Range of the higher trace on K-theory). Let c be the area 2-cocycle on �. Then
c is known to be a bounded 2-cocycle, and one has

h[trc]; [P ]i = �(rank E0 � rank E1) 2 �Z;

where �� = 2(1 � g) + (� � n) 2 Q is the orbifold Euler characteristic of �(g; �1; : : : ; �n) and
� =

Pn
j=1 1=�j. Here [P ] 2 K0(R(�; �)) �= K0(C

�
r (�; �)), and E

0; E1 are orbifold vector bundles

over �(g; �1; : : : ; �n) such that

��1� ([P ]) = [E0]� [E1] 2 K0
orb(�(g; �1; : : : ; �n)):

In particular, the range of the the higher trace on K-theory is

[trc](K0(C
�(�; �))) = �Z :

Note that � is in general only a rational number and we will give examples to show that this is
the case; however it is an integer whenever the orbifold is smooth, i.e. whenever 1 = �1 = : : : = �n,
which is the case considered in [CHMM]. We will apply this result in the next section to compute
the range of values the Hall conductance in the quantum Hall e�ect on the hyperbolic plane, for
orbifold fundamental groups, extending the results in [CHMM].

In the last section we provide a list of speci�c examples where fractional values are achieved,
and discuss the physical signi�cance of our model.
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4. The Area cocycle, the hyperbolic Connes-Kubo formula and the Quantum

Hall Effect

In this section, we adapt and generalize the discrete model of the quantum Hall e�ect of
Bellissard and his collaborators [Bel+E+S] and also [CHMM], to the case of general cocompact
Fuchsian groups and orbifolds, which can be viewed equivalently as the generalization to the
equivariant context. We will �rst derive the discrete analogue of the hyperbolic Connes-Kubo
formula for the Hall conductance 2-cocycle, which was derived in the continuous case in [CHMM].
We then relate it to the Area 2-cocycle on the twisted group algebra of the discrete Fuchsian
group, and we show that these de�ne the same cyclic cohomology class. This enables us to use
the results of the previous section to show that the Hall conductance has plateaux at all energy
levels belonging to any gap in the spectrum of the Hamiltonian, where it is now shown to be
equal to an integral multiple of a fractional valued topological invariant, namely the orbifold
Euler characteristic. The presence of denominators is caused by the presence of cone points
singularities and by the hyperbolic geometry on the complement of these cone points. Moreover
the set of possible denominators is �nite and has been explicitly determined in the next section,
and the results compared to the experimental data. It is plausible that this might shed light on
the mathematical mechanism responsible for fractional quantum numbers in the quantum Hall
e�ect.

We consider the Cayley graph of the Fuchsian group � of signature (g; �1; : : : ; �n), which acts
freely on the complement of a countable set of points in the hyperbolic plane. The Cayley graph
embeds in the hyperbolic plane as follows. Fix a base point u 2 H such that the stabilizer (or
isotropy subgroup) at u is trivial and consider the orbit of the � action through u. This gives the
vertices of the graph. The edges of the graph are geodesics constructed as follows. Each element
of the group � may be written as a word of minimal length in the generators of � and their
inverses. Each generator and its inverse determine a unique geodesic emanating from a vertex x
and these geodesics form the edges of the graph. Thus each word x in the generators determines
a piecewise geodesic path from u to x.

Recall that the area cocycle c of the Fuchsian group � is a canonically de�ned 2-cocycle on �
that is de�ned as follows. Firstly, recall that there is a well known area 2-cocycle on PSL(2;R),
cf. [Co2], de�ned as follows: PSL(2;R) acts on H such that H �= PSL(2;R)=SO(2). Then
c(
1; 
2) = Area(�(o; 
1:o; 
2

�1:o)) 2 R , where o denotes an origin in H and Area(�(a; b; c))
denotes the hyperbolic area of the geodesic triangle in H with vertices at a; b; c 2 H . Then the
restriction of c to the subgroup � is the area cocycle c of �.

This area cocycle de�nes in a canonical way a cyclic 2-cocycle trc on the group algebra C (�; �)
as follows;

trc(a0; a1; a2) =
X


0
1
2=1

a0(
0)a1(
1)a2(
2)c(
1; 
2)�(
1; 
2)

We will now describe the hyperbolic Connes-Kubo formula for the Hall conductance in the
Quantum Hall E�ect. Let 
j denote the (diagonal) operator on `

2(�) de�ned by


jf(
) = 
j(
)f(
) 8f 2 `2(�) 8
 2 �
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where


j(
) =

Z 
:o

o

�j j = 1; : : : ; 2g

and where

f�jgj=1;::: ;2g = fajgj=1;::: ;g [ fbjgj=1;::: ;g(9)

is a collection of harmonic V -forms on the orbifold �(g; �1; : : : ; �n), generating H
1(�g;R) = R

2g,
cf. [Kaw2] pg.78-83. These correspond to harmonic G-invariant forms on �g0 and to harmonic
�-invariant forms on H .

