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2.1 Introduction

We give here a comprehensive treatment of the mathematical theory of per-
turbative renormalization (in the minimal subtraction scheme with dimensional
regularization), in the framework of the Riemann–Hilbert correspondence and
motivic Galois theory. We give a detailed overview of the work of Connes–
Kreimer [31], [32]. We also cover some background material on affine group
schemes, Tannakian categories, the Riemann–Hilbert problem in the regular
singular and irregular case, and a brief introduction to motives and motivic Ga-
lois theory. We then give a complete account of our results on renormalization
and motivic Galois theory announced in [35].

Our main goal is to show how the divergences of quantum field theory, which
may at first appear as the undesired effect of a mathematically ill-formulated
theory, in fact reveal the presence of a very rich deeper mathematical structure,
which manifests itself through the action of a hidden “cosmic Galois group”1,
which is of an arithmetic nature, related to motivic Galois theory.

Historically, perturbative renormalization has always appeared as one of the
most elaborate recipes created by modern physics, capable of producing numer-
ical quantities of great physical relevance out of a priori meaningless mathe-
matical expressions. In this respect, it is fascinating for mathematicians and
physicists alike. The depth of its origin in quantum field theory and the preci-
sion with which it is confirmed by experiments undoubtedly make it into one of
the jewels of modern theoretical physics.

For a mathematician in quest of “meaning” rather than heavy formalism, the
attempts to cast the perturbative renormalization technique in a conceptual
framework were so far falling short of accounting for the main computational
aspects, used for instance in QED. These have to do with the subtleties involved
in the subtraction of infinities in the evaluation of Feynman graphs and do not
fall under the range of “asymptotically free theories” for which constructive
quantum field theory can provide a mathematically satisfactory formulation.

The situation recently changed through the work of Connes–Kreimer ([29], [30],
[31], [32]), where the conceptual meaning of the detailed computational devices
used in perturbative renormalization is analysed. Their work shows that the
recursive procedure used by physicists is in fact identical to a mathematical
method of extraction of finite values known as the Birkhoff decomposition, ap-
plied to a loop γ(z) with values in a complex pro-unipotent Lie group G.

1The idea of a “cosmic Galois group” underlying perturbative renormalization was proposed
by Cartier in [15].
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Figure 2.1: Birkhoff Decomposition

This result, and the close relation between the Birkhoff factorization of loops and
the Riemann–Hilbert problem, suggested the existence of a geometric interpre-
tation of perturbative renormalization in terms of the Riemann–Hilbert corre-
spondence. Our main result in this paper is to identify explicitly the Riemann–
Hilbert correspondence underlying perturbative renormalization in the minimal
subtraction scheme with dimensional regularization.

Performing the Birkhoff (or Wiener-Hopf) decomposition of a loop γ(z) ∈ G
consists of describing it as a product

γ (z) = γ−(z)−1 γ+(z) z ∈ C , (2.1)

of boundary values of holomorphic maps (which we still denote by the same
symbol)

γ± : C± → G . (2.2)

defined on the connected components C± of the complement of the curve C in
the Riemann sphere P1(C).

The geometric meaning of this decomposition, for instance when G = GLn(C),
comes directly from the theory of holomorphic bundles with structure group G
on the Riemann sphere P1(C). The loop γ(z) describes the clutching data to
construct the bundle from its local trivialization and the Birkhoff decomposition
provides a global trivialization of this bundle. While in the case of GLn(C) the
existence of a Birkhoff decomposition may be obstructed by the non-triviality of
the bundle, in the case of a pro-unipotent complex Lie group G, as considered in
the CK theory of renormalization, it is always possible to obtain a factorization
(2.1).

In perturbative renormalization the points of P1(C) are “complex dimensions”,
among which the dimension D of the relevant space-time is a preferred point.
The little devil that conspires to make things interesting makes it impossible to
just evaluate the relevant physical observables at the point D, by letting them
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diverge precisely at that point. One can nevertheless encode all the evalua-
tions at points z 6= D in the form of a loop γ(z) with values in the group G.
The perturbative renormalization technique then acquires the following general
meaning: while γ(D) is meaningless, the physical quantities are in fact obtained
by evaluating γ+(D), where γ+ is the term that is holomorphic at D for the
Birkhoff decomposition relative to an infinitesimal circle with center D.

Thus, renormalization appears as a special case of a general principle of extrac-
tion of finite results from divergent expressions based on the Birkhoff decompo-
sition.

The nature of the group G involved in perturbative renormalization was clarified
in several steps in the work of Connes–Kreimer (CK). The first was Kreimer’s
discovery [79] of a Hopf algebra structure underlying the recursive formulae of
[7], [71], [111]. The resulting Hopf algebra of rooted trees depends on the phys-
ical theory T through the use of suitably decorated trees. The next important
ingredient was the similarity between the Hopf algebra of rooted trees of [79]
and the Hopf algebra governing the symmetry of transverse geometry in codi-
mension one of [39], which was observed already in [29]. The particular features
of a given physical theory were then better encoded by a Hopf algebra defined
in [31] directly in terms of Feynman graphs. This Hopf algebra of Feynman
graphs depends on the theory T by construction. It determines G as the asso-
ciated affine group scheme, which is referred to as diffeographisms of the theory,
G = Difg(T ). Through the Milnor-Moore theorem [92], the Hopf algebra of
Feynman graphs determines a Lie algebra, whose corresponding infinite dimen-
sional pro-unipotent Lie group is given by the complex points G(C) of the affine
group scheme of diffeographisms.

This group is related to the formal group of Taylor expansions of diffeomor-
phisms. It is this infinitesimal feature of the expansion that accounts for the
“perturbative” aspects inherent to the computations of Quantum Field Theory.
The next step in the CK theory of renormalization is the construction of an
action of Difg(T ) on the coupling constants of the physical theory, which shows
a close relation between Difg(T ) and the group of diffeomorphisms of the space
of Lagrangians.

In particular, this allows one to lift the renormalization group to a one parameter
subgroup of Difg, defined intrinsically from the independence of the term γ−(z)
in the Birkhoff decomposition from the choice of an additional mass scale µ. It
also shows that the polar expansions of the divergences are entirely determined
by their residues (a strong form of the ’t Hooft relations), through the scattering
formula of [32]

γ−(z) = lim
t→∞

e−t( β
z
+Z0) etZ0 . (2.3)

After a brief review of perturbative renormalization in QFT (§2.2), we give in
Sections 2.4, 2.5, 2.6, 2.10, and in part of Section 2.9, a detailed account of the
main results mentioned above of the CK theory of perturbative renormalization
and its formulation in terms of Birkhoff decomposition. This overview of the
work of Connes–Kreimer is partly based on an English translation of [24] [25].
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The starting point for our interpretation of renormalization as a Riemann–
Hilbert correspondence is presented in Sections 2.8 and 2.9. It consists of
rewriting the scattering formula (2.3) in terms of the time ordered exponen-
tial of physicists (also known as expansional in mathematical terminology), as

γ−(z) = Te− 1
z

R

∞

0
θ−t(β)dt, (2.4)

where θt is the one-parameter group of automorphisms implementing the grad-
ing by loop number on the Hopf algebra of Feynman graphs. We exploit the
more suggestive form (2.4) to clarify the relation between the Birkhoff decom-
position used in [31] and a form of the Riemann-Hilbert correspondence.

In general terms, as we recall briefly in Section 2.11, the Riemann–Hilbert corre-
spondence is an equivalence between a class of singular differential systems and
representation theoretic data. The classical example is that of regular singular
differential systems and their monodromy representation.

In our case, the geometric problem underlying perturbative renormalization
consists of the classification of “equisingular” G-valued flat connections on the
total space B of a principal Gm-bundle over an infinitesimal punctured disk ∆∗.
An equisingular connection is a Gm-invariant G-valued connection, singular on
the fiber over zero, and satisfying the following property: the equivalence class
of the singularity of the pullback of the connection by a section of the principal
Gm-bundle only depends on the value of the section at the origin.

The physical significance of this geometric setting is the following. The expres-
sion (2.4) in expansional form can be recognized as the solution of a differential
system

γ−1 dγ = ω. (2.5)

This identifies a class of connections naturally associated to the differential of
the regularized quantum field theory, viewed as a function of the complexified
dimension. The base ∆∗ is the space of complexified dimensions around the
critical dimension D. The fibers of the principal Gm-bundle B describe the
arbitrariness in the normalization of integration in complexified dimension z ∈
∆∗, in the Dim-Reg regularization procedure. The Gm-action corresponds to
the rescaling of the normalization factor of integration in complexified dimension
z, which can be described in terms of the scaling ~ ∂/∂~ on the expansion in
powers of ~. The group defining G-valued connections is G = Difg(T ). The
physics input that the counterterms are independent of the additional choice of
a unit of mass translates, in geometric terms, into the notion of equisingularity
for the connections associated to the differential systems (2.5).

On the other side of our Riemann–Hilbert correspondence, the representation
theoretic setting equivalent to the classification of equisingular flat connections
is provided by finite dimensional linear representations of a universal group U ∗,
unambiguously defined independently of the physical theory. Our main result
is the explicit description of U∗ as the semi-direct product by its grading of
the graded pro-unipotent Lie group U whose Lie algebra is the free graded Lie
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algebra
F(1, 2, 3, · · · )•

generated by elements e−n of degree n, n > 0. As an affine group scheme,
U∗ is identified uniquely via the formalism of Tannakian categories. Namely,
equisingular flat connections on finite dimensional vector bundles can be can be
organized into a Tannakian category with a natural fiber functor to the category
of vector spaces. This category is equivalent to the category of finite dimensional
representations of the affine group scheme U ∗. These main results are presented
in detail in Sections 2.12, 2.13, and 2.16.

This identifies a new level at which Hopf algebra structures enter the theory of
perturbative renormalization, after Kreimer’s Hopf algebra of rooted trees and
the CK Hopf algebra of Feynman graphs. Namely, the Hopf algebra associated
to the affine group scheme U∗ is universal with respect to the set of physical
theories. The “motivic Galois group” U acts on the set of dimensionless cou-
pling constants of physical theories, through the map U ∗ → Difg∗ to the group
of diffeographisms of a given theory, which in turns maps to formal diffeomor-
phisms as shown in [32]. Here Difg∗ is the semi-direct product of Difg by the
action of the grading θt, as in [32].

We then construct in Section 2.14 a specific universal singular frame on principal
U -bundles over B. We show that, when using in this frame the dimensional
regularization technique of QFT, all divergences disappear and one obtains a
finite theory which only depends upon the choice of a local trivialization for
the principal Gm-bundle B and produces the physical theory in the minimal
subtraction scheme.

The coefficients of the universal singular frame, written out in the expansional
form, are the same as those appearing in the local index formula of Connes–
Moscovici [38]. This leads to the very interesting question of the explicit relation
to noncommutative geometry and the local index formula.

In particular, the coefficients of the universal singular frame are rational num-
bers. This means that we can view equisingular flat connections on finite
dimensional vector bundles as endowed with arithmetic structure. Thus, the
Tannakian category of flat equisingular bundles can be defined over any field
of characteristic zero. Its properties are very reminiscent of the formalism of
mixed Tate motives (which we recall briefly in Section 2.15).

In fact, group schemes closely related to U ∗ appear in motivic Galois theory.
For instance, U∗ is abstractly (but non-canonically) isomorphic to the motivic
Galois group GMT

(O) ([47], [66]) of the scheme S4 = Spec(O) of 4-cyclotomic
integers, O = Z[i][ 12 ].

The existence of a universal pro-unipotent group U underlying the theory of
perturbative renormalization, canonically defined and independent of the phys-
ical theory, confirms a suggestion made by Cartier in [15], that in the Connes–
Kreimer theory of perturbative renormalization one should find a hidden “cos-
mic Galois group” closely related in structure to the Grothendieck–Teichmüller
group. The question of relations between the work of Connes–Kreimer, motivic
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Galois theory, and deformation quantization was further emphasized by Kont-
sevich in [76], as well as the conjecture of an action of a motivic Galois group on
the coupling constants of physical theories. At the level of the Hopf algebra of
rooted trees, relations between renormalization and motivic Galois theory were
also investigated by Goncharov in [67].

Our result on the “cosmic motivic Galois group” U also shows that the renor-
malization group appears as a canonical one parameter subgroup Ga ⊂ U .
Thus, this realizes the hope formulated in [24] of relating concretely the renor-
malization group to a Galois group.

As we discuss in Section 2.17, the group U presents similarities with the ex-
ponential torus part of the wild fundamental group, in the sense of Differential
Galois Theory (cf. [88], [102]). The latter is a modern form of the “theory of am-
biguity” that Galois had in mind and takes a very concrete form in the work of
Ramis [104]. The “wild fundamental group” is the natural object that replaces
the usual fundamental group in extending the Riemann–Hilbert correspondence
to the irregular case (cf. [88]). At the formal level, in addition to the monodromy
representation (which is trivial in the case of the equisingular connections), it
comprises the exponential torus, while in the non-formal case additional gener-
ators are present that account for the Stokes phenomena in the resummation of
divergent series. The Stokes part of the wild fundamental group (cf. [88]) in fact
appears when taking into account the presence of non-perturbative effects. We
formulate some questions related to extending the CK theory of perturbative
renormalization to the nonperturbative case.

We also bring further evidence for the interpretation of the renormalization
group in terms of a theory of ambiguity. Indeed, one aspect of QFT that appears
intriguing to the novice is the fact that many quantities called “constants”, such
as the fine structure constant in QED, are only nominally constant, while in fact
they depend on a scale parameter µ. Such examples are abundant, as most of
the relevant physical quantities, including the coupling “constants”, share this
implicit dependence on the scale µ. Thus, one is really dealing with functions
g(µ) instead of scalars. This suggests the idea that a suitable “unramified”
extension K of the field C of complex numbers might play a role in QFT as
a natural extension of the “field of constants” to a field containing functions
whose basic behaviour is dictated by the renormalization group equations. The
group of automorphisms of the resulting field, generated by µ∂/∂µ, is the group
of ambiguity of the physical theory and it should appear as the Galois group
of the unramified extension. Here the beta function of renormalization can be
seen as logarithm of the monodromy in a regular-singular local Riemann–Hilbert
problem associated to this scaling action as in [42]. The true constants are then
the fixed points of this group, which form the field C of complex numbers, but
a mathematically rigorous formulation of QFT may require extending the field
of scalars first, instead of proving existence “over C”.

This leads naturally to a different set of questions, related to the geometry of
arithmetic varieties at the infinite primes, and a possible Galois interpretation
of the connected component of the identity in the idèle class group in class field
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theory (cf. [23], [41]). This set of questions will be dealt with in [37].

Acknowledgements. We are very grateful to Jean–Pierre Ramis for many use-
ful comments on an early draft of this paper, for the kind invitation to Toulouse,
and for the many stimulating discussions we had there with him, Frédéric Fau-
vet, and Laurent Stolovitch. We thank Frédéric Menous and Giorgio Parisi for
some useful correspondence. Many thanks go to Dirk Kreimer, whose joint work
with AC on perturbative renormalization is a main topic of this Chapter.