Notice that we can write equivalently


j(
) = cj(
);

where the group cocycles cj form a symplectic basis forH1(�;Z) = Z2g, with generators f�jgj=1;::: ;2g,
as in (9) and can be de�ned as the integration on loops on the Riemann surface of genus g un-
derlying the orbifold �(g; �1; : : : ; �n),

cj(
) =

Z



�j :

For j = 1; : : : ; 2g, de�ne the derivations �j on R(�; �) as being the commutators �ja = [
j; a].
A simple calculation shows that

�ja(
) = 
j(
)a(
) 8a 2 R(�; �) 8
 2 �:

Thus, we can view this as the following general construction. Given a 1-cocycle a on the discrete
group �, i.e.

a(
1
2) = a(
1) + a(
2) 8
1; 
2 2 �

one can de�ne a derivation �a on the twisted group algebra C (�; �)

�a(f)(
) = a(
)f(
):

Then we verify that

�a(fg)(
) = a(
)fg(
)

= a(
)
X


=
1
2

f(
1)g(
2)�(
1; 
2)

=
X


=
1
2

�
a(
1) + a(
2)

�
f(
1)g(
2)�(
1; 
2)

=
X


=
1
2

�
�a(f)(
1)g(
2)�(
1; 
2) + f(
1)�a(g)(
2)�(
1; 
2)

�
= (�a(f)g)(
) + (f�ag)(
):

As determined in section 1, the �rst cohomology of the group � = �(g; �1; : : : ; �n) is a free
Abelian group of rank 2g. It is in fact a symplectic vector space over Z, and assume that
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aj ; bj ; j = 1; : : : g is a symplectic basis of H1(�;Z), as in (9). We denote �aj by �j and �bj by �j+g.

Then these derivations give rise to cyclic 2-cocycle on the twisted group algebra C (�; �),

trK(f0; f1; f2) =

gX
j=1

tr(f0(�j(f1)�j+g(f2)� �j+g(f1)�j(f2)))

trK is called the Connes-Kubo Hall conductance cyclic 2-cocycle.

In terms of the 
j, note that we have the simple estimate

j
j(
)j � jjaj jj(1)d(
:o; o)

where d(
:o; o) and the distance d�(
; 1) in the word metric on the group � are equivalent. This
then yields the estimate

j�ja(
)j � CNd�(
; 1)
�N 8N 2 N

i.e �ja 2 R(�; �) 8a 2 R(�; �). Note that since 8
; 
0 2 �, the di�erence 
j(


0) � 
j(


0) is a
constant independent of 
0, we see that �-equivariance is preserved. For j = 1; : : : ; 2g, de�ne the
cyclic 2-cocycles

trKj (a0; a1; a2) = tr(a0(�ja1�j+ga2 � �j+ga1�ja2)):

These compute the Hall conductance for currents in the (j + g)th direction which are induced
by electric �elds in the jth direction, as can be shown using the quantum adiabatic theorem of
Avron-Seiler-Ya�e [Av+S+Y ] just as in section 6 of [CHMM], in the continuous model. Then
the hyperbolic Connes-Kubo formula for the Hall conductance is the cyclic 2-cocycle given by the
sum

trK(a0; a1; a2) =

gX
j=1

trKj (a0; a1; a2):

Theorem 4.1 (The Comparison Theorem).

[trK ] = [trc] 2 HC
2(R(�; �))

Proof: Our aim is now to compare the two cyclic 2-cocycles and to prove that they di�er by a
coboundary i.e.

trK(a0; a1; a2)� trc(a0; a1; a2) = b�(a0; a1; a2)

for some cyclic 1-cochain � and where b is the cyclic coboundary operator. The key to this theorem
is a geometric interpretation of the hyperbolic Connes-Kubo formula.

We begin with some calculations, to enable us to make this comparison of the cyclic 2-cocycles.

trK(a0; a1; a2) =

gX
j=1

X

0
1
2=1

a0(
0) (�ja1(
1)�j+ga2(
2)� �j+ga1(
1)�ja2(
2)) �(
0; 
1)�(
0
1; 
2)

=

gX
j=1

X

0
1
2=1

a0(
0)a1(
1)a2(
2) (
j(
1)
j+g(
2)� 
j+g(
1)
j(
2)) �(
1; 
2)
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since by the cocycle identity for multipliers, one has

�(
0; 
1)�(
0
1; 
2) = �(
0; 
1
2)�(
1; 
2)

= �(
0; 

�1
0 )�(
1; 
2) since 
0
1
2 = 1

= �(
1; 
2) since �(
0; 

�1
0 ) = 1:

So we are now in a position to compare the two cyclic 2-cocycles. De�ne 	j(
1; 
2) = 
j(
1)
j+g(
2)�

j+g(
1)
j(
2).

Let � : H ! R2g denote the Abel-Jacobi map

� : x 7!

�Z x

o

a1;

Z x

o

b1; : : : ;

Z x

o

ag;

Z x

o

bg

�
;

where

Z x

o

means integration along the unique geodesic in H connecting o to x. The origin o is

chosen so that it satis�es �:o �= �. The map � is a symplectic map, that is, if ! and !J are the
respective symplectic 2-forms, then one has ��(!J) = !. One then has the following geometric
lemma.

Lemma 4.2.
gX

j=1

	j(
1; 
2) =

Z
�E(
1;
2)

!J

where �E(
1; 
2) denotes the Euclidean triangle with vertices at �(o);�(
1:o) and �(
2:o), and
!J denotes the 
at K�ahler 2-form on the Jacobi variety. That is,

Pg
j=1	j(
1; 
2) is equal to the

Euclidean area of the Euclidean triangle �E(
1; 
2).

Proof. We need to consider the expression
gX

j=1

	j(
1; 
2) =

gX
j=1


j(
1)
j+g(
2)� 
j+g(
1)
j(
2):

Let s denote the symplectic form on R2g given by:

s(u; v) =

gX
j=1

(ujvj+g � uj+gvj):

The so-called `symplectic area' of a triangle with vertices �(o) = 0;�(
1:o);�(
2:o) may be seen to
be s(�(
1:o);�(
2:o)). To appreciate this, however, we need to use an argument from [GH], pages
333-336. In terms of the standard basis of R2g (given in this case by vertices in the integer period
lattice arising from our choice of basis of harmonic one forms) and corresponding coordinates
u1; u2; : : : u2g the form s is the two form on R2g given by

!J =

gX
j=1

duj ^ duj+g:

Now the `symplectic area' of a triangle in R2g with vertices �(o) = 0;�(
1:o);�(
2:o) is given by in-
tegrating !J over the triangle and a brief calculation reveals that this yields s(�(
1:o);�(
2:o))=2,
proving the lemma.
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We also observe that since ! = ��!J , one has

c(
1; 
2) =

Z
�(
1;
2)

! =

Z
�(�(
1;
2))

!J

Therefore the di�erence
gX

j=1

	j(
1; 
2)� c(
1; 
2) =

Z
�E(
1;
2)

!J �

Z
�(�(
1;
2))

!J

=

Z
@�E(
1;
2)

�J �

Z
@�(�(
1;
2))

�J

where �J is a 1-form on the universal cover of the Jacobi variety such that d�J = !J . Therefore
one has

gX
j=1

	j(
1; 
2)� c(
1; 
2) = h(1; 
1)� h(
�11 ; 
2) + h(
�12 ; 1)

where h(
�11 ; 
2) =
R
�(`(
1;
2))

�J �
R
m(
1;
2)

�J , where `(
1; 
2) denotes the unique geodesic in

H joining 
1:o and 
2:o and m(
1; 
2) is the straight line in the Jacobi variety joining the points

�(
1:o) and �(
2:o). Since we can also write h(
�11 ; 
2) =
R
D(
1;
2)

!J , where D(
1; 
2) is a disk

in the Jacobi variety with boundary �(`(
1; 
2)) [m(
1; 
2), we see that h is �-invariant.

We now de�ne the cyclic 1-cochain � on R(�; �) as

�(a0; a1) = tr((a0)ha1) =
X


0
1=1

h(1; 
1)a0(
0)a1(
1)�(
0; �1)

where (a0)h is the operator on `2(�) whose matrix in the canonical basis is h(
1; 
2)a0(
1

�1
2 ).

Firstly, one has by de�nition

b�(a0; a1; a2) = �(a0a1; a2)� �(a0; a1a2) + �(a2a0; a1)

We compute each of the terms seperately

�(a0a1; a2) =
X


0
1
2=1

h(1; 
2)a0(
0)a1(
1)a2(
2)�(
1; 
2)

�(a0; a1a2) =
X


0
1
2=1

h(1; 
1
2)a0(
0)a1(
1)a2(
2)�(
1; 
2)

�(a2a0; a1) =
X


0
1
2=1

h(1; 
1)a0(
0)a1(
1)a2(
2)�(
1; 
2)

Now by �-equivariance, h(1; 
1
2) = h(
�11 ; 
2) and h(1; 
2) = h(
�12 ; 1). Therefore one has

b�(a0; a1; a2) =X

0
1
2=1

a0(
0)a1(
1)a2(
2)
�
h(
�12 ; 1)� h(
�11 ; 
2) + h(1; 
1)

�
�(
1; 
2)

Using the formula above, we see that

b�(a0; a1; a2) = trK(a0; a1; a2)� trc(a0; a1; a2):
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It follows from Connes pairing theory of cyclic cohomology and K-theory [Co2], by the range
of the higher trace Theorem 3.3 and by the Comparison Theorem 4.1 above that

Corollary 4.3 (Rationality of conductance). The Connes-Kubo Hall conductance cocycle trK is

rational. More precisely, one has

trK(P; P; P ) = trc(P; P; P ) 2 �Z

for all projections P 2 R(�; �), where �� = 2(1 � g) + (� � n) 2 Q is the orbifold Euler

characteristic of �(g; �1; : : : ; �n).