2.2 Renormalization in Quantum Field Theory

The physical motivation behind the renormalization technique is quite clear and
goes back to the concept of effective mass and to the work of Green in nineteenth
century hydrodynamics [68]. To appreciate it, one should 2 dive under water
with a ping-pong ball and start applying Newton’s law,

F = m a (2.6)

to compute the initial acceleration of the ball B when we let it loose (at zero
speed relative to the still water). If one naively applies (2.6), one finds an
unrealistic initial acceleration of about 11.4 g. 3 In fact, if one performs the
experiment, one finds an initial acceleration of about 1.6 g. As explained by
Green in [68], due to the interaction of B with the surrounding field of water,
the inertial mass m involved in (2.6) is not the bare mass m0 of B, but it is
modified to

m = m0 + 1
2 M (2.7)

where M is the mass of the water occupied by B. It follows for instance that
the initial acceleration a of B is given, using the Archimedean law, by

−(M −m0) g =
(
m0 + 1

2 M
)
a (2.8)

and is always of magnitude less than 2g.

The additional inertial mass δ m = m−m0 is due to the interaction of B with
the surrounding field of water and if this interaction could not be turned off
(which is the case if we deal with an electron instead of a ping-pong ball) there
would be no way to measure the bare mass m0.

The analogy between hydrodynamics and electromagnetism led, through the
work of Thomson, Lorentz, Kramers, etc. (cf. [49]), to the crucial distinction
between the bare parameters, such as m0, which enter the field theoretic equa-
tions, and the observed parameters, such as the inertial mass m.

2See the QFT course by Sidney Coleman.
3The ping-pong ball weights m0 = 2, 7 grams and its diameter is 4 cm so that M = 33, 5

grams.
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Around 1947, motivated by the experimental findings of spectroscopy of the
fine structure of spectra, physicists were able to exploit the above distinction
between these two notions of mass (bare and observed), and similar distinctions
for the charge and field strength, in order to eliminate the unwanted infinities
which plagued the computations of QFT, due to the pointwise nature of the
electron. We refer to [49] for an excellent historical account of that period.

2.2.1 Basic formulas of QFT

A quantum field theory in D = 4 dimensions is given by a classical action
functional

S (A) =

∫
L (A) d4x, (2.9)

where A is a classical field and the Lagrangian is of the form

L (A) =
1

2
(∂A)2 − m2

2
A2 −Lint(A), (2.10)

with (∂A)2 = (∂0A)2−∑µ6=0(∂µA)2. The term Lint(A) is usually a polynomial
in A.

The basic transition from “classical field theory” to “quantum field theory”
replaces the classical notion of probabilities by probability amplitudes and asserts
that the probability amplitude of a classical field configuration A is given by
the formula of Dirac and Feynman

ei S(A)
~ , (2.11)

where S(A) is the classical action (2.9) and ~ is the unit of action, so that
iS(A)/~ is a dimensionless quantity.

Thus, one can define the quantum expectation value of a classical observable
(i.e. of a function O of the classical fields) by the expression

〈O〉 = N
∫
O(A) ei S(A)

~ D[A], (2.12)

where N is a normalization factor. The (Feynman) integral has only formal
meaning, but this suffices in the case where the space of classical fields A is a
linear space in order to define without difficulty the terms in the perturbative
expansion, which make the renormalization problem manifest.

One way to describe the quantum fields φ(x) is by means of the time ordered
Green’s functions

GN (x1, . . . , xN ) = 〈 0 |T φ(x1) . . . φ(xN )| 0 〉, (2.13)
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where the time ordering symbol T means that the φ(xj)’s are written in order
of increasing time from right to left. If one could ignore the renormalization
problem, the Green’s functions would then be computed as

GN (x1, . . . , xN ) = N
∫

ei S(A)
~ A(x1) . . . A(xN ) [dA], (2.14)

where the factor N ensures the normalization of the vacuum state

〈 0 | 0 〉 = 1 . (2.15)

If one could ignore renormalization, the functional integral (2.14) would be easy
to compute in perturbation theory, i.e. by treating the term Lint in (2.10) as a
perturbation of

L0(A) =
1

2
(∂A)2 − m2

2
A2 . (2.16)

The action functional correspondingly splits as the sum of two terms

S(A) = S0(A) + Sint(A), (2.17)

where the free action S0 generates a Gaussian measure

exp (i S0(A)) [dA] = dµ,

where we have set ~ = 1.

The series expansion of the Green’s functions is then of the form

GN (x1, . . . , xN ) =

(
∞∑

n=0

in/n!

∫
A(x1) . . . A(xN ) (Sint(A))n dµ

)

(
∞∑

n=0

in/n!

∫
Sint(A)n dµ

)−1

.

2.2.2 Feynman diagrams

The various terms
∫

A(x1) . . . A(xN ) (Sint(A))n dµ (2.18)

of this expansion are integrals of polynomials under a Gaussian measure dµ.
When these are computed using integration by parts, the process generates a
large number of terms U(Γ). The combinatorial data labelling each of these
terms are encoded in the Feynman graph Γ, which determines the terms that
appear in the calculation of the corresponding numerical value U(Γ), obtained
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as a multiple integral in a finite number of space-time variables. The U(Γ) is
called the unrenormalized value of the graph Γ.

One can simplify the combinatorics of the graphs involved in these calculations,
by introducing a suitable generating function. The generating function for the
Green’s functions is given by the Fourier transform

Z(J) = N
∫

exp

(
i
S(A) + 〈J, A〉

~

)
[dA] (2.19)

=

∞∑

N=0

iN

N !

∫
J(x1) . . . J(xN ) GN (x1, ..xN ) dx1..dxN ,

where the source J is an element of the dual of the linear space of classical fields
A.

The zoology of the diagrams involved in the perturbative expansion is substan-
tially simplified by first passing to the logarithm of Z(J) which is the generating
function for connected Green’s functions Gc,

iW (J) = Log(Z(J)) =

∞∑

N=0

iN

N !

∫
J(x1) . . . J(xN )GN,c(x1, ..xN )dx1..dxN .

(2.20)
At the formal combinatorial level, while the original sum (2.19) is on all graphs
(including non-connected ones), taking the log in the expression (2.20) for W (J)
has the effect of dropping all disconnected graphs, while the normalization fac-
tor N in (2.19) eliminates all the “vacuum bubbles”, that is, all the graphs
that do not have external legs. Moreover, the number L of loops in a con-
nected graph determines the power ~L−1 of the unit of action that multiplies
the corresponding term, so that (2.20) has the form of a semiclassical expansion.

The next step in simplifying the combinatorics of graphs consists of passing to
the effective action Seff (A). By definition, Seff (A) is the Legendre transform
of W (J).

The effective action gives the quantum corrections of the original action. By its
definition as a Legendre transform, one can see that the calculation obtained
by applying the stationary phase method to Seff (A) yields the same result as
the full calculation of the integrals with respect to the original action S(A).
Thus the knowledge of the effective action, viewed as a non-linear functional
of classical fields, is an essential step in the understanding of a given Quantum
Field Theory.

Exactly as above, the effective action admits a formal expansion in terms of
graphs. In terms of the combinatorics of graphs, passing from S(A) to the
effective action Seff (A) has the effect of dropping all graphs of the form
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that can be disconnected by removal of one edge. In the figure, the shaded areas
are a shorthand notation for an arbitrary graph with the specified external legs
structure. The graphs that remain in this process are called one particle irre-
ducible (1PI) graphs. They are by definition graphs that cannot be disconnected
by removing a single edge.

The contribution of a 1PI graph Γ to the non-linear functional Seff (A) can be
spelled out very concretely as follows. If N is the number of external legs of Γ,
at the formal level (ignoring the divergences) we have

Γ(A) =
1

N !

∫
P

pj=0

Â(p1)...Â(pN ) U(Γ(p1, ..., pN)) dp1...dpN .

Here Â is the Fourier transform of A and the unrenormalized value

U(Γ(p1, ..., pN ))

of the graph is defined by applying simple rules (the Feynman rules) which
assign to each internal line in the graph a propagator i.e. a term of the form

1

k2 −m2
(2.21)

where k is the momentum flowing through that line. The propagators for ex-
ternal lines are eliminated for 1PI graphs.

There is nothing mysterious in the appearance of the propagator (2.21), which
has the role of the inverse of the quadratic form S0 and comes from the rule of
integration by parts

∫
f(A) 〈J, A〉 exp (i S0(A)) [dA] =

∫
∂Xf(A) exp (i S0(A)) [dA] (2.22)

provided that
−i ∂XS0(A) = 〈J, A〉 .

One then has to integrate over all momenta k that are left after imposing the
law of conservation of momentum at each vertex, i.e. the fact that the sum of
ingoing momenta vanishes. The number of remaining integration variables is
exactly the loop number L of the graph.

As we shall see shortly, the integrals obtained this way are in general divergent,
but by proceeding at the formal level we can write the effective action as a
formal series of the form

Seff (A) = S0(A) +
∑

Γ∈1PI

Γ(A)

S(Γ)
, (2.23)

where the factor S(Γ) is the order of the symmetry group of the graph. This
accounts for repetitions as usual in combinatorics.
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Summarizing, we have the following situation. The basic unknown in a given
Quantum Field Theory is the effective action, which is a non-linear functional of
classical fields and contains all quantum corrections to the classical action. Once
known, one can obtain from it the Green’s functions from tree level calculations
(applying the stationary phase approximation). The formal series expansion of
the effective action is given in terms of polynomials in the classical fields, but
the coefficients of these polynomials are given by divergent integrals.

2.2.3 Divergences and subdivergences

As a rule, the unrenormalized values U(Γ(p1, . . . , pN )) are given by divergent
integrals, whose computation is governed by Feynman rules. The simplest of
such integrals (with the corresponding graph) is of the form (up to powers of 2π
and of the coupling constant g and after a Wick rotation to Euclidean variables),

k

p + k

p p

=

∫
1

k2 + m2

1

((p + k)2 + m2)
dDk. (2.24)

The integral is divergent in dimension D = 4. In general, the most serious di-
vergences in the expression of the unrenormalized values U(Γ) appear when the
domain of integration involves arbitrarily large momenta (ultraviolet). Equiva-
lently, when one attempts to integrate in coordinate space, one confronts diver-
gences along diagonals, reflecting the fact that products of field operators are
defined only on the configuration space of distinct spacetime points.

The renormalization techniques starts with the introduction of a regularization
procedure, for instance by imposing a cut-off Λ in momentum space, which
restricts the corresponding domain of integration. This gives finite integrals,
which continue to diverge as Λ → ∞. One can then introduce a dependence
on Λ in the terms of the Lagrangian, using the unobservability of the bare
parameters, such as the bare mass m0. By adjusting the dependence of the
bare parameters on the cut-off Λ, term by term in the perturbative expansion,
it is possible, for a large class of theories called renormalizable, to eliminate the
unwanted ultraviolet divergences.

This procedure that cancels divergences by correcting the bare parameters (masses,
coupling constants, etc.) can be illustrated in the specific example of the φ3 the-
ory with Lagrangian

1

2
(∂µφ)2 − m2

2
φ2 − g

6
φ3, (2.25)
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which is sufficiently generic. The Lagrangian will now depend on the cutoff in
the form

1

2
(∂µφ)2(1− δZ(Λ))−

(
m2 + δm2(Λ)

2

)
φ2 − g + δg(Λ)

6
φ3. (2.26)

Terms such as δg(Λ) are called “counterterms”. They do not have any limit as
Λ→∞.

In the special case of asymptotically free theories, the explicit form of the depen-
dence of the bare constants on the regularization parameter Λ made it possible
in important cases (cf. [60], [58]) to develop successfully a constructive field
theory, [62].

In the procedure of perturbative renormalization, one introduces a counterterm
C(Γ) in the initial Lagrangian L every time one encounters a divergent 1PI
diagram, so as to cancel the divergence. In the case of renormalizable theories,
all the necessary counterterms C(Γ) can be obtained from the terms of the
Lagrangian L, just using the fact that the numerical parameters appearing in
the expression of L are not observable, unlike the actual physical quantities
which have to be finite.

The cutoff procedure is very clumsy in practice, since, for instance, it necessarily
breaks Lorentz invariance. A more efficient procedure of regularization is called
Dim-Reg. It consists in writing the integrals to be performed in dimension D
and to “integrate in dimension D − z instead of D”, where now D − z ∈ C

(dimensional regularization).

This makes sense, since in integral dimension the Gaussian integrals are given
by simple functions (2.28) which continue to make sense at non-integral points,
and provide a working definition of “Gaussian integral in dimension D − z”.

More precisely, one first passes to the Schwinger parameters. In the case of the
graph (2.24) this corresponds to writing

1

k2 + m2

1

(p + k)2 + m2
=

∫

s>0 t>0

e−s(k2+m2)−t((p+k)2+m2) ds dt (2.27)

Next, after diagonalizing the quadratic form in the exponential, the Gaussian
integral in dimension D takes the form

∫
e−λ k2

dDk = πD/2 λ−D/2 . (2.28)

This provides the unrenormalized value of the graph (2.24) in dimension D as

∫ 1

0

∫ ∞

0

e−(y(x−x2)p2+y m2)

∫
e−y k2

dDk y dy dx (2.29)

= πD/2

∫ 1

0

∫ ∞

0

e−(y(x−x2)p2+y m2) y−D/2 y dy dx
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= πD/2 Γ(2−D/2)

∫ 1

0

((x − x2)p2 + m2)D/2−2 dx.

The remaining integral can be computed in terms of hypergeometric functions,
but here the essential point is the presence of singularities of the Γ function at
the points D ∈ 4 + 2N, such that the coefficient of the pole is a polynomial in
p and the Fourier transform is a local term.

These properties are not sufficient for a theory to be renormalizable. For in-
stance at D = 8 the coefficient of pole is of degree 4 and the theory is not
renormalizable. At D = 6 on the other hand the pole coefficient has degree 2
and there are terms in the original Lagrangian L that can be used to eliminate
the divergence by introducing suitable counterterms δZ(z) and δm2(z).

The procedure illustrated above works fine as long as the graph does not contain
subdivergences. In such cases the counter terms are local in the sence that they
appear as residues. In other words, one only gets simple poles in z.

The problem becomes far more complicated when one considers diagrams that
possess non-trivial subdivergences. In this case the procedure no longer consists
of a simple subtraction and becomes very involved, due to the following reasons:

i) The divergences of U(Γ) are no longer given by local terms.

ii) The previous corrections (those for the subdivergences) have to be taken
into account in a coherent way.

The problem of non-local terms appears when there are poles of order > 1 in
the dimensional regularization. This produces as a coefficient of the term in 1/z
derivatives in D of expressions such as

∫ 1

0

((x− x2)p2 + m2)D/2−2 dx

which are no longer polynomial in p, even for integer values of D/2 − 2, but
involve terms such as log(p2 + 4m2).

The second problem is the source of the main calculational complication of the
subtraction procedure, namely accounting for subdiagrams which are already
divergent.

The two problems in fact compensate and can be treated simultaneously, pro-
vided one uses the precise combinatorial recipe, due to Bogoliubov–Parasiuk,
Hepp and Zimmermann ([8], [7], [71], [111]).