Finally, suppose that we are given a very thin sample of pure metal, with electrons situated
along the Cayley graph of �, and a very strong magnetic �eld which is uniform and normal in
direction to the sample. Then at very low temperatures, close to absolute zero, quantummechanics
dominates and the discrete model that is considered here is a model of electrons moving on the
Cayley graph of � which is embedded in the sample. The associated discrete Hamiltonian H� for
the electron in the magnetic �eld is given by the Random Walk operator in the projective (�; �)
regular representation on the Cayley graph of the group �. It is also known as the generalized
Harper operator and was �rst studied in this generalized context in [Sun], see also [CHMM]. We
will see that the Hamiltonian that we consider is in a natural way the sum of a free Hamiltonian
and a term that models the Coulomb interaction. We also add a restricted class of potential terms
to the Hamiltonian in our model.

Because the charge carriers are Fermions, two di�erent charge carriers must occupy di�erent
quantum eigenstates of the Hamiltonian. In the limit of zero temperature they minimize the
energy and occupy eigenstates with energy lower that a given one, called the Fermi level and
denoted E. Let PE denote denote the corresponding spectral projection of the Hamiltonian.
If E is not in the spectrum of the Hamiltonian, then then PE 2 R(�; �) and the hyperbolic
Connes-Kubo formula for the Hall conductance �E at the energy level E is de�ned as follows;

�E = trK(PE ; PE ; PE):

As mentioned earlier, it measures the sum of the contributions to the Hall conductance at the
energy level E for currents in the (j+g)th direction which are induced by electric �elds in the jth
direction, cf. section 6 [CHMM]. By Corollary 4.3, one knows that the Hall conductance takes on
values in �Z whenever the energy level E lies in a gap in the spectrum of the Hamiltonian H�.
In fact we notice that the Hall conductance is a constant function of the energy level E for all
values of E in the same gap in the spectrum of the Hamiltonian. That is, the Hall conductance
has plateaux which are integer multiples of the fraction � on the gap in the spectrum of the
Hamiltonian.

We now give some details. Recall the left �-regular representation

(U(
)f)(
0) = f(
�1
0)�(
0; 
�1
0)

8f 2 `2(�) and 8
; 
0 2 �. It has the property that

U(
)U(
0) = �(
; 
0)U(

0)
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Let S = fAj ; Bj ; A
�1
j ; B�1j ; Ci; C

�1
i : j = 1; : : : ; g; i = 1; : : : ; ng be a symmetric set of genera-

tors for �. Then the Hamiltonian is explicitly given as

H� : `
2(�)! `2(�)

H� =
X

2S

U(
)

and is clearly by de�nition a bounded self adjoint operator. Notice that the Hamiltonian can
be decomposed as a sum of a free Hamiltonian containing the torsionfree generators and a term
simulating Coulomb interactions, that contains the torsion generators.

H� = Hfree
� +Hinteraction

�

where

Hfree
� =

gX
j=0

U(Aj) + U(Bj) + (U(Aj) + U(Bj))
�

and

Hinteraction
� =

nX
i=1

U(Ci) + U(Ci)
�:

Let V 2 C (�; �) be any "potential", and

H�;V = H� + V:

Lemma 4.4. If E 62 spec(H�;V ), then PE 2 R(�; �), where PE = �[0;E](H�;V ) is the spectral

projection of the Hamiltonian to energy levels less than or equal to E.

Proof. Since E 62 spec(H�;V ), then PE = �[0;E](H�;V ) = '(H�;V ) for some smooth, compactly

supported function '. Now by de�nition, H� 2 C (�; �) � R(�; �), and since R(�; �) is closed
under the smooth functional calculus by the result of [Ji], it follows that PE 2 R(�; �).

Therefore by Corollary 4.3 and the discussion following it, we have,

Theorem 4.5 (Fractional Quantum Hall E�ect). Suppose that the Fermi energy level E lies in

a gap of the spectrum of the Hamiltonian H�;V , then the Hall conductance

�E = trK(PE ; PE ; PE) = trc(PE ; PE ; PE) 2 �Z

That is, the Hall conductance has plateaux which are integer multiples of � on any gap in the

spectrum of the Hamiltonian, where �� = 2(1�g)+(��n) 2 Q is the orbifold Euler characteristic

of �(g; �1; : : : ; �n).

Remarks 4.6. The set of possible denominators � for low genus coverings can be derived easily
from the results of [Bro] and is reproduced in the second table in the next section. It is plausible
that this Theorem might shed light on the mathematical mechanism responsible for fractional
quantum numbers that occur in the Quantum Hall E�ect, as we attempt to explain in the following
section.
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5. Fractional quantum numbers: phenomenology

We �rst discuss the characteristics of our model explaining the appearance of fractional quan-
tum numbers in the quantum Hall e�ect. In particular, we point out the main advantages and
limitations of the model.

Our model is a single electron model. It is well known that the FQHE is a consequence of the
Coulomb interaction between electrons, hence it should not be seen by a single particle model.
However, in our setting, the negative curvature of the hyperbolic structure provides a geometric
replacement for interaction. The equivalence between negative curvature and interaction is well
known from the case of classical mechanics where the Jacobi equation for a single particle moving
on a negatively curved manifold can be interpreted as the Newton equation for a particle moving
in the presence of a negative potential energy [Arn].

The main advantage of this setting is that the fractions derived in this way are topological.
In fact, they are obtained from an equivariant index theorem. Moreover, they are completely
determined by the geometry of the orbifold. In fact, we have

� = ��orb(�(g; �1; : : : ; �n)):

Let us recall that the orbifold Euler characteristic �orb(�) of an orbifold �, is a rational valued
invariant that is completely speci�ed by the following properties, cf. [Tan]:

1. it is multiplicative under orbifold covers;
2. it coincides with the topological Euler characteristic in the case of a smooth surface;
3. it satis�es the volume formula,

�orb(�1 [ � � � [ �k) =

kX
j=1

�orb(�j)�
X
i;j

�orb(�i \ �j) + � � � (�1)k+1�orb(�1 \ � � � \ �k);

whenever all the intersections on the right hand side are suborbifolds of �1[ � � � [�k, and
all the �j are orbifolds of the same dimension.

This characterization allows for ease of computation and prediction of expected fractions.

Most notably, as pointed out in [Bel+E+S], the topological nature of the Hall conductance
makes it stable under small deformations of the Hamiltonian. Thus, this model can be easily
generalized to systems with disorder, cf. [CHM]. This is a necessary step in order to establish
the presence of plateaux [Bel+E+S].

The identi�cations of fractions with integer multiples of the orbifold Euler characteristic imposes
some restrictions on the range of possible fractions from the geometry of the orbifolds. For
instance, it is known from the Hurwitz theorem that the maximal order of a �nite group acting
by isometries on a smooth Riemann surface �g0 is #(G) = 84(g0 � 1). Moreover, this maximal
order is always attained. Thus, the smallest possible fraction that appears in our model is � =
2(g0�1)
84(g0�1) = 1=42.
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This is, in some respects, an advantage of the model, in as it gives very clear prediction on
which fractions can occur, and at the same time its main limitation, in as we do not get a complete
agreement between the set of fractions we obtain and the fractions that are actually observed in
experiments on the FQHE.

In order to compare our predictions with experimental data, we restrict our attention to orb-
ifolds with a torus or a sphere as underlying topological surface. Recall that, as explained above,
we think of the hyperbolic structure induced by the presence of cone points on these surfaces as a
geometric way of introducting interaction in this single electron model, hence we would consider
equivalently the underlying surface with many interacting electrons (fractions observed in FQHE
experiments) or as a hyperbolic surface with one electron.

We report a table of comparison between the values obtained experimentally and our predic-
tion. Notice how the fraction 5=2 which appears in the experimental values and caused major
problems of interpretation in the many-particle models appears here naturally as the orbifold
Euler characteristic of �(1; 6; 6; 6) (which we may as well refer to as the Devil's orbifold).

experimental g = 1 or g = 0

5=3 �(1; 6; 6)

4=3 �(1; 3; 3)

7=5 �(0; 5; 5; 10; 10)

4=5 �(1; 5)

5=7 �(0; 7; 14; 14)

2=3 �(1; 3)

3=5 �(0; 5; 10; 10)

4=7 �(0; 7; 7; 7)

5=9 ???

4=9 �(0; 3; 9; 9)

3=7 ???

2=5 �(0; 5; 5; 5)

1=3 �(0; 3; 6; 6)

5=2 �(1; 6; 6; 6)

Despite the small number of discrepancies in the table above, the agreement between values
of orbifold Euler characteristics and experimentally observed fractions in the quantum Hall e�ect
is far from being satisfactory. In particular, not only there is a small number of observed values
which are not orbifold Euler characteristics, but there are also many rational numbers that are
realized as orbifold Euler characteristics, which do not seem to appear among the experimental
data. For instance, by looking at the values of the next table, reported also in �gure 1, we see
clearly that we have some fractions with even denominator, such as 1=4, 1=2, and 1=6, which do
not correspond to experimental values. As pointed out in the introduction, the reason for this
discrepancy is that a more sophisticated model for the Coulomb interaction is needed in general.