This is of an inductive nature. Given a graph Γ, one first “prepares” Γ, by
replacing the unrenormalized value U(Γ) by the formal expression

R(Γ) = U(Γ) +
∑

γ⊂Γ

C(γ)U(Γ/γ), (2.30)

where γ varies among all divergent subgraphs. One then shows that the di-
vergences of the prepared graph are now local terms which, for renormalisable
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theories, are already present in the original Lagrangian L. This provides a way
to define inductively the counterterm C(Γ) as

C(Γ) = −T (R(Γ)) = −T


U(Γ) +

∑

γ⊂Γ

C(γ)U(Γ/γ)


 , (2.31)

where the operation T is the projection on the pole part of the Laurent series,
applied here in the parameter z of DimReg. The renormalized value of the
graph is given by

R(Γ) = R(Γ) + C(Γ) = U(Γ) + C(Γ) +
∑

γ⊂Γ

C(γ)U(Γ/γ). (2.32)

2.3 Affine group schemes

In this section we recall some aspects of the general formalism of affine group
schemes and Tannakian categories, which we will need to use later. A complete
treatment of affine group schemes and Tannakian categories can be found in
SGA 3 [48] and in Deligne’s [46]. A brief account of the formalism of affine
group schemes in the context of differential Galois theory can be found in [102].

Let H be a commutative Hopf algebra over a field k (which we assume of charac-
teristic zero, though the formalism of affine group schemes extends to positive
characteristic). Thus, H is a commutative algebra over k, endowed with a
(not necessarily commutative) coproduct ∆ : H → H⊗kH, a counit ε : H → k,
which are k-algebra morphisms and an antipode S : H → H which is a k-algebra
antihomomorphism, satisfying the co-rules

(∆⊗ id)∆ = (id⊗∆)∆ : H → H⊗k H⊗k H,

(id⊗ ε)∆ = id = (ε⊗ id)∆ : H → H,

m(id⊗ S)∆ = m(S ⊗ id)∆ = 1 ε : H → H,

(2.33)

where we use m to denote the multiplication in H.

Affine group schemes are the geometric counterpart of Hopf algebras, in the
following sense. One lets G = SpecH be the set of prime ideals of the com-
mutative k-algebra H, with the Zariski topology and the structure sheaf. Here
notice that the Zariski topology by itself is too coarse to fully recover the “alge-
bra of coordinates” H from the topological space Spec(H), while it is recovered
as global sections of the “sheaf of functions” on Spec(H).

The co-rules (2.33) translate on G = Spec(H) to give a product operation, a
unit, and an inverse, satisfying the axioms of a group. The scheme G = Spec(H)
endowed with this group structure is called an affine group scheme.

One can view such G as a functor that associates to any unital commutative
algebra A over k a group G(A), whose elements are the k-algebra homomor-
phisms

φ : H → A , φ(X Y ) = φ(X)φ(Y ) , ∀X, Y ∈ H , φ(1) = 1 .
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The product in G(A) is given as the dual of the coproduct, by

φ1 ? φ2(X) = 〈φ1 ⊗ φ2 , ∆(X)〉 . (2.34)

This defines a group structure on G(A). The resulting covariant functor

A → G(A)

from commutative algebras to groups is representable (in fact byH). Conversely
any covariant representable functor from the category of commutative algebras
over k to groups, is defined by an affine group scheme G, uniquely determined
up to canonical isomorphism.

We mention some basic examples of affine group schemes.

The additive group G = Ga: this corresponds to the Hopf algebra H = k[t] with
coproduct ∆(t) = t⊗ 1 + 1⊗ t.

The affine group scheme G = GLn: this corresponds to the Hopf algebra

H = k[xi,j , t]i,j=1,...,n/ det(xi,j)t− 1,

with coproduct ∆(xi,j) =
∑

k xi,k ⊗ xk,j .

The latter example is quite general in the following sense. If H is finitely gen-
erated as an algebra over k, then the corresponding affine group scheme G is a
linear algebraic group over k, and can be embedded as a Zariski closed subset
in some GLn.

In the most general case, one can find a collection Hi ⊂ H of finitely generated
algebras over k such that ∆(Hi) ⊂ Hi ⊗ Hi, S(Hi) ⊂ Hi, for all i, and such
that, for all i, j there exists a k with Hi ∪ Hj ⊂ Hk, and H = ∪iHi.

In this case, we have linear algebraic groups Gi = Spec(Hi) such that

G = lim←−
i

Gi. (2.35)

Thus, in general, an affine group scheme is a projective limit of linear algebraic
groups.

2.3.1 Tannakian categories

It is natural to consider representations of an affine group scheme G. A finite
dimensional k-vector space V is a G-module if there is a morphism of affine group
schemes G → GL(V ). This means that we obtain, functorially, representations
G(A) → AutA(V ⊗k A), for commutative k-algebras A. One can then consider
the category RepG of finite dimensional linear representations of an affine group
scheme G.

We recall the notion of a Tannakian category. The main point of this formal
approach is that, when such a category is considered over a base scheme S =
Spec(k) (a point), it turns out to be the category RepG for a uniquely determined
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affine group scheme G. (The case of a more general scheme S corresponds to
extending the above notions to groupoids, cf. [46]).

An abelian category is a category to which the tools of homological algebra
apply, that is, a category where the sets of morphisms are abelian groups, there
are products and coproducts, kernels and cokernels always exist and satisfy the
same basic rules as in the category of modules over a ring.

A tensor category over a field k of characteristic zero is a k-linear abelian cat-
egory T endowed with a tensor functor ⊗ : T × T → T satisfying associativity
and commutativity (given by functorial isomorphisms) and with a unit object.
Moreover, for each object X there exists an object X∨ and maps e : X⊗X∨ → 1
and δ : 1→ X⊗X∨, such that the composites (e⊗1)◦(1⊗δ) and (1⊗e)◦(δ⊗1)
are the identity. There is also an identification k ' End(1).

A Tannakian category T over k is a tensor category endowed with a fiber functor
over a scheme S. That means a functor ω from T to finite rank locally free
sheaves over S satisfying ω(X)⊗ω(Y ) ' ω(X⊗Y ) compatibly with associativity
commutativity and unit. In the case where the base scheme is a point S =
Spec(k), the fiber functor maps to the category Vk of finite dimensional k-vector
spaces.

The category RepG of finite dimensional linear representations of an affine group
scheme is a Tannakian category, with an exact faithful fiber functor to Vk (a
neutral Tannakian category). What is remarkable is that the converse also
holds, namely, if T is a neutral Tannakian category, then it is equivalent to
the category RepG for a uniquely determined affine group scheme G, which is
obtained as automorphisms of the fiber functor.

Thus, a neutral Tannakian category is indeed a more geometric notion than
might at first appear from the axiomatic definition, namely it is just the category
of finite dimensional linear representations of an affine group scheme.

This means, for instance, that when one considers only finite dimensional linear
representations of a group (these also form a neutral Tannakian category), one
can as well replace the given group by its “algebraic hull”, which is the affine
group scheme underlying the neutral Tannakian category.

2.3.2 The Lie algebra and the Milnor-Moore theorem

Let G be an affine group scheme over a field k of characteristic zero. The Lie
algebra g(k) = Lie G(k) is given by the set of linear maps L : H → k satisfying

L(X Y ) = L(X) ε(Y ) + ε(X) L(Y ) , ∀X , Y ∈ H , (2.36)

where ε is the augmentation ofH, playing the role of the unit in the dual algebra.

Notice that the above formulation is equivalent to defining the Lie algebra g(k)
in terms of left invariant derivations on H, namely linear maps D : H → H
satisfying D(XY ) = XD(Y ) + D(X)Y and ∆D = (id⊗D)∆, which expresses
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the left invariance in Hopf algebra terms. The isomorphism between the two
constructions is easily obtained as

D 7→ L = ε D , L 7→ D = (id⊗ L)∆.

Thus, in terms of left invariant derivations, the Lie bracket is just [D1, D2] =
D1D2 −D2D1.

The above extends to a covariant functor g = Lie G,

A → g(A) , (2.37)

from commutative k-algebras to Lie algebras, where g(A) is the Lie algebra of
linear maps L : H → A satisfying (2.36).

In general, the Lie algebra Lie G of an affine group scheme does not contain
enough information to recover its algebra of coordinates H. However, under
suitable hypothesis, one can in fact recover the Hopf algebra from the Lie alge-
bra.

In fact, assume that H is a connected graded Hopf algebra, namely H =
⊕n≥0Hn, with H0 = k, with commutative multiplication. Let L be the Lie
algebra of primitive elements of the dual H∨. We assume that H is, in each de-
gree, a finite dimensional vector space. Then, by (the dual of) the Milnor–Moore
theorem [92], we have a canonical isomorphism of Hopf algebras

H ' U(L)∨, (2.38)

where U(L) is the universal enveloping algebra of L. Moreover, L = Lie G(k).

As above, we consider a Hopf algebraH endowed with an integral positive grad-
ing. We assume that it is connected, so that all elements of the augmentation
ideal have strictly positive degree. We let Y be the generator of the grading so
that for X ∈ H homogeneous of degree n one has Y (X) = n X .

Let Gm be the multiplicative group, namely the affine group scheme with Hopf
algebra k[t, t−1] and coproduct ∆(t) = t⊗ t.

Since the grading is integral, we can define, for u ∈ Gm, an action uY on H (or
on its dual) by

uY (X) = un X , ∀X ∈ H , degreeX = n . (2.39)

We can then form the semidirect product

G∗ = G o Gm. (2.40)

This is also an affine group scheme, and one has a natural morphism of group
schemes

G∗ → Gm .

The Lie algebra of G∗ has an additional generator such that

[Z0, X ] = Y (X) ∀X ∈ Lie G . (2.41)
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2.4 The Hopf algebra of Feynman graphs and

diffeographisms

In ’97, Dirk Kreimer got the remarkable idea (see [79]) to encode the substraction
procedure by a Hopf algebra. His algebra of rooted trees was then refined in
[31] to a Hopf algebra H directly defined in terms of graphs.

The result is that one can associate to any renormalizable theory T a Hopf
algebra H = H(T ) over C, where the coproduct reflects the structure of the
preparation formula (2.30). We discuss this explicitly for the case of T = φ3

6,
the theory φ3 in dimension D = 6, which is notationally simple and at the same
time sufficiently generic to illustrate all the main aspects of the general case.

In this case, the graphs have three kinds of vertices, which correspond to the
three terms in the Lagrangian (2.25):

• Three legs vertex associated to the φ3 term in the Lagrangian

• Two legs vertex
0

associated to the term φ2.

• Two legs vertex
1

associated to the term (∂ φ)2.

The rule is that the number of edges at a vertex equals the degree of the corre-
sponding monomial in the Lagrangian. Each edge either connects two vertices
(internal line) or a single vertex (external line). In the case of a massless theory
the term φ2 is absent and so is the corresponding type of vertex.

As we discussed in the previous section, the value U(Γ(p1, . . . , pN )) depends on
the datum of the incoming momenta

p1 p2

p3
p4

Γ

attached to the external edges of the graph Γ, subject to the conservation law

∑
pi = 0.

As an algebra, the Hopf algebra H is the free commutative algebra generated by
the Γ(p1, . . . , pN ) with Γ running over 1PI graphs. It is convenient to encode the

21



external datum of the momenta in the form of a distribution σ : C∞(EΓ) → C

on the space of C∞-functions on

EΓ =
{

(pi)i=1,...,N ;
∑

pi = 0
}

. (2.42)

where the set {1, . . . , N} of indices is the set of external legs of Γ. Thus, the
algebra H is identified with the symmetric algebra on a linear space that is the
direct sum of spaces of distributions C−∞

c (EΓ), that is,

H = S(C−∞
c (∪EΓ)) . (2.43)

In particular, we introduce the notation Γ(0) for graphs with at least three
external legs to mean Γ with the external structure given by the distribution σ
that is a Dirac mass at 0 ∈ EΓ,

Γ(0) = (Γ(p))p=0 (2.44)

Γ(0) = 

0

0

0

0

For self energy graphs, i.e. graphs Γ with just two external lines, we use the two
external structures σj such that

Γ(0) = m−2 (Γ(p))p=0 , Γ(1) =

(
∂

∂ p2
Γ(p)

)

p=0

. (2.45)

There is a lot of freedom in the choice of the external structures σj , the only
important property being

σ0 (a m2 + b p2) = a , σ1 (a m2 + b p2) = b . (2.46)

In the case of a massless theory, one does not take p2 = 0 to avoid a possible
pole at p = 0 due to infrared divergences. It is however easy to adapt the above
discussion to that situation.

In order to define the coproduct

∆ : H → H⊗H (2.47)

it is enough to specify it on 1PI graphs. One sets

∆Γ = Γ⊗ 1 + 1⊗ Γ +
∑

γ⊂Γ

γ(i) ⊗ Γ/γ(i). (2.48)
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Here γ is a non-trivial (non empty as well as its complement) subset γ ⊂ Γ̃ of
the graph Γ̃ formed by the internal edges of Γ. The connected components γ ′

of γ are 1PI graphs with the property that the set ε(γ ′) of egdes of Γ that meet
γ′ without being edges of γ ′ consists of two or three elements (cf. [31]). One
denotes by γ′

(i) the graph that has γ′ as set of internal edges and ε(γ ′) as external
edges. The index i can take the values 0 or 1 in the case of two external edges
and 0 in the case of three. We assign to γ ′

(i) the external structure of momenta

given by the distribution σi for two external edges and (2.44) in the case of three.
The summation in (2.48) is over all multi-indices i attached to the connected
components of γ. In (2.48) γ(i) denotes the product of the graphs γ ′

(i) associated

to the connected components of γ. The graph Γ/γ(i) is obtained by replacing
each γ′

(i) by a corresponding vertex of type (i). One can check that Γ/γ(i) is a
1PI graph.

Notice that, even if the γ ′ are disjoint by construction, the graphs γ ′
(i) need not

be, as they may have external edges in common, as one can see in the example
of the graph

Γ

γ ' γ ''

γ = γ ' ∪ γ ''

for which the external structure of Γ/γ(i) is identical to that of Γ.

An interesting property of the coproduct ∆ of (2.48) is a “linearity on the right”,
which means the following ([31]):

Proposition 2.1 Let H1 be the linear subspace of H generated by 1 and the
1PI graphs, then for all Γ ∈ H1 the coproduct satisfies

∆(Γ) ∈ H⊗H1 .

This properties reveals the similarity between ∆ and the coproduct defined
by composition of formal series. One can see this property illustrated in the
following explicit examples taken from [31]:

∆ (        ) =               1 + 1 

2

∆ (        ) =              1 + 1               + 
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∆ (            ) =                  1 + 1  

+ 

+ 2                          + 2 

∆ (            ) =                   1 + 1

+
(i) i

The coproduct ∆ defined by (2.48) for 1PI graphs extends uniquely to a homo-
morphism from H to H⊗H. The main result then is the following ([79],[31]):

Theorem 2.2 The pair (H, ∆) is a Hopf algebra.

This Hopf algebra defines an affine group scheme G canonically associated to
the quantum field theory according to the general formalism of section 2.3. We
refer to G as the group of diffeographisms of the theory

G = Difg(T ) . (2.49)

We have illustrated the construction in the specific case of the φ3 theory in
dimension 6, namely for G = Difg(φ3

6).

The presence of the external structure of graphs plays only a minor role in the
coproduct except for the explicit external structures σj used for internal graphs.
We shall now see that this corresponds to a simple decomposition at the level
of the associated Lie algebras.

2.5 The Lie algebra of graphs

The next main step in the CK theory of perturbative renormalization ([31]) is
the analysis of the Hopf algebra H of graphs of [31] through the Milnor-Moore
theorem (cf. [92]). This allows one to view H as the dual of the enveloping
algebra of a graded Lie algebra, with a linear basis given by 1PI graphs. The
Lie bracket between two graphs is obtained by insertion of one graph in the
other. We recall here the structure of this Lie algebra.