In the remaining of this section, we discuss some phenomenology, with particular emphasis on
the nature of the cone points and the role of the minimal genus of the covering surface �g0 . We
hope to return to these topics in some future work.
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Every orbifold �(g; �1; : : : ; �n) is obtained as a quotient of a surface �g0 with respect to the
action of a �nite group G, cf. [Sc]. In general both g0 and G are not unique. For instance, the
orbifold �(1; 2; 2) is obtained as the quotient of �2 by the action of Z2, or as the quotient of �3
by the action of Z4, or by the action of Z2�Z2, cf. [Bro]. For every �(g; �1; : : : ; �n) there is a
minimal g0 such that the orbifold is obtained as a quotient of �g0 by a �nite group action. In
[Bro], Broughton has derived a complete list of all the good two dimensional orbifolds which are
quotients of Riemann surfaces �g0 with genus g0 = 2 or 3.

In a physical model one can distinguish between two types of disorder: a mobility disorder
and a sample disorder, cf. [Bel+E+S]. We can argue phenomenologically that, if an orbifold
can be realized by a covering of low genus, this corresponds to a lower density of atoms in the
sample, as opposed to the case of a surface of high genus, as one can see by looking at the Cayley
graph of �g0 . Thus, we can consider the minimal genus of the smooth coverings as a measure of
mobility. This means that, in an experiment, the fractions derived from orbifolds with low genus
coverings will be easier to observe (have more clearly marked plateaux) than fractions which are
only realized by quotients of surfaces of higher genus.

Thus, we can consider the list of examples given in [Bro] and compute the corresponding
fractions. We list the result in the following table.

� g0 = 2 g0 = 3

4=3 �(0; 3; 3; 3; 3; 3) �(1; 3; 3)

2=3 �(0; 3; 3; 3; 3) �(0; 2; 2; 6; 6) �(0; 2; 3; 3; 6) �(0; 2; 2; 2; 2; 3) �(1; 3)

4=7 �(0; 7; 7; 7)

1=2 �(0; 2; 2; 4; 4)� �(0; 2; 2; 2; 2; 2)� �(0; 4; 8; 8) �(1; 2)

4=9 �(0; 3; 9; 9)

2=5 �(0; 5; 5; 5)

1=3 �(0; 3; 6; 6) �(0; 2; 2; 3; 3)� �(0; 2; 12; 12) �(0; 3; 4; 12) �(0; 4; 4; 6) �(0; 2; 2; 2; 6)

1=4 �(0; 2; 8; 8)� �(0; 4; 4; 4)� �(0; 2; 2; 2; 4)�

1=5 �(0; 2; 5; 10)

4=21 �(0; 3; 7; 7)

1=6 �(0; 3; 4; 4)� �(0; 2; 6; 6)� �(0; 2; 2; 2; 3)� �(0; 2; 4; 12) �(0; 3; 3; 6)

1=8 �(0; 2; 4; 8)�

1=12 �(0; 2; 4; 6)� �(0; 3; 3; 4)�

1=24 �(0; 2; 3; 8)�

1=42 �(0; 2; 3; 7)

In the table the orbifolds that are markes with a � can be realized both as quotient of �2
and of �3. It seems also reasonable to think that if the same fraction is realized by several
di�erent orbifolds, for �xed g0, then the corresponding plateau will be more clearly marked in the
experiment. This would make � = 1=3 the most clearly pronounced plateau, which is in agreement
with the experimental data. However, higher genus corrections are not always negligible. In fact,
by only considering genus g0 = 2 and g0 = 3 contributions, we would expect a more marked
plateau for the fraction � = 2=3 than for the fraction � = 2=5, and the experimental results show
that this is not the case. It seems important to observe that this model produces equally easily
examples of fractions with odd or even denominators (e.g. � = 1=4 appears in the table above).
It is interesting to compare this datum with the di�culty encountered within other models in
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explaining the appearance of the fraction 5=2 in the experiments. Its presence is only justi�ed by
introducing a di�erent physical model (the so called non-abelian statistics). In �gure 1 we sketch
the plateaux as they would appear in the result of an experiment, using only the low genus g0 = 2
and g0 = 3 approximation.