The Hopf algebra H admits several natural choices of grading. To define a
grading it suffices to assign the degree of 1PI graphs together with the rule

deg (Γ1 . . . Γe) =
∑

deg (Γj) , deg (1) = 0. (2.50)
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One then has to check that, for any admissible subgraph γ,

deg (γ) + deg (Γ/γ) = deg (Γ). (2.51)

The two simplest choices of grading are

I (Γ) = number of internal edges of Γ (2.52)

and
v (Γ) = V (Γ)− 1 = number of vertices of Γ− 1 , (2.53)

as well as the “loop number” which is the difference

L = I − v = I − V + 1. (2.54)

The recipe of the Milnor-Moore theorem (cf. [92]) applied to the bigraded Hopf
algebra H gives a Lie algebra structure on the linear space

L =
⊕

Γ

C∞(EΓ) (2.55)

where C∞(EΓ) denotes the space of smooth functions on EΓ as in (2.42), and
the direct sum is taken over 1PI graphs Γ.

For X ∈ L let ZX be the linear form on H given, on monomials Γ, by

〈Γ, ZX〉 = 〈σΓ, XΓ〉, (2.56)

when Γ is connected and 1PI, and

〈Γ, ZX〉 = 0 (2.57)

otherwise. Namely, for a connected 1PI graph (2.56) is the evaluation of the
external structure σΓ on the component XΓ of X .

By construction, ZX is an infinitesimal character of H, i.e. a linear map Z :
H → C such that

Z(xy) = Z(x) ε(y) + ε(x) Z(y) , ∀x, y ∈ H (2.58)

where ε is the augmentation.
The same holds for the commutators

[ZX1 , ZX2 ] = ZX1 ZX2 − ZX2 ZX1 , (2.59)

where the product is obtained by transposing the coproduct of H, i.e.

〈Z1 Z2, Γ〉 = 〈Z1 ⊗ Z2, ∆ Γ〉 . (2.60)

Let Γj , for j = 1, 2, be 1PI graphs, and let ϕj ∈ C∞(EΓj
) be the corresponding

test functions. For i ∈ {0, 1}, let ni (Γ1, Γ2; Γ) be the number of subgraphs of Γ
isomorphic to Γ1 and such that

Γ/Γ1(i) ' Γ2 , (2.61)

with the notation Γ(i), for i ∈ {0, 1}, as in (2.44) and (2.45).

One then has the following ([31]):
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Lemma 2.3 Let (Γ, ϕ) be an element of L, with ϕ ∈ C∞ (EΓ). The Lie bracket
of (Γ1, ϕ1) with (Γ2, ϕ2) is then given by the formula

∑

Γ,i

σi (ϕ1) ni (Γ1, Γ2; Γ) (Γ, ϕ2)− σi (ϕ2) ni (Γ2, Γ1; Γ) (Γ, ϕ1) . (2.62)

where σi is as in (2.45) for two external edges and (2.44) in the case of three.

The main result on the structure of the Lie algebra is the following ([31]):

Theorem 2.4 The Lie algebra L is the semi-direct product of an abelian Lie
algebra Lab with L′ where L′ admits a canonical linear basis indexed by graphs
with

[Γ, Γ′] =
∑

v

Γ ◦v Γ′ −
∑

v′

Γ′ ◦v′ Γ

where Γ ◦v Γ′ is obtained by inserting Γ′ in Γ at v.

The corresponding Lie group G(C) is the group of characters of the Hopf algebra
H, i.e. the set of complex points of the corresponding affine group scheme G =
Difg(T ).

We see from the structure of the Lie algebra that the group scheme Difg(T ) is
a semi-direct product,

Difg = Difgab >� Difg′

of an abelian group Difgab by the group scheme Difg′ associated to the Hopf
subalgebra H′ constructed on 1PI graphs with two or three external legs and
fixed external structure. Passing from Difg′ to Difg is a trivial step and we shall
thus restrict our attention to the group Difg′ in the sequel.
The Hopf algebra H′ of coordinates on Difg′ is now finite dimensional in each
degree for the grading given by the loop number, so that all technical problems
associated to dualities of infinite dimensional linear spaces disappear in that
context. In particular the Milnor-Moore theorem applies and shows that H′ is
the dual of the enveloping algebra of L′. The conceptual structure of Difg′ is that
of a graded affine group scheme (cf. Section 2.3). Its complex points form a pro-
unipotent Lie group, intimately related to the group of formal diffeomorphisms
of the dimensionless coupling constants of the physical theory, as we shall recall
in Section 2.10.

2.6 Birkhoff decomposition and renormalization

With the setting described in the previous sections, the main subsequent con-
ceptual breakthrough in the CK theory of renormalization [31] consisted of the
discovery that formulas identical to equations (2.30), (2.31), (2.32) occur in the
Birkhoff decomposition of loops, for an arbitrary graded complex pro-unipotent
Lie group G.
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This unveils a neat and simple conceptual picture underlying the seemingly com-
plicated combinatorics of the Bogoliubov–Parasiuk–Hepp–Zimmermann proce-
dure, and shows that it is a special case of a general mathematical method of
extraction of finite values given by the Birkhoff decomposition.

We first recall some general facts about the Birkhoff decomposition and then
describe the specific case of interest, for the setting of renormalization.

The Birkhoff decomposition of loops is a factorization of the form

γ (z) = γ−(z)−1 γ+(z) z ∈ C , (2.63)

where C ⊂ P1(C) is a smooth simple curve, C− denotes the component of the
complement of C containing ∞ 6∈ C and C+ the other component. Both γ and
γ± are loops with values in a complex Lie group G

γ (z) ∈ G ∀ z ∈ C (2.64)

and γ± are boundary values of holomorphic maps (which we still denote by the
same symbol)

γ± : C± → G . (2.65)

The normalization condition γ−(∞) = 1 ensures that, if it exists, the decom-
position (2.63) is unique (under suitable regularity conditions). When the loop
γ : C → G extends to a holomorphic loop γ+ : C+ → G, the Birkhoff decompo-
sition is given by γ+ = γ, with γ− = 1.

In general, for z0 ∈ C+, the evaluation

γ → γ+(z0) ∈ G (2.66)

is a natural principle to extract a finite value from the singular expression γ(z0).
This extraction of finite values is a multiplicative removal of the pole part for a
meromorphic loop γ when we let C be an infinitesimal circle centered at z0.

This procedure is closely related to the classification of holomorphic vector bun-
dles on the Riemann sphere P1(C) (cf. [69]). In fact, consider as above a curve
C ⊂ P1(C). Let us assume for simplicity that C = {z : |z| = 1}, so that

C− = {z : |z| > 1} and C+ = {z : |z| < 1}.

We consider the Lie group G = GLn(C). In this case, any loop γ : C → G can
be decomposed as a product

γ(z) = γ−(z)−1 λ(z) γ+(z), (2.67)

where γ± are boundary values of holomorphic maps (2.65) and λ is a homomor-
phism of S1 into the subgroup of diagonal matrices in GLn(C),

λ(z) =




zk1

zk2

. . .

zkn


 , (2.68)
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for integers ki. There is a dense open subset Ω of the identity component of the
loop group LG for which the Birkhoff factorization (2.67) is of the form (2.63),
namely where λ = 1. Then (2.63) gives an isomorphism between L−

1 ×L+ and
Ω ⊂ LG, where

L± = {γ ∈ LG : γ extends to a holomorphic function on C±}

and L−
1 = {γ ∈ L− : γ(∞) = 1} (see e.g. [100]).

Let U± be the open sets in P1(C)

U+ = P1(C) r {∞} U− = P1(C) r {0}.

Gluing together trivial line bundles on U± via the transition function on U+∩U−

that multiplies by zk, yields a holomorphic line bundle Lk on P1(C). Similarly,
a holomorphic vector bundle E is obtained by gluing trivial vector bundles on
U± via a transition function that is a holomorphic function

γ : U+ ∩ U− → G.

Equivalently,
E = (U+ × Cn) ∪γ (U− × Cn) . (2.69)

The Birkhoff factorization (2.67) for γ then gives the Birkhoff–Grothendieck
decomposition of E as

E = Lk1 ⊕ . . .⊕ Lkn . (2.70)

The existence of a Birkhoff decomposition of the form (2.63) is then clearly
equivalent to the vanishing of the Chern numbers

c1 (Lki) = 0 (2.71)

of the holomorphic line bundles in the Birkhoff–Grothendieck decomposition
(2.70), i.e. to the condition ki = 0 for i = 1, . . . , n.

The above discussion for G = GLn(C) extends to arbitrary complex Lie groups.
When G is a simply connected nilpotent complex Lie group, the existence (and
uniqueness) of the Birkhoff decomposition (2.63) is valid for any γ.

We now describe explicitly the Birkhoff decomposition with respect to an in-
finitesimal circle centered at z0, and express the result in algebraic terms using
the standard translation from the geometric to the algebraic language.

Here we consider a graded connected commutative Hopf algebra H over C and
we let G = Spec(H) be the associated affine group scheme as described in Section
2.3. This is, by definition, the set of prime ideals of H with the Zariski topology
and a structure sheaf. What matters for us is the corresponding covariant
functor from commutative algebras A over C to groups, given by the set of
algebra homomorphisms,

G(A) = Hom(H, A) (2.72)
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where the group structure on G(A) is dual to the coproduct i.e. is given by

φ1 ? φ2(h) = 〈φ1 ⊗ φ2, ∆(h)〉

By construction G appears in this way as a representable covariant functor from
the category of commutative C-algebras to groups.

In the physics framework we are interested in the evaluation of loops at a specific
complex number say z0 = 0. We let K = C({z}) (also denoted by C{z}[z−1])
be the field of convergent Laurent series, with arbitrary radius of convergence.
We denote by O = C{z} be the ring of convergent power series, and Q =
z−1 C([z−1]), with Q̃ = C([z−1]) the corresponding unital ring.

Let us first recall the standard dictionary from the geometric to the algebraic
language, summarized by the following diagram.

Loops γ : C → G | G(K) = { homomorphisms φ : H → K}
|

Loops γ : P1(C)\{z0} → G | G(Q̃) = {φ , φ(H) ⊂ Q̃}
|

γ(z0) is finite | G(O) = {φ , φ(H) ⊂ O}
|

γ(z) = γ1(z) γ2(z) ∀z ∈ C | φ = φ1 ? φ2

|
z 7→ γ(z)−1 | φ ◦ S

|
(2.73)

For loops γ : P1(C)\{z0} → G the normalization condition γ(∞) = 1 translates
algebraically into the condition

ε− ◦ φ = ε

where ε− is the augmentation in the ring Q̃ and ε the augmentation in H.
As a preparation to the main result of [31] on renormalization and the Birkhoff
decomposition, we reproduce in full the proof given in [31] of the following
basic algebraic fact, where the Hopf algebra H is graded in positive degree and
connected (the scalars are the only elements of degree 0).

Theorem 2.5 Let φ : H → K be an algebra homomorphism. The Birkhoff de-
composition of the corresponding loop is obtained recursively from the equalities

φ−(X) = −T
(
φ(X) +

∑
φ−(X ′)φ(X ′′)

)
(2.74)

and
φ+(X) = φ(X) + φ−(X) +

∑
φ−(X ′)φ(X ′′). (2.75)

29



Here T is, as in (2.31), the operator of projection on the pole part, i.e. the
projection on the augmentation ideal of Q̃, parallel to O. Also X ′ and X ′′

denote the terms of lower degree that appear in the coproduct

∆(X) = X ⊗ 1 + 1⊗X +
∑

X ′ ⊗X ′′,

for X ∈ H.

To prove that the Birkhoff decomposition corresponds to the expressions (2.74)
and (2.75), one proceeds by defining inductively a homomorphism φ− : H → K
by (2.74). One then shows by induction that it is multiplicative.

Explicitly, let H̃ = ker ε be the augmentation ideal. For X, Y ∈ H̃, one has

∆(XY ) = XY ⊗ 1 + 1⊗XY + X ⊗ Y + Y ⊗X + XY ′ ⊗ Y ′′ +

Y ′ ⊗XY ′′ + X ′Y ⊗X ′′ + X ′ ⊗X ′′Y + X ′Y ′ ⊗X ′′Y ′′ .
(2.76)

We then get

φ−(XY ) = −T (φ(XY ))− T (φ−(X) φ(Y ) + φ−(Y ) φ(X) +

φ−(XY ′) φ(Y ′′) + φ−(Y ′) φ(XY ′′) + φ−(X ′Y ) φ(X ′′)

+ φ−(X ′) φ(X ′′Y ) + φ−(X ′Y ′) φ(X ′′Y ′′)) .

(2.77)

Now φ is a homomorphism and we can assume that we have shown φ− to be
multiplicative, φ−(AB) = φ−(A) φ−(B), for deg A + deg B < deg X + deg Y .
This allows us to rewrite (2.77) as

φ−(XY ) = −T (φ(X) φ(Y ) + φ−(X) φ(Y ) + φ−(Y ) φ(X)

+ φ−(X) φ−(Y ′) φ(Y ′′) + φ−(Y ′) φ(X) φ(Y ′′) + φ−(X ′) φ−(Y ) φ(X ′′)

+ φ−(X ′) φ(X ′′) φ(Y ) + φ−(X ′) φ−(Y ′) φ(X ′′) φ(Y ′′)) .
(2.78)

Let us now compute φ−(X) φ−(Y ) using the multiplicativity constraint fulfilled
by T in the form

T (x) T (y) = −T (xy) + T (T (x) y) + T (x T (y)) . (2.79)

We thus get

φ−(X) φ−(Y ) = −T ((φ(X) + φ−(X ′) φ(X ′′)) (φ(Y ) +

φ−(Y ′) φ(Y ′′)) + T (T (φ(X) + φ−(X ′) φ(X ′′)) (φ(Y ) +

φ−(Y ′) φ(Y ′′)) + T ((φ(X) + φ−(X ′) φ(X ′′)) T (φ(Y ) + φ−(Y ′) φ(Y ′′))) ,
(2.80)

by applying (2.79) to x = φ(X) + φ−(X ′) φ(X ′′), y = φ(Y ) + φ−(Y ′) φ(Y ′′).
Since T (x) = −φ−(X), T (y) = −φ−(Y ), we can rewrite (2.80) as

φ−(X) φ−(Y ) = −T (φ(X) φ(Y ) + φ−(X ′) φ(X ′′) φ(Y )

+ φ(X) φ−(Y ′) φ(Y ′′) + φ−(X ′) φ(X ′′) φ−(Y ′) φ(Y ′′))

−T (φ−(X)(φ(Y ) + φ−(Y ′) φ(Y ′′))− T ((φ(X) + φ−(X ′) φ(X ′′)) φ−(Y )) .
(2.81)
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We now compare (2.78) with (2.81). Both of them contain 8 terms of the
form −T (a) and one checks that they correspond pairwise. This yields the
multiplicativity of φ− and hence the validity of (2.74).

We then define φ+ by (2.75). Since φ− is multiplicative, so is φ+. It remains
to check that φ− is an element in G(Q), while φ+ is in G(O). This is clear for
φ− by construction, since it is a pure polar part. In the case of φ+ the result
follows, since we have

φ+(X) = φ(X) +
∑

φ−(X ′)φ(X ′′)− T
(
φ(X) +

∑
φ−(X ′)φ(X ′′)

)
. (2.82)

2

Then the key observation in the CK theory ([31]) is that the formulae (2.74)
(2.75) are in fact identical to the formulae (2.30), (2.31), (2.32) that govern the
combinatorics of renormalization, for G = Difg, upon setting φ = U , φ− = C,
and φ+ = R.

Thus, given a renormalisable theory T in D dimensions, the unrenormalised
theory gives (using DimReg) a loop γ(z) of elements of the group Difg(T ),
associated to the theory (see also Section 2.7 for more details).

The parameter z of the loop γ (z) is a complex variable and γ (z) is mero-
morphic for d = D − z in a neighborhood of D (i.e. defines a corresponding
homomorphism from H to germs of meromorphic functions at D).
The main result of [31] is that the renormalised theory is given by the evaluation
at d = D (i.e. z = 0) of the non-singular part γ+ of the Birkhoff decomposition
of γ,

γ (z) = γ− (z)−1 γ+ (z).

The precise form of the loop γ (depending on a mass parameter µ) will be
discussed below in Section 2.7.

We then have the following statement ([31]):

Theorem 2.6 The following properties hold:

1. There exists a unique meromorphic map γ(z) ∈ Difg(T ), for z ∈ C with
D − z 6= D, whose Γ-coordinates are given by U (Γ)d=D−z.

2. The renormalized value of a physical observable O is obtained by replacing
γ (0) in the perturbative expansion of O by γ+ (0), where

γ (z) = γ− (z)−1 γ+ (z)

is the Birkhoff decomposition of the loop γ (z) around an infinitesimal
circle centered at d = D (i.e. z = 0).

In other words, the renormalized theory is just the evaluation at the integer
dimension d = D of space-time of the holomorphic part γ+ of the Birkhoff
decomposition of γ. This shows that renormalization is a special case of the
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general recipe of multiplicative extraction of finite value given by the Birkhoff
decomposition.

Another remarkable fact in this result is that the same infinite series yields
simultaneously the unrenormalized effective action, the counterterms, and the
renormalized effective action, corresponding to γ, γ−, and γ+, respectively.

2.7 Unit of Mass

In order to perform the extraction of pole part T it is necessary to be a bit
more careful than we were so far in our description of dimensional regulariza-
tion. In fact, when integrating in dimension d = D − z, and comparing the
values obtained for different values of z, it is necessary to respect physical di-
mensions (dimensionality). The general principle is to only apply the operator
T of extraction of the pole part to expressions of a fixed dimensionality, which
is independent of z.

This requires the introduction of an arbitrary unit of mass (or momentum) µ,
to be able to replace in the integration dD−zk by µz dD−zk which is now of a
fixed dimensionality (i.e. massD).

Thus, the loop γ (z) depends on the arbitrary choice of µ. We shall now describe
in more details the Feynman rules in d = (D − z)-dimensions for ϕ3

6 (so that
D = 6) and exhibit this µ-dependence. By definition γµ (z) is obtained by
applying dimensional regularization (Dim-Reg) in the evaluation of the bare
values of Feynman graphs Γ, and the Feynman rules associate an integral

UΓ (p1, . . . , pN) =

∫
dD−z k1 . . . dD−z kL IΓ (p1, . . . , pN , k1, . . . , kL) (2.83)

to every graph Γ, with L the loop number (2.54). We shall formulate them in
Euclidean space-time to eliminate irrelevant singularities on the mass shell and
powers of i =

√
−1. In order to write these rules directly in d = D−z space-time

dimensions, one uses the unit of mass µ and replaces the coupling constant g
which appears in the Lagrangian as the coefficient of ϕ3/3! by µ3−d/2 g. The
effect then is that g is dimensionless for any value of d since the dimension of
the field ϕ is d

2 − 1 in a d-dimensional space-time.

The integrand IΓ (p1, . . . , pN , k1, . . . , kL) contains L internal momenta kj , where
L is the loop number of the graph Γ, and is obtained from the following rules,

• Assign a factor 1
k2+m2 to each internal line.

• Assign a momentum conservation rule to each vertex.

• Assign a factor µ3−d/2 g to each 3-point vertex.

• Assign a factor m2 to each 2-point vertex(0).

• Assign a factor p2 to each 2-point vertex(1).
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The 2-point vertex(0) does not appear in the case of a massless theory, and in
that case one can in fact ignore all two point vertices.
There is, moreover, an overall normalization factor (2π)−dL where L is the loop
number of the graph, i.e. the number of internal momenta.

For instance, for the one-loop graph of (2.24), (2.29), the unrenormalized value
is, up to a multiplicative constant,

UΓ(p) = (4πµ2)3−d/2 g2 Γ(2− d/2)

∫ 1

0

(p2(x− x2) + m2)d/2−2 dx.

Let us now define precisely the character γµ(z) ofH given by the unrenormalized
value of the graphs in Dim-Reg in dimension d = D − z.
Since γµ(z) is a character, it is entirely specified by its value on 1PI graphs.
If we let σ be the external structure of the graph Γ we would like to define
γµ(z) (Γσ) simply by evaluating σ on the test function UΓ (p1, . . . , pN ), but we
need to fulfill two requirements. First we want this evaluation 〈σ, UΓ〉 to be a
pure number, i.e. to be a dimensionless quantity. To achieve this we simply
multiply 〈σ, UΓ〉 by the appropriate power of µ to make it dimensionless.

The second requirement is to ensure that γµ(z) (Γσ) is a monomial of the correct
power of the dimensionless coupling constant g, corresponding to the order of
the graph. This is defined as V3 − (N − 2), where V3 is the number of 3-point
vertices. The order defines a grading of H. To the purpose of fulfilling this
requirement, for a graph with N external legs, it suffices to divide by gN−2,
where g is the coupling constant.

Thus, we let
γµ(z) (Γσ) = g(2−N) µ−B 〈σ, UΓ〉 (2.84)

where B = B (d) is the dimension of 〈σ, UΓ〉.
Using the Feynman rules this dimension is easy to compute and one gets [31]

B =

(
1− N

2

)
d + N + dim σ . (2.85)

Let γµ(z) be the character of H′ obtained by (2.84). We first need to see the
exact µ dependence of this loop. We consider the grading of H′ and G′ given
by the loop number of a graph,

L(Γ) = I − V + 1 = loop number of Γ, (2.86)

where I is the number of internal lines and V the number of vertices and let

θt ∈ Aut G′ , t ∈ R , (2.87)

be the corresponding one parameter group of automorphisms.

Proposition 2.7 The loop γµ(z) fulfills

γetµ(z) = θtz(γµ(z)) ∀ t ∈ R , z = D − d (2.88)
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The simple idea is that each of the L internal integration variables dD−zk is
responsible for a factor of µz by the alteration

dD−zk 7→ µz dD−zk.

Let us check that this fits with the above conventions. Since we are on H′ we
only deal with 1PI graphs with two or three external legs and fixed external
structure. For N = 2 external legs the dimension B of 〈σ, UΓ〉 is equal to 0
since the dimension of the external structures σj of (2.45) is −2. Thus, by the
Feynman rules, at D = 6, with d = 6− z, the µ dependence is given by

µ
z
2 V3

where V3 is the number of 3-point vertices of Γ. One checks that for such graphs
1
2 V3 = L is the loop number as required. Similarly if N = 3 the dimension B
of 〈σ, UΓ〉 is equal to

(
1− 3

2

)
d + 3, d = 6− z so that the µ-dependence is,

µ
z
2 V3 µ−z/2 .

But for such graphs V3 = 2L + 1 and we get µzL as required.
We now reformulate a well known result, the fact that counterterms, once ap-
propriately normalized, are independent of m2 and µ2,

We have ([32]):

Proposition 2.8 The negative part γµ− in the Birkhoff decomposition

γµ(z) = γµ−(z)−1 γµ+(z) (2.89)

satisfies
∂

∂µ
γµ−(z) = 0 . (2.90)

Proof. By Theorem 2.5 and the identification γ = U , γ− = C, γ+ = R, this
amounts to the fact that the counterterms do not depend on the choice of
µ (cf. [20] 7.1.4 p. 170). Indeed the dependence in m2 has in the minimal
subtraction scheme the same origin as the dependence in p2 and we have chosen
the external structure of graphs so that no m2 dependence is left. But then, since
the parameter µ2 has nontrivial dimensionality (mass2), it cannot be involved
any longer. 2

2.8 Expansional

Let H be a Hopf algebra over C and G = SpecH the corresponding affine group
scheme.
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Given a differential field K ⊃ C with differentiation f 7→ f ′ = δ(f), let us
describe at the Hopf algebra level the logarithmic derivative

D(g) = g−1 g′ ∈ g(K) , ∀g ∈ G(K) .

Given g ∈ G(K) one lets g′ = δ(g) be the linear map from H to K defined by

g′(X) = δ(g(X)) , ∀X ∈ H .

One then defines D(g) as the linear map from H to K

D(g) = g−1 ? g′ . (2.91)

One checks that

〈D(g), X Y 〉 = 〈D(g), X〉 ε(Y ) + ε(X) 〈D(g), Y 〉 , ∀X, Y ∈ H ,

so that D(g) ∈ g(K).

In order to write down explicit solutions of G-valued differential equations we
shall use the “expansional”, which is the mathematical formulation of the “time
ordered exponential” of physicists. In the mathematical setting, the time or-
dered exponential can be formulated in terms of the formalism of Chen’s iterated
integrals (cf. [18] [19]). A mathematical formulation of the time ordered expo-
nential as expansional in the operator algebra setting was given by Araki in
[2].

Given a g(C)-valued smooth function α(t) where t ∈ [a, b] ⊂ R is a real parame-
ter, one defines the time ordered exponential or expansional by the equality (cf.
[2])

Te
R

b

a
α(t) dt = 1 +

∞∑

1

∫

a≤s1≤···≤sn≤b

α(s1) · · · α(sn)
∏

dsj , (2.92)

where the product is the product in H∗ and 1 ∈ H∗ is the unit given by the
augmentation ε. One has the following result, which in particular shows how
the expansional only depends on the one form α(t)dt.

Proposition 2.9 The expansional satisfies the following properties:

1. When paired with any X ∈ H the sum (2.92) is finite and the obtained
linear form defines an element of G(C).

2. The expansional (2.92) is the value g(b) at b of the unique solution g(t) ∈
G(C) which takes the value g(a) = 1 at x = a for the differential equation

dg(t) = g(t) α(t) dt . (2.93)
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Proof. The elements α(t) ∈ g viewed as linear forms on H vanish on any element
of degree 0. Thus for X ∈ H of degree n, one has

〈α(s1) · · · α(sm), X〉 = 0 , ∀m > n ,

so that the sum g(b) given by (2.92) is finite.

Let us show that it fulfills (2.93) i.e. that with X as above, one has

∂b 〈g(b), X〉 = 〈g(b) α(b), X〉 .

Indeed, differentiating in b amounts to fix the last variable sn to sn = b.

One can then show that g(b) ∈ G(C), i.e. that

〈g(b), X Y 〉 = 〈g(b), X〉 〈g(b), Y 〉 , ∀X, Y ∈ H ,

for homogeneous elements, by induction on the sum of their degrees. Indeed,
one has, with the notation

∆(X) = X(1) ⊗X(2) = X ⊗ 1 + 1⊗X +
∑

X ′ ⊗X ′′

where only terms of lower degree appear in the last sum,

∂b 〈g(b), X Y 〉 = 〈g(b) α(b), X Y 〉 = 〈g(b)⊗ α(b), ∆X ∆Y 〉 .

Using the derivation property of α(b) one gets,

∂b 〈g(b), X Y 〉 = 〈g(b), X(1) Y 〉 〈α(b), X(2)〉 + 〈g(b), X Y(1)〉 〈α(b), Y(2)〉

and the induction hypothesis applies to get

∂b (〈g(b), X Y 〉 − 〈g(b), X〉 〈g(b), Y 〉) = 0 .

Since g(a) = 1 is a character one thus gets g(b) ∈ G(C).
We already proved 2) so that the proof is complete. 2

The main properties of the expansional in our context are summarized in the
following result.

Proposition 2.10 1) One has

Te
R

c

a
α(t) dt = Te

R

b

a
α(t) dt Te

R

c

b
α(t) dt (2.94)

2) Let Ω ⊂ R2 be an open set and ω = α(s, t)ds + β(s, t)dt, (s, t) ∈ Ω be a flat
g(C)-valued connection i.e. such that

∂s β − ∂t α + [α, β] = 0

then Te
R

1

0
γ∗ω only depends on the homotopy class of the path γ, γ(0) = a,

γ(1) = b.
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Proof. 1) Consider both sides as G(C)-valued functions of c. They both fulfill
equation (2.93) and agree for c = b and are therefore equal.
2) One can for instance use the existence of enough finite dimensional represen-
tations of G to separate the elements of G(C), but it is also an exercise to give
a direct argument. 2

Let K be the field C({z}) of convergent Laurent series in z. Let us define the
monodromy of an element ω ∈ g(K). As explained above we can write G as
the projective limit of linear algebraic groups Gi with finitely generated Hopf
algebrasHi ⊂ H and can assume in fact that each Hi is globally invariant under
the grading Y .
Let us first work with Gi i.e. assume that H is finitely generated. Then the
element ω ∈ g(K) is specified by finitely many elements of K and thus there
exists ρ > 0 such that all elements of K which are involved converge in the
punctured disk ∆∗ with radius ρ. Let then z0 ∈ ∆∗ be a base point, and define
the monodromy by

M = Te
R

1

0
γ∗ω , (2.95)

where γ is a path in the class of the generator of π1(∆
∗, z0). By proposition

2.10 and the flatness of the connection ω, viewed as a connection in two real
variables, it only depends on the homotopy class of γ.
By construction the conjugacy class of M does not depend on the choice of the
base point. When passing to the projective limit one has to take care of the
change of base point, but the condition of trivial monodromy,

M = 1 ,

is well defined at the level of the projective limit G of the groups Gi.
One then has,

Proposition 2.11 Let ω ∈ g(K) have trivial monodromy. Then there exists a
solution g ∈ G(K) of the equation

D(g) = ω . (2.96)

Proof. We view as above G as the projective limit of the Gi and treat the case
of Gi first. With the above notations we let

g(z) = Te
R

z

z0
ω

, (2.97)

independently of the path in ∆∗ from z0 to z. One needs to show that for any
X ∈ H the evaluation

h(z) = 〈g(z), X〉
is a convergent Laurent series in ∆∗, i.e. that h ∈ K. It follows, from the same
property for ω(z) and the finiteness (proposition 2.9) of the number of non-zero
terms in the pairing with X of the infinite sum (2.92) defining g(z), that zN h(z)
is bounded for N large enough. Moreover, by proposition 2.9, one has ∂h = 0,
which gives h ∈ K.
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Finally, the second part of Proposition 2.9 shows that one gets a solution of
(2.96). To pass to the projective limit one constructs by induction a projec-
tive system of solutions gi ∈ Gi(K) modifying the solution in Gi+1(K) by left
multiplication by an element of Gi+1(C) so that it projects on gi. 2

The simplest example shows that the condition of triviality of the monodromy
is not superfluous. For instance, let Ga be the additive group, i.e. the group
scheme with Hopf algebra the algebra C[X ] of polynomials in one variable X
and coproduct given by,

∆X = X ⊗ 1 + 1⊗X .