2/54/211/81/24
4/32/34/71/24/91/31/41/51/61/121/42

Figure 1. Phenomenology of fractions in the low genus approximation

As we already mentioned in the introduction, both the hyperbolic structure and the cone points
are essential in order to have fractional quantum numbers. In fact, � is an integer whenever the
hyperbolic orbifold is smooth, i.e. whenever 1 = �1 = : : : = �n, which is the case considered in
[CHMM]. On the other hand, by direct inspection, it is possible to see that all euclidean orbifolds
also produce only integer values of �. (Notice that sometimes hyperbolic orbifolds with cone
points may still produce integers: the orbifold �(1; 2; 2) has � = 1, cf. [Bro].) Models of FQHE
on euclidean orbifolds have been considered, in a di�erent, string-theoretic context, e.g. [Sk-Th].

We can argue that the cone points can also be thought of as a form of \disorder". In fact, we
may identify the preimage of the cone points in the universal covering H with sample disorder
(with respect to the points in the Cayley graph of �g0). The same fraction can often be obtained
by orbifolds with a varying number of cone points (for �xed g0), as illustrated in the previous
table. This can be rephrased by saying that the system allows for more or less sample disorder,
and in some cases this can be achieved without a�ecting the mobility measured by g0.
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Appendix

The main purpose of this appendix is to establish Lemma F, which is used in the paper. We
follow closely the approach in [BrSu]. We use the notation of the previous sections. Let A

be an operator on L2(fM; eS 
 E) with Schwartz kernel kA and also commuting with the given
(�; ��)-action. Then one has

ei�
(x)kA(
x; 
y) e
�i�
 (y) = kA(x; y) 8
 2 �;(10)

where we have identi�ed the �bre at x 2 fM with the �bre at 
x 2 fM . If kA is smooth, then one
can de�ne the von Neumann trace just as Atiyah did in the untwisted case,

tr (kA) =

Z
F
tr (kA(x; x)) dx;

where F denotes a fundamental domain for the action of � on fM and where tr denotes the
pointwise or local trace. The von Neumann trace is well de�ned, since as a consequence of (10),

tr(kA(x; x)) is a �-invariant function on fM . The following lemma establishes that it is a trace.

Lemma (A). Let A;B be operators on L2(fM; eS 
 E) with smooth Schwartz kernels and also

commuting with the given (�; ��)-action. Then one has

tr (AB) = tr (BA) :

Proof. Let kA; kB denote the smooth Schwartz kernels of A;B respectively, and kAB ; kBA denote
the smooth Schwartz kernels of AB;BA respectively. Then one has

tr (AB �BA) =

Z
x2F

tr (kAB(x; y)� kBA(x; y))

=

Z
x2F

Z
y2fM

tr (kA(x; y)kB(y; x)� kB(x; y)kA(y; x))

=
X

2�

Z
x2F

Z
y2F

tr (kA(x; 
y)kB(
y; x)� kB(x; 
y)kA(
y; x))

= 0

since each term in the summand vanishes by symmetry, and we have used the fact that the
fundamental domain F is compact in order to interchange the order of the summation and integral.

We will also adopt a more operator theoretic approach. Let H = L2(F ; eS 
 EjF ). Then � :

L2(fM; eS 
E) �=
! `2(�;H) is given by (�s)(
) = RF (T
s) 8
 2 �, where RF : L2(fM; eS 
E)!H

denotes the restriction map to the fundamental domain F .

As in section 1, let W �(�) denote the commutant, i.e.

W �(�) =
�
A 2 `2(�;H) : [T
 ; A] = 0 8
 2 �

	
Then one has the following simple lemma,

Lemma (B). W �(�) is a semi�nite von Neumann algebra.
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Proof. We need to show that W �(�) is a �-algebra which is weakly closed. We will establish that
it is has a semi�nite trace a bit later on.

Let A;B 2 W �(�). Since [T
 ; AB] = [T
 ; A]B + A[T
 ; B], it follows that AB 2 W �(�). Since
[T
 ; A] = �[T �
 ; A

�] = �[T
�1 ; A
�] it follows A� 2 W �(�). Clearly the identity operator is in

W �(�). Finally, if An 2 W �(�) 8n 2 N and An converges weakly to A, it follows that for all

 2 �, T
An converges weakly to T
A and also to AT
 . By uniqueness of weak limits, we deduce
that A 2W �(�).

For A 2W �(�), de�ne its generalized Fourier coe�cients bA(
) 2 B(H) asbA(
)v = T
(A�
v
1)(1)

where �v1 2 `
2(�;H) is de�ned for all v 2 H as

�v1(
) =

(
v if 
 = 1;

0 otherwise:

Since T
�
v
1(


0) = �v1(

0
)�(
0; 
), one has

T
�
v
1(


0) =

(
v if 
0 = 
�1;

0 otherwise;

since �(
�1; 
) = 1 8
 2 �. In particular, it follows that for all f 2 `2(�;H), one has

f(
) =
X


1
2=


T
1�
f(
2)
1

so that one has the following Fourier expansion

Af(
) =
X


1
2=


AT
1�
f(
2)
1 =

X

1
2=


T
1A�
f(
2)
1

=
X


1
2=


bA(
1)(f(
2)):
The following elementary properties are satis�ed by the Fourier coe�cients.