Then, with K the field C({z}) of convergent Laurent series in z, one has
Ga(K) = K and the logarithmic derivative D (2.91) is just given by D(f) = f ′

for f ∈ K. The residue of ω ∈ K is then a non-trivial obstruction to the
existence of solutions of D(f) = ω.

2.9 Renormalization group

Another result of the CK theory of renormalization in [32] shows that the renor-
malization group appears in a conceptual manner from the geometric point of
view described in Section 2.6. It is shown in [32] that the mathematical formal-
ism recalled here in the previous section provides a way to lift the usual notions
of β-function and renormalization group from the space of coupling constants
of the theory T to the group Difg′(T ).

The principle at work can be summarized as

Divergence =⇒ Ambiguity. (2.98)

Let us explain in what sense it is the divergence of the theory that generates
the renormalization group as a group of ambiguity. As we saw in the previous
section, the regularization process requires the introduction of an arbitrary unit
of mass µ. The way the theory (when viewed as an element of the group Difg′(T )
by evaluation of the positive part of the Birkhoff decomposition at z = 0)
depends on the choice of µ is through the grading rescaled by z = D − d (cf.
Proposition 2.7). If the resulting expressions in z were regular at z = 0, this
dependence would disappear at z = 0. As we shall see below, this dependence
will in fact still be present and generate a one parameter subgroup Ft = etβ of
Difg′(T ) as a group of ambiguity of the physical theory.

After recalling the results of [32] we shall go further and improve on the scat-
tering formula (Theorem 2.15) and give an explicit formula (Theorem 2.18) for
the families γµ(z) of Difg′(T )-valued loops which fulfill the properties proved in
Propositions 2.7 and 2.8, in the context of quantum field theory, namely

γetµ(z) = θtz(γµ(z)) ∀ t ∈ R , (2.99)
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and
∂

∂µ
γµ−(z) = 0 . (2.100)

where γµ− is the negative piece of the Birkhoff decomposition of γµ.

The discussion which follows will be quite general, the framework is given by
a complex graded pro-unipotent Lie group G(C), which we can think of as the
complex points of an affine group scheme G and is identified with Difg′(T ) in
the context above. We let LieG(C) be its Lie algebra and we let θt be the one
parameter group of automorphisms implementing the grading Y .

We then consider the Lie group given by the semidirect product

G(C) oθ R (2.101)

of G(C) by the action of the grading θt. The Lie algebra of (2.101) has an
additional generator satisfying

[Z0, X ] = Y (X) ∀X ∈ LieG(C) . (2.102)

Let then γµ(z) be a family of G(C)-valued loops which fulfill (2.99) and (2.100).
Since γµ− is independent of µ we denote it simply by γ−. One has the following
which we recall from [32]:

Lemma 2.12

γ−(z) θtz(γ−(z)−1) is regular at z = 0 . (2.103)

Moreover, the limit

Ft = limz→0 γ−(z) θtz(γ−(z)−1) (2.104)

defines a 1-parameter group, which depends polynomially on t when evaluated
on an element x ∈ H.

Proof. Notice first that both γ−(z) γµ(z) and y(z) = γ−(z) θ−tz(γµ(z)) are
regular at z = 0, as well as θtz(y(z)) = θtz(γ−(z)) γµ(z), so that the ratio
γ−(z) θtz(γ−(z)−1) is regular at z = 0.

We know thus that, for any t ∈ R, the limit

lim
z→0
〈γ−(z) θtz(γ−(z)−1), x〉 (2.105)

exists, for any x ∈ H. We let the grading θt act by automorphisms of both H
and the dual algebra H∗ so that

〈θt(u), x〉 = 〈u, θt(x)〉 , ∀x ∈ H , u ∈ H∗ .

We then have

〈γ−(z) θtz(γ−(z)−1), x〉 = 〈γ−(z)−1 ⊗ γ−(z)−1, (S ⊗ θtz) ∆x〉 , (2.106)
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so that, writing the coproduct ∆x =
∑

x(1) ⊗ x(2) as a sum of homogeneous
elements, we express (2.106) as a sum of terms

〈γ−(z)−1, S x(1)〉 〈γ−(z)−1, θtz x(2)〉 = P1

(
1

z

)
ektz P2

(
1

z

)
, (2.107)

for polynomials P1, P2.

The existence of the limit (2.105) means that the sum (2.106) of these terms is
holomorphic at z = 0. Replacing the exponentials ektz by their Taylor expansion
at z = 0 shows that the value of (2.106) at z = 0,

〈Ft, x〉 = lim
z→0
〈γ−(z) θtz(γ−(z)−1), x〉 ,

is a polynomial in t.

Let us check that Ft is a one parameter subgroup

Ft ∈ G(C) ∀t ∈ R, with Fs+t = Fs Ft ∀s, t ∈ R. (2.108)

In fact, first notice that the group G(C) is a topological group for the topology
of simple convergence, i.e. that

γn → γ iff 〈γn, x〉 → 〈γ, x〉 ∀x ∈ H . (2.109)

Moreover, using the first part of Lemma 2.12, one gets

θt1z(γ−(z) θt2z(γ−(z)−1))→ Ft2 when z → 0 . (2.110)

We then have
Ft1+t2 = lim

z→0
γ−(z) θ(t1+t2)z (γ−(z)−1)

= lim
z→0

γ−(z) θt1z(γ−(z)−1) θt1z(γ−(z) θt2z(γ−(z)−1)) = Ft1 Ft2 .

2

As shown in [32] and recalled below (cf. Lemma 2.14) the generator β =(
d
dt Ft

)
t=0

of this one parameter group is related to the residue of γ,

Resz=0γ = −
(

∂

∂u
γ−

(
1

u

))

u=0

, (2.111)

by the simple equation
β = Y Res γ , (2.112)

where Y =
(

d
dt θt

)
t=0

is the grading.

When applied to the finite renormalized theory, the one parameter group (2.108)
acts as the renormalization group, rescaling the unit of mass µ. One has (see
[32]):

Proposition 2.13 The finite value γ+
µ (0) of the Birkhoff decomposition satis-

fies
γ+

et µ(0) = Ft γ+
µ (0) , ∀t ∈ R. (2.113)
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Indeed γ+
µ (0) is the regular value of γ−(z) γµ(z) at z = 0 and γ+

et µ(0) that of

γ−(z) θtz(γµ(z)) or equivalently of θ−tz(γ−(z)) γµ(z) at z = 0. But the ratio

θ−tz(γ−(z)) γ−(z)−1 → Ft

when z → 0, whence the result. 2

In terms of the infinitesimal generator β, equation (2.113) can be rephrased as
the equation

µ
∂

∂µ
γ+

µ (0) = β γ+
µ (0) . (2.114)

Notice that, for a loop γµ(z) regular at z = 0 and fulfilling (2.99), the value γµ(0)
is independent of µ, hence the presence of the divergence is the real source of the
ambiguity manifest in the renormalization group equation (2.114), as claimed
in (2.98).

We now take the key step in the characterization of loops fulfilling (2.99) and
(2.100) and reproduce in full the following argument from [32]. Let H∗ denote
the linear dual of H.

Lemma 2.14 Let z → γ−(z) ∈ G(C) satisfy (2.103) with

γ−(z)−1 = 1 +

∞∑

n=1

dn

zn
, (2.115)

where we have dn ∈ H∗. One then has

Y dn+1 = dn β ∀n ≥ 1 , Y (d1) = β .

Proof. Let x ∈ H and let us show that

〈β, x〉 = lim
z→0

z〈γ−(z)−1 ⊗ γ−(z)−1, (S ⊗ Y ) ∆(x)〉 .

We know by (2.104) and (2.106) that when z → 0,

〈γ−(z)−1 ⊗ γ−(z)−1, (S ⊗ θtz) ∆(x)〉 → 〈Ft, x〉, (2.116)

where the left hand side is, by (2.107), a finite sum S =
∑

Pk(z−1) ektz for
polynomials Pk. Let N be the maximal degree of the Pk, the regularity of S at
z = 0 is unaltered if one replaces the ektz by their Taylor expansion to order N
in z. The obtained expression is a polynomial in t with coefficients which are
Laurent polynomials in z. Since the regularity at z = 0 holds for all values of t
these coefficients are all regular at z = 0 i.e. they are polynomials in z. Thus
the left hand side of (2.116) is a uniform family of holomorphic functions of t in,
say, |t| ≤ 1, and its derivative ∂tS at t = 0 converges to ∂t〈Ft, x〉 when z → 0,

z 〈γ−(z)−1 ⊗ γ−(z)−1, (S ⊗ Y ) ∆(x)〉 → 〈β, x〉.
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Now the function z → z 〈γ−(z)−1 ⊗ γ−(z)−1, (S ⊗ Y ) ∆x〉 is holomorphic for
z ∈ C\{0} and also at z =∞ ∈ P1(C), since γ−(∞) = 1 so that Y (γ−(∞)) = 0.
Moreover, by the above it is also holomorphic at z = 0 and is therefore a
constant, which gives

〈γ−(z)−1 ⊗ γ−(z)−1, (S ⊗ Y ) ∆(x)〉 =
1

z
〈β, x〉 .

Using the product in H∗, this means that

γ−(z) Y (γ−(z)−1) =
1

z
β .

Multiplying by γ−(z)−1 on the left, we get

Y (γ−(z)−1) =
1

z
γ−(z)−1 β .

One has Y (γ−(z)−1) =

∞∑

n=1

Y (dn)
zn and 1

z γ−(z)−1 β = 1
z β +

∞∑

n=1

1
zn+1 dn β which

gives the desired equality. 2

In particular we get Y (d1) = β and, since d1 is the residue Resϕ, this shows
that β is uniquely determined by the residue of γ−(z)−1.

The following result (cf. [32]) shows that the higher pole structure of the diver-
gences is uniquely determined by their residue and can be seen as a strong form
of the t’Hooft relations [72].

Theorem 2.15 The negative part γ−(z) of the Birkhoff decomposition is com-
pletely determined by the residue, through the scattering formula

γ−(z) = lim
t→∞

e−t( β
z
+Z0) etZ0 . (2.117)

Both factors in the right hand side belong to the semi-direct product (2.101),
while the ratio (2.117) belongs to G(C).

We reproduce here the proof of Theorem 2.15 given in [32].

Proof. We endow H∗ with the topology of simple convergence on H. Let us
first show, using Lemma 2.14, that the coefficients dn of (2.115) are given by
iterated integrals of the form

dn =

∫

s1≥s2≥···≥sn≥0

θ−s1(β) θ−s2 (β) . . . θ−sn
(β) Π dsi . (2.118)

For n = 1, this just means that

d1 =

∫ ∞

0

θ−s(β) ds ,
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which follows from β = Y (d1) and the equality

Y −1(x) =

∫ ∞

0

θ−s(x) ds ∀x ∈ H , ε(x) = 0 . (2.119)

We see from (2.119) that, for α, α′ ∈ H∗ such that

Y (α) = α′ , 〈α, 1〉 = 〈α′, 1〉 = 0,

one has

α =

∫ ∞

0

θ−s(α
′) ds .

Combining this equality with Lemma 2.14 and the fact that θs ∈ AutH∗ is an
automorphism, gives an inductive proof of (2.118). The meaning of this formula
should be clear: we pair both sides with x ∈ H, and let

∆(n−1) x =
∑

x(1) ⊗ x(2) ⊗ · · · ⊗ x(n) .

Then the right hand side of (2.118) is just

∫

s1≥···≥sn≥0

〈β⊗· · ·⊗β , θ−s1(x(1))⊗θ−s2(x(2)) · · ·⊗θ−sn
(x(n))〉Π dsi (2.120)

and the convergence of the multiple integral is exponential, since

〈β, θ−s(x(i))〉 = O (e−s) for s→ +∞ .

We see, moreover, that, if x is homogeneous of degree deg(x) and if n > deg(x),
then at least one of the x(i) has degree 0, so that 〈β, θ−s(x(i))〉 = 0 and (2.120)
gives 0. This shows that the pairing of γ−(z)−1 with x ∈ H only involves finitely
many non zero terms in the formula

〈γ−(z)−1, x〉 = ε(x) +

∞∑

n=1

1

zn
〈dn, x〉 .

Thus to get formula (2.117), we dont need to worry about possible convergence
problems of the series in n. The proof of (2.117) involves the expansional formula
(cf. [2])

e(A+B) =

∞∑

n=0

∫
P

uj=1, uj≥0

eu0A Beu1A . . . BeunA Π duj .

We apply this with A = tZ0, B = tβ, t > 0 and get

et(β+Z0) =

∞∑

n=0

∫
P

vj=t, vj≥0

ev0Z0 βev1Z0 β . . . βevnZ0 Π dvj .
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Thus, with s1 = t−v0, s1−s2 = v1, . . . , sn−1−sn = vn−1, sn = vn and replacing
β by 1

z β, we obtain

et(β/z+Z0) =

∞∑

n=0

1

zn

∫

t≥s1≥s2≥···≥sn≥0

etZ0 θ−s1(β) . . . θ−sn
(β) Π dsi.

Multiplying by e−tZ0 on the left and using (2.120), we obtain

γ−(z)−1 = lim
t→∞

e−tZ0 et(β/z+Z0) .

2

One inconvenient of formula (2.117) is that it hides the geometric reason for
the convergence of the right hand side when t → ∞. This convergence is
in fact related to the role of the horocycle foliation as the stable foliation of
the geodesic flow. The simplest non-trivial case, which illustrates an interesting
analogy between the renormalization group and the horocycle flow, was analyzed
in [42].

This suggests to use the formalism developed in section 2.8 and express directly
the negative part γ−(z) of the Birkhoff decomposition as an expansional us-
ing (2.115) combined with the iterated integral expression (2.118). This also
amounts in fact to analyze the convergence of

X(t) = e−t( β
z
+Z0) etZ0 ∈ G(C) oθ R

in the following manner.

By construction, X(t) fulfills a simple differential equation as follows.

Lemma 2.16 Let X(t) = e−t( β
z
+Z0) etZ0 . Then, for all t,

X(t)−1dX(t) = −1

z
θ−t(β) dt

Proof. One has X(t) = etA etB so that

dX(t) = (etA A etB + etA B etB)dt

One has A + B = −(β
z + Z0) + Z0 = −β

z and

etA (−β

z
) etB = etA etB(−1

z
θ−t(β))

which gives the result. 2

With the notations of section 2.8 we can thus rewrite Theorem 2.15 in the
following form.
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Corollary 2.17 The negative part γ−(z) of the Birkhoff decomposition is given
by

γ−(z) = Te−1
z

R

∞

0
θ−t(β)dt (2.121)

This formulation is very suggestive of:

• The convergence of the ordered product.

• The value of the residue.

• The special case when β is an eigenvector for the grading.

• The regularity in 1
z .

We now show that we obtain the general solution to equations (2.99) and (2.100).
For any loop γreg(z) which is regular at z = 0 one obtains an easy solution by
setting γµ(z) = θz log µ(γreg(z)). The following result shows that the most
general solution depends in fact of an additional parameter β in the Lie algebra
of G(C).

Theorem 2.18 Let γµ(z) be a family of G(C)-valued loops fulfilling (2.99) and
(2.100). Then there exists a unique β ∈ Lie G(C) and a loop γreg(z) regular at
z = 0 such that

γµ(z) = Te− 1
z

R

−z log µ

∞
θ−t(β)dt θz log µ(γreg(z)) . (2.122)

Conversely, for any β and regular loop γreg(z) the expression (2.122) gives a
solution to equations (2.99) and (2.100).
The Birkhoff decomposition of the loop γµ(z) is given by

γ+
µ (z) = Te− 1

z

R

−z log µ
0

θ−t(β)dt θz log µ(γreg(z)) ,

γ−
µ (z) = Te−1

z

R

∞

0
θ−t(β)dt .

(2.123)

Proof. Let γµ(z) be a family of G(C)-valued loops fulfilling (2.99) and (2.100).
Consider the loops αµ(z) given by

αµ(z) = θsz(γ−(z)−1) , s = log µ

which fulfill (2.99) by construction so that αes µ(z) = θsz(αµ(z)). The ratio
αµ(z)−1 γµ(z) still fulfills (2.99) and is moreover regular at z = 0. Thus there
is a unique loop γreg(z) regular at z = 0 such that

αµ(z)−1 γµ(z) = θz log µ(γreg(z)) .

We can thus assume that γµ(z) = αµ(z). By corollary 2.17, applying θsz to
both sides and using Proposition 2.10 to change variables in the integral, one
gets

γµ(z)−1 = Te
− 1

z

R

∞

−sz
θ−t(β)dt (2.124)
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and this proves the first statement of the theorem using the appropriate notation
for the inverse.

For the second part we can again assume γreg(z) = 1 and let γµ(z) be given
by (2.124). Note that the basic properties of the time ordered exponential,
Proposition (2.10), show that

γµ(z)−1 = Te
− 1

z

R

0

−sz
θ−t(β)dt Te−

1
z

R

∞

0
θ−t(β)dt (2.125)

so that
γµ(z)−1 = Te

− 1
z

R

0

−sz
θ−t(β)dt γ−(z) (2.126)

where γ−(z) is a regular function of 1/z.

By Proposition (2.10) one then obtains

Te
− 1

z

R

0

−sz
θ−t(β)dt Te−

1
z

R

−sz

0
θ−t(β)dt = 1 (2.127)

We thus get

γ+
µ (z) = Te−1

z

R

−sz

0
θ−t(β)dt

Indeed taking the inverse of both sides in (2.126), it is enough to check the
regularity of the given expression for γ+

µ (z) at z = 0. One has in fact

lim
z→0

Te−
1
z

R

−sz

0
θ−t(β)dt = esβ . (2.128)

2

In the physics context, in order to preserve the homogeneity of the dimensionful
variable µ, it is better to replace everywhere µ by µ/λ in the right hand side of
the formulae of Theorem 2.18, where λ is an arbitrarily chosen unit.

2.10 Diffeographisms and diffeomorphisms

Up to what we described in Section 2.9, perturbative renormalization is for-
mulated in terms of the group G = Difg(T ), whose construction is still based
on the Feynman graphs of the theory T . This does not completely clarify the
nature of the renormalization process.

Two successive steps provide a solution to this problem. The first, which we
discuss in this section, is part of the CK theory and consists of the relation
established in [32] between the group Difg(T ) and the group of formal diffeo-
morphisms. The other will be the main result of the following sections, namely
the construction of a universal affine group scheme U , independent of the phys-
ical theory, that maps to each particular G = Difg(T ) and suffices to achieve
the renormalization of the theory in the minimal subtraction scheme.

The extreme complexity of the computations required for the tranverse index
formula for foliations led to the introduction (Connes–Moscovici [39]) of the Hopf
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algebra of transverse geometry. This is neither commutative nor cocommutative,
but is intimately related to the group of formal diffeomorphisms, whose Lie
algebra appears from the Milnor-Moore theorem (cf. [92]) applied to a large
commutative subalgebra. A motivation for the CK work on renormalization was
in fact, since the beginning, the appearance of intriguing similarities between the
Kreimer Hopf algebra of rooted trees in [79] and the Hopf algebra of transverse
geometry introduced in [39].

Consider the group of formal diffeomorphisms ϕ of C tangent to the identity,
i.e. satisfying

ϕ(0) = 0 , ϕ′(0) = id . (2.129)

Let Hdiff denote its Hopf algebra of coordinates. This has generators an satis-
fying

ϕ(x) = x +
∑

n≥2

an(ϕ) xn. (2.130)

The coproduct in Hdiff is defined by

〈∆an , ϕ1 ⊗ ϕ2〉 = an(ϕ2 ◦ ϕ1). (2.131)

We describe then the result of [32], specializing to the massless case and again
taking T = ϕ3

6, the ϕ3 theory with D = 6, as a sufficiently general illustrative
example. When, by rescaling the field, one rewrites the term of (2.26) with the
change of variable

1

2
(∂µφ)2(1− δZ) ;

1

2
(∂µφ̃)2,

one obtains a corresponding formula for the effective coupling constant, of the
form

geff =


g +

∑
g2`+1 Γ

S(Γ)





1−

∑
g2` Γ

S(Γ)




−3/2

, (2.132)

thought of as a power series (in g) of elements of the Hopf algebra H = H(ϕ3
6).

Here both g Z1 = g + δg and the field strength renormalization Z3 are thought
of as power series (in g) of elements of the Hopf algebra H.

Then one has the following result ([32]):

Theorem 2.19 The expression (2.132) defines a Hopf algebra homomorphism

Φ : Hdiff
geff−→ H , (2.133)

from the Hopf algebra Hdiff of coordinates on the group of formal diffeomor-
phisms of C satisfying (2.129) to the CK Hopf algebra H of the massless theory.
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The Hopf algebra homomorphism (2.133) is obtained by considering the formal
series (2.132) expressing the effective coupling constant

geff(g) = g +
∑

n≥2

αn gn αn ∈ H, (2.134)

where all the coefficients α2n = 0 and the α2n+1 are finite linear combinations
of products of graphs, so that

α2n+1 ∈ H ∀n ≥ 1.

The homomorphism (2.133) at the level of Hopf algebras, and the corresponding
group homomorphism (2.136) from G to the group of formal diffeomorphisms
Diff(C), are obtained then by assigning

Φ(an) = αn. (2.135)

The transposed group homomorphism

Difg(ϕ3
6)

ρ−→ Diff(C) (2.136)

lands in the subgroup of odd formal diffeomorphisms,

ϕ(−x) = −ϕ(x) ∀x . (2.137)

The physical significance of (2.133) is transparent: it defines a natural action
of Difg(ϕ3

6) by (formal) diffeomorphisms on the coupling constant. The image
under ρ of β = Y Res γ is the usual β-function of the coupling constant g.

The Birkhoff decomposition can then be formulated directly in the group of
formal diffeomorphisms of the space of coupling constants.

The result can be stated as follows ([32]):

Theorem 2.20 Let the unrenormalized effective coupling constant geff(z) be
viewed as a formal power series in g and let

geff(z) = geff+
(z) (geff−

(z))−1 (2.138)

be its (opposite) Birkhoff decomposition in the group of formal diffeomorphisms.
Then the loop geff−

(z) is the bare coupling constant and geff+
(0) is the renor-

malized effective coupling.

This result is now, in its statement, no longer depending upon our group Difg
or the Hopf algebra H, though of course the proof makes heavy use of the above
ingredients. It is a challenge to physicists to find a direct proof of this result.
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2.11 Riemann–Hilbert problem

Before we present our main result formulating perturbative renormalization as a
Riemann–Hilbert correspondence, we recall in this section several standard facts
about the Riemann–Hilbert problem, both in the regular singular case and in
the irregular singular case. This will prepare the ground for our understanding
of renormalization and of the renormalization group in these terms.

In its original formulation, Hilbert’s 21st problem is a reconstruction problem for
differential equations from the data of their monodromy representation. Namely,
the problem asks whether there always exists a linear differential equation of
Fuchsian type on P1(C) with specified singular points and specified monodromy.

More precisely, consider an algebraic linear ordinary differential equation, in the
form of a system of rank n

d

dz
f(z) + A(z)f(z) = 0 (2.139)

on some open set U = P1(C) r {a1, . . . ar}, where A(z) is an n × n matrix of
rational functions on U . In particular, this includes the case of a linear scalar
nth order differential equation.

The system (2.139) is Fuchsian if A(z) has a pole at ai of order at most one,
for all the points {a1, . . . ar}. Assuming that all ai 6= ∞, this means a system
(2.139) with

A(z) =
r∑

i=1

Ai

z − ai
, (2.140)

where the complex matrices Ai satisfy the additional condition

r∑

i=1

Ai = 0

to avoid singularities at infinity.

The space S of germs of holomorphic solutions of (2.139) at a point z0 ∈ U is an
n-dimensional complex vector space. Moreover, given any element ` ∈ π1(U, z0),
analytic continuation along a loop representing the homotopy class ` defines a
linear automorphism of S, which only depends on the homotopy class `. This
defines the monodromy representation ρ : π1(U, z0)→ Aut(S) of the differential
system (2.139).

The Hilbert 21st problem then asks whether any finite dimensional complex lin-
ear representation of π1(U, z0) is the monodromy representation of a differential
system (2.139) with Fuchsian singularities at the points of P1(C) r U .

2.11.1 Regular-singular case

Although the problem in this form was solved negatively by Bolibruch in 1989
(cf. [1]), the original formulation of the Riemann–Hilbert problem was also given
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in terms of a different but sufficiently close condition on the differential equation
(2.139), with which the problem does admit a positive answer, not just in the
case of the projective line, but in much greater generality. It is sufficient to relax
the Fuchsian condition on (2.139) to the notion of regular singular points. The
regularity condition at a singular point ai ∈ P1(C) is a growth condition on the
solutions, namely all solutions in any strict angular sector centered at ai have
at most polynomial growth in 1/|z− ai|. The system (2.139) is regular singular
if every ai ∈ P1(C) r U is a regular singular point.

An order n differential equation written in the form

δn f +
∑

k<n

ak δk f = 0

where δ = z d
dz , is regular singular at 0 iff all the functions ak(z) are regular at

z = 0 (Fuchs criterion).

For example, the two singular points x = ±Λ of the prolate spheroidal wave
equation

(
d

dx
(x2 − Λ2)

d

dx
+ Λ2 x2) f = 0

are regular singular since one can write the equation in the variable z = x − Λ
in the form

δ2 f +
z

z + 2 Λ
δ f + Λ2 z (Λ + z)2

z + 2 Λ
f = 0 .

Though for scalar equations the Fuchsian and regular singular conditions are
equivalent, the Fuchsian condition is in general a stronger requirement than the
regular singular.

In connection with the theory of renormalization, we look more closely at the
regular singular Riemann–Hilbert problem on P1(C). In this particular case,
the solution to the problem is given by Plemelj’s theorem (cf. [1] §3). The
argument first produces a system with the assigned monodromy on U , where
in principle an analytic solution has no constraint on the behavior at the sin-
gularities. Then, one restricts to a local problem in small punctured disks ∆∗

around the singularities, for which a system exists with the prescribed behavior
of solutions at the origin. The global trivialization of the holomorphic bundle
on U determined by the monodromy datum yields the patching of these local
problems that produces a global solution with the correct growth condition at
the singularities.

More precisely (cf. e.g. [1] §3), we denote by Ũ the universal cover of U , with
projection p(z̃) = z and group of deck transformation Γ ' π1(U, x0). For
G = GLn(C), and a given monodromy representation ρ : Γ→ G, one considers
the principal G-bundle P over U ,

P = Ũ ×G/ ∼ (z̃, g) ∼ (`z̃, ρ(`)g), ∀` ∈ Γ. (2.141)

Consider the global section

ξ : Ũ → P, ξ(z̃) = (z̃, 1)/ ∼ (2.142)
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of the pullback of P to Ũ . This satisfies

ξ(z̃) = ξ(` z̃) ρ(`), ∀` ∈ Γ.

As a holomorphic bundle P admits a global trivialization on U , which is given
by a global holomorphic section γU . Thus, we can write ξ(z̃) = γU (z)σ(z̃), for
some holomorphic map σ : Ũ → G, so that we have

σ(z̃) = γU (z)−1 ξ(z̃). (2.143)

This is the matrix of solutions to a differential system (2.139) with specified
monodromy, where

A(z̃) = −dσ(z̃)

dz
σ(z̃)−1 (2.144)

satisfies A(z̃) = A(`z̃) for all ` ∈ Γ, hence it defines the A(z) on U as in
(2.139). The prescription (2.144) gives the flat connection on P expressed in the
trivialization given by γU . Due to the arbitrariness in the choice of the section
γU , the differential system defined this way does not have any restriction on
the behavior at the singularities. One can correct for that by looking at the
local Riemann–Hilbert problem near the singular points and using the Birkhoff
decomposition of loops.

2.11.2 Local Riemann–Hilbert problem and Birkhoff de-

composition

Consider a small disk ∆ around a singular point, say z = 0, and let ∆∗ = ∆r{0}.
Let V be a connected component of the preimage p−1(∆∗) in Ũ . Let ` be the
element of Γ obtained by lifting to V the canonical generator of the fundamental
group Z of ∆∗. One has ` V = V and one can identify the restriction of p to V
with the universal cover (log r, θ) → reiθ of ∆∗. Let then ρ(`) ∈ G = GLn(C)
be the monodromy. Let η be such that

exp(2πi η) = ρ(`). (2.145)

Consider
γ∆(z̃) = exp(η log r) exp(η iθ) , (2.146)

as a map from V to G = GLn(C). Then with the above notations the ratio
σ(z̃)γ∆(z̃)−1 drops down to a holomorphic map from ∆∗ to G = GLn(C). This
gives a G-valued loop γ(z) defined on ∆∗. This loop will have a factorization of
the form (2.67), with a possibly nontrivial diagonal term (2.68). We can use the
negative part γ−, which is holomorphic away from 0, to correct the local frame
γU so that the singularity of (2.144) at 0 is now a regular singularity, while the
behaviour at the other singularities has been unaltered.

When there are several singular points, we consider a small disk ∆i around each
ai, for P1(C) r U = {a1, . . . , an}. The process described above can be applied
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repeatedly to each singular point, as the negative parts γ−
i are regular away

from ai. Thus, the solution of the Riemann–Hilbert problem is given by (2.143)
with a new frame which is γU corrected by the product of the γ−

i . Then (2.144)
has the right behavior at the singularity.

The trivial principal G bundle on each ∆i can be patched to the bundle P
on U to give a holomorphic principal G-bundle P on P1(C), with transition
functions given by the loops γi with values in G. The bundle P admits a global
meromorphic section. If it is holomorphically trivial (this case corresponds to
the Fuchsian Riemann–Hilbert problem), then it admits a global holomorphic
section, while when P is not holomorphically trivial, the Birkhoff decompositions
only determine a meromorphic section and this yields a regular singular equation
(2.144).

This procedure explains the relation between the Birkhoff decomposition and
the classical (regular-singular) Riemann–Hilbert problem, namely, the negative
part of the Birkhoff decomposition can be used to correct the behavior of solu-
tions near the singularities, without introducing further singularities elsewhere.
We’ll see, however, that in the case of renormalization, one has to consider a
more general case of the Riemann–Hilbert problem, which is no longer regular-
singular.