Lemma (C). For A;B 2W �(�) and for all 
 2 �, for all f 2 `2(�;H), one has

(1) Af(
) =
X


1
2=


bA(
1)(f(
2));
(2) bA�(
) = ( bA(
�1))�;
(3) dAB(
) = X


1
2=


bA(
1) bB(
2);
(4) dAA�(1) =X




bA(
) bA(
);
(5) jjAjj �

X



jj bA(
)jj;
(6) \A�B(
) = bA(
)� bB(
).
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Proof. The proof follows by straightforward calculations as done above. The reader is warned
that the righthand side of the inequality in part (5) is not necessarily �nite.

De�ne Co(�;K) to be the set of all A 2 W �(�) such that bA(
) 2 K 8
 2 �, and bA(
) = 0 for
all but �nitely many 
 2 �. Then the completion of Co(�;K) with respect to the operator norm is
denoted, as in section 1 of [MM], by C�r (�; �)
K, and called the twisted crossed product algebra
associated to the twisted action (�; �). Then one has the following useful containment criterion,

Lemma (D). If A 2W �(�) and also satis�es
X



jj bA(
)jj <1; then A 2 C�r (�; �) 
K.

If A 2 W �(�) and also satis�es
X



d(
; 1)k jj bA(
)jj < 1; for all positive integers k, then

A 2 R(�; �).

Proof. Let K1 � K2 � � � � be a sequence of �nite subsets of � which is an exhaustion of �, i.e.S
j�1Kj = �. For all j 2 N, de�ne Aj 2W

�(�) by

cAj(
) =

( bA(
) if 
 2 Kj ;

0 otherwise:

Then in fact Aj 2 Co(�;K) by de�nition, and using the previous lemma, we have

jjA�Aj jj �
X



jj\A�Aj(
)jj

=
X



jj bA(
)�cAj(
)jj

=
X


2�nKj

jj bA(
)jj:
By hypothesis,

X



jj bA(
)jj <1, therefore
X


2�nKj

jj bA(
)jj ! 0 as j !1, sinceKj is an increasing

exhaustion of �. This proves that A 2 C�r (�; �) 
K.

The second part is clear from the de�nition, once we identify R with the algebra of sequences(
(a
)
2�

��� sup

2�

d(
; 1)k ja
 j <1 8k 2 N

)
:

The following o�-diagonal estimate is well known, cf. [BrSu].

Lemma (E). Let D = e6 @+E 
rs be a twisted Dirac operator. Then the Schwartz kernel k(t; x; y)

of the heat operator e�tD
�D is smooth 8t > 0. It also satis�es the following o�-diagonal estimate

jk(t; x; y)j � C1t
�n=2e�C2d(x;y)

2=t
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uniformly in (0; T ] � fM � fM for any T > 0, where d denotes the Riemannian distance function

on fM . The same result is true for the the Schwartz kernel of the heat operator e�tDD
�
.

Lemma (F). Let D = e6 @+E 
rs be a twisted Dirac operator. Then e�tD
�D; e�tDD

�
2 R(�; �) �

C�r (�; �)
K 8t > 0.

Proof. By the Lemma above, it follows that e�tD
�D; e�tDD

�
are bounded operators commuting

with the given twisted action, i.e. e�tD
�D; e�tDD

�
2 W �(�;H). Since the Schwartz kernels of

\e�tD�D(
); \e�tDD�
(
) are smooth 8
 2 � by the Lemma above, it follows that \e�tD�D(
); \e�tDD�

(
) 2
K 8
 2 �. Let d� denote the word metric with respect to a given �nite set of generators, and d

the Riemannian metric on fM . Then it is well known that

d�(
1; 
2) � C3( inf
x;y2fM

d(
1x; 
2y) + 1)

for some positive constant C3. By the Lemma 5 above, one has,

jj\e�tD�D(
)jj � C4e
�C5d�(
;1)2

for some positive constants C4; C5, and a similar estimate holds for \e�tDD�
(
). Setting r(
) =

d�(
; 1) observe that one has the estimate

# f
 2 � j r(
) � Rg � C6e
C7R

for some positive constants C6; C7, since the volume growth rate of � is at most exponential.
Therefore one hasX




d(
; 1)k jj\e�tD�D(
)jj <1 and
X



d(
; 1)kjj\e�tDD8
(
)jj <1

for all positive integers k. By the Lemma above, it follows that e�tD
�D; e�tDD

�
2 R(�; �) �

C�r (�; �)
K 8t > 0.
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