2.11.3 Geometric formulation

In the regular singular version, the Riemann-Hilbert problem can be formulated
in a more intrinsic form, for U a punctured Riemann surface or more generally
a smooth quasi-projective variety over C. The data of the differential system
(2.139) are expressed as a pair (M,∇) of a locally free coherent sheaf on U with
a connection

∇ : M →M ⊗ Ω1
U/C. (2.147)

In the case of U ⊂ P1(C), this is equivalent to the previous formulation with
M ∼= On

U and
∇f = df + A(z)fdz. (2.148)

The condition of regular singularities becomes the request that there exists an
algebraic extension (M̄, ∇̄) of the data (M,∇) to a smooth projective variety
X , where U embeds as a Zariski open set, with X r U a union of divisors D
with normal crossing, so that the extended connection ∇̄ has log singularities,

∇̄ : M̄ → M̄ ⊗ Ω1
X/C(log D). (2.149)

In Deligne’s work [44] in 1970, the geometric point of view in terms of the data
(M,∇), was used to extend to higher dimensions the type of argument above
based on solving the local Riemann–Hilbert problem around the divisor of the
prescribed singularities and patching it to the analytic solution on the comple-
ment (cf. the survey given in [74]). From a finite dimensional complex linear
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representation of the fundamental group one obtains a local system L on U .
This determines a unique analytic solution (M,∇) on U , which in principle has
no constraint on the behavior at the singularities. However, by restricting to a
local problem in small polydisks around the singularities divisor, one can show
that (M,∇) does extend to a (M̄, ∇̄) with the desired property. The patch-
ing problem becomes more complicated in higher dimension because one can
move along components of the divisor. The Riemann–Hilbert correspondence,
that is, the correspondence constructed this way between finite dimensional
complex linear representations of the fundamental group and algebraic linear
differential systems with regular singularities, is in fact an equivalence of cat-
egories. This categorical viewpoint leads to far reaching generalizations of the
Riemann–Hilbert correspondence (cf. [87] and e.g. the surveys [84] and [61] §8),
formulated as an equivalence of derived categories between regular holonomic
D-modules and perverse sheaves.

In any case, the basic philosophy underlying Riemann–Hilbert can be summa-
rized as follows. Just like the index theorem describes a correspondence between
certain topological and analytic data, the Riemann–Hilbert correspondence con-
sists of an explicit equivalence between suitable classes of analytic data (differ-
ential systems, D-modules) and representation theoretic or algebro-geometric
data (monodromy, perverse sheaves), and it appears naturally in a variety of
contexts4.

2.11.4 Irregular case

The next aspect of the Riemann–Hilbert problem, which is relevant to the the-
ory of renormalization is what happens to the Riemann–Hilbert correspondence
when one drops the regular singular condition. In this case, it is immediately
clear by looking at very simple examples that finite dimensional complex lin-
ear representations of the fundamental group no longer suffice to distinguish
equations whose solutions can have very different analytic behavior at the sin-
gularities but equal monodromy.

For example, consider the differential equation

δf +
1

z
f = 0, (2.150)

with the usual notation δ = z d
dz . The Fuchs criterion immediately shows that

it is not regular-singular. It is also not hard to see that the equation has trivial
monodromy, which shows that the monodromy is no longer sufficient to deter-
mine the system in the irregular case. The equation (2.150) has differential
Galois group C∗ 5.

Differential equations of the form (2.139) satisfying the regular singular condi-
tions are extremely special. For instance, in terms of the Newton polygon of

4Grothendieck refers to Riemann–Hilbert as le théorème du bon Dieu.
5See below in this section for a discussion of the differential Galois group.
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Figure 2.2: Newton polygons

the equation, the singular point is regular if the polygon has only one side with
zero slope and is irregular otherwise (cf. Figure 2.2).

There are different possible approaches to the irregular Riemann–Hilbert corre-
spondence. The setting that is closest to what is needed in the theory of renor-
malization was developed by Martinet and Ramis [88], by replacing the funda-
mental group with a wild fundamental group, which arises from the asymptotic
theory of divergent series and differential Galois theory. In the representation
datum of the Riemann–Hilbert correspondence, in addition to the monodromy,
this group contains at the formal level (perturbative) an exponential torus re-
lated to differential Galois theory (cf. [101] §3 and [102]). Moreover, at the non-
formal level, which we discuss in Section 2.17, it also incorporates the Stokes’
phenomena related to resummation of divergent series (cf. [88]).

As in the case of the usual Riemann–Hilbert correspondence of [44], the problem
can be first reduced to a local problem on a punctured disk and then patched to
yield the global case. In particular, for the purpose of renormalization, we are
only interested in the local version of the irregular Riemann–Hilbert correspon-
dence, in a small punctured disk ∆∗ in the complex plane around a singularity
z = 0.

At the formal level, one is working over the differential field of formal complex
Laurent series C((z)) = C[[z]][z−1], with differentiation δ = z d

dz , while at the
non-formal level one considers the subfield C({z}) of convergent Laurent series
and implements methods of resummation of divergent solutions of (2.139), with

A ∈ End(n, C({z})). (2.151)

For the purpose of the application to the theory of renormalization that we
present in the following sections, the structure of the wild fundamental group
of [88] is best understood in terms of differential Galois theory (cf. [102]). In
this setting, one works over a differential field (K, δ), such that the field of
constants k = Ker(δ) is an algebraically closed field of characteristic zero. Given
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a differential system δf = Af , its Picard–Vessiot ring is a K-algebra with a
differentiation extending δ. As a differential algebra it is simple and is generated
over K by the entries and the inverse determinant of a fundamental matrix for
the equation δf = Af . The differential Galois group of the differential system
is given by the automorphisms of the Picard–Vessiot ring commuting with δ.

The set of all possible such differential systems (differential modules over K) has
the structure of a neutral Tannakian category (cf. Section 2.3.1), hence it can
be identified with the category of finite dimensional linear representations of a
unique affine group scheme over the field k. Any subcategory T that inherits the
structure of a neutral Tannakian category in turn corresponds to an affine group
scheme GT, that is the corresponding universal differential Galois group and can
be realized as automorphisms of the universal Picard–Vessiot ring RT. This is
generated over K by the entries and inverse determinants of the fundamental
matrices of all the differential systems considered in the category T.

In these terms, one can recast the original regular–singular case described above.
The subcategory of differential modules over C((z)) given by regular–singular
differential systems is a neutral Tannakian category and the corresponding affine
group scheme is the algebraic hull of Z, generated by the formal monodromy γ.
The latter can be seen as an automorphism of the universal Picard–Vessiot ring
acting by

γ Za = exp(2πia) Za , γ L = L + 2πi,

where the universal Picard–Vessiot ring of the regular-singular case is generated
by {Za}a∈C and L, with relations dictated by the fact that, in angular sectors,
these formal generators can be thought of, respectively, as the powers za and
the function log(z) (cf. [102], [101]).

In the irregular case, when one considers any differential system δf = Af with
arbitrary degree of irregularity, the universal Picard–Vessiot ring is generated
by elements {Za}a∈C and L as before and by additional elements {E(q)}q∈E ,
where

E = ∪ν∈N×Eν , for Eν = z−1/νC[z−1/ν ]. (2.152)

These additional generators correspond, in local sectors, to functions of the
form exp(

∫
q dz

z ) and satisfy corresponding relations E(q1 + q2) = E(q1)E(q2)
and δE(q) = qE(q).

When looking at a specific differential system (2.139), instead of the universal
case, the decsription above of the Picard–Vessiot ring corresponds to the fact
that such system always admits a formal fundamental solution of the form

F̂ (x) = Ĥ(u)uν`eQ(1/u), (2.153)

with uν = z, for some ν ∈ N×, with

` ∈ End(n, C), Ĥ ∈ GL(n, C((u)) ),

and with Q a diagonal matrix with entries {q1, . . . , qn} in u−1C[u−1], satisfying
[e2πiνL, Q] = 0 (cf. [88]).
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In the universal case described above, with arbitrary degrees of irregularity in
the differential systems, the corresponding universal differential Galois group G
is described by a split exact sequence (cf. [102]),

1→ T → G → Z̄→ 1, (2.154)

where Z̄ denotes the algebraic hull of Z generated by the formal monodromy γ
and T = Hom(E , C∗) is the Ramis exponential torus.

Now the action of the formal monodromy as an automorphism of the universal
Picard–Vessiot ring is the same as before on the Za and L, and is given by

γ E(q) = E(γq), (2.155)

where the action on E is determined by the action of Z/νZ on Eν by

γ : q
(
z−1/ν

)
7→ q

(
exp

(−2πi

ν

)
z−1/ν

)
. (2.156)

The exponential torus, on the other hand, acts by automorphisms of the uni-
versal Picard–Vessiot ring by τ Za = Za, τ L = L and τ E(q) = τ(q)E(q). The
formal monodromy acts on the exponential torus by (γτ)(q) = τ(γq).

Thus, at the formal level, the local Riemann–Hilbert correspondence is extended
beyond the regular-singular case, as a classification of differential systems with
aribirary degree of irregularity at z = 0 in terms of finite dimensional linear
representations of the group G. The wild fundamental group of Ramis [88] fur-
ther extends this irregular Riemann–Hilbert correspondence to the non-formal
setting by incorporating in the group further generators corresponding to the
Stokes’ phenomena. We shall discuss this case in Section 2.17, in relation to
nonperturbative effects in renormalization.

2.12 Local equivalence of meromorphic connec-

tions

We have seen in Section 2.9 that loops γµ(z) satisfying the conditions

γetµ(z) = θtz(γµ(z)) ∀ t ∈ R and
∂

∂µ
γµ−(z) = 0

can be characterized (Theorem 2.18) in expansional form

γµ(z) = Te−1
z

R

−z log µ
∞

θ−t(β)dt θz log µ(γreg(z)),

hence as solutions of certain differential equations (Proposition 2.9). In this
section and the following, we examine more closely the resulting class of dif-
ferential equations. Rephrased in geometric terms, loops γµ(z) satisfying the
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conditions above correspond to equivalence classes of flat equisingular G-valued
connections on a principal C∗ bundle B∗ over a punctured disk ∆∗. The eq-
uisingularity condition (defined below in Section 2.13) expresses geometrically
the condition that ∂µ γµ−(z) = 0. We will then provide, in Section 2.16, the
representation theoretic datum of the Riemann–Hilbert correspondence for this
class of differential systems. Similarly to what we recalled in the previous sec-
tion, this will be obtained in the form of an affine group scheme of a Tannakian
category of flat equisingular bundles. Since we show in Theorem 2.25 below that
flat equisingular connections on B∗ have trivial monodromy, it is not surprising
that the affine group scheme we will obtain in Section 2.16 will resemble most
the Ramis exponential torus described in the previous section.

We take the same notations as in Section 2.8 and let G be a graded affine
group scheme with positive integral grading Y . We consider the local behavior
of solutions of G-differential systems near z = 0 and work locally, i.e. over an
infinitesimal punctured disk ∆∗ centered at z = 0 and with convergent Laurent
series.

As above, we let K be the field C({z}) of convergent Laurent series in z and
O ⊂ K the subring of series without a pole at 0. The field K is a differential
field and we let Ω1 be the 1-forms on K with

d : K → Ω1

the differential. One has df = df
dz dz.

A connection on the trivial G-principal bundle P = ∆∗ ×G is specified by the
restriction of the connection form to ∆∗ × 1 i.e. by a g-valued 1-form ω on ∆∗

We let Ω1(g) denote g-valued 1-forms on ∆∗. Every element of Ω1(g) is of the
form A dz with A ∈ g(K).

As in section 2.8 we consider the operator

D : G(K)→ Ω1(g) Df = f−1 df .

It satisfies
D(fh) = Dh + h−1 Df h. (2.157)

The differential equations we are looking at are then of the form

Df = ω (2.158)

where ω ∈ Ω1(g) specifies the connection on the trivial G-principal bundle.
The local singular behavior of solutions is the same in the classes of connections
under the following equivalence relation:

Definition 2.21 We say that two connections ω and ω′ are equivalent iff

ω′ = Dh + h−1ω h, (2.159)

for h ∈ G(O) a G-valued map regular in ∆.
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By proposition 2.11 the triviality of the monodromy: M = 1, is a well defined
condition which ensures the existence of solutions f ∈ G(K) for the equation

Df = ω (2.160)

A solution f of (2.160) defines a G-valued loop. By our assumptions on G, any
f ∈ G(K) has a unique Birkhoff decomposition of the form

f = f−1
− f+, (2.161)

where
f+ ∈ G(O) , f− ∈ G(Q)

where O ⊂ K is the subalgebra of regular functions and Q = z−1 C([z−1]).
Since Q is not unital one needs to be more precise in defining G(Q). Let
Q̃ = C([z−1]) and ε1 its augmentation. Then G(Q) is the subgroup of G(Q̃) of
homomorphisms φ : H → Q̃ such that ε1 ◦ φ = ε where ε is the augmentation
of H.

Proposition 2.22 Two connections ω and ω′ with trivial monodromy are equiv-
alent iff the negative pieces of the Birkhoff decompositions of any solutions f ω

of Df = ω and fω′

of Df = ω′ are the same,

fω
− = fω′

− .

Proof. By proposition 2.11 there exists solutions fω ∈ G(K) of Df = ω and
fω′ ∈ G(K) of Df = ω′. Let us show that ω is equivalent to D((fω

−)−1).
One has fω = (fω

−)−1 fω
+, hence the product rule (2.157) gives the required

equivalence since fω
+ ∈ G(O). This shows that if fω

− = fω′

− then ω and ω′ are
equivalent. Conversely equivalence of ω and ω′ implies equivalence of D((fω

−)−1)

with D((fω′

− )−1) and hence an equality of the form

(fω
−)−1 = (fω′

− )−1 h ,

with h ∈ G(O). The uniqueness of the Birkhoff decomposition then implies
h = 1 and fω

− = fω′

− . 2

Our notion of equivalence in Definition 2.21 is simply a change of local holo-
morphic frame, i.e. by an element h ∈ G(O) (rather than by h ∈ G(K)). This
is quite natural in our context, in view of the result of Proposition 2.22 above,
that relates it to the negative part of the Birkhoff decomposition.

2.13 Classification of equisingular flat connec-

tions

At the geometric level we consider a Gm-principal bundle

Gm → B → ∆ , (2.162)
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over an infinitesimal disk ∆. We let

b 7→ w(b) ∀w ∈ C∗ ,

be the action of Gm and π : B → ∆ be the projection,

V = π−1({0}) ⊂ B

be the fiber over 0 ∈ ∆ where we fix a base point y0 ∈ V . Finally we let B∗ ⊂ B
be the complement of V .
With G as above and Y its grading we view the trivial G-principal bundle
P = B ×G as equivariant with respect to Gm using the action

u(b, g) = (u(b), uY (g)) ∀u ∈ C∗ , (2.163)

where uY makes sense since the grading Y is integer valued.

We let P ∗ = B∗ ×G be the restriction to B∗ of the bundle P .

Definition 2.23 We say that the connection ω on P ∗ is equisingular iff it is
Gm-invariant and if its restrictions to sections of the principal bundle B which
agree at 0 ∈ ∆ are mutually equivalent.

Also as above we consider the operator

Df = f−1 df .

The operator D satisfies

D(fh) = Dh + h−1 Df h. (2.164)

Definition 2.24 We say that two connections ω and ω′ on P ∗ are equivalent
iff

ω′ = Dh + h−1ωh,

for a G-valued Gm-invariant map h regular in B.

We are now ready to prove the main step which will allow us to formulate
renormalization as a Riemann-Hilbert correspondence. For the statement we
choose a non-canonical regular section

σ : ∆→ B , σ(0) = y0 ,

and we shall show later that the following correspondence between flat equisin-
gular G-connections and the Lie algebra g is in fact independent of the choice
of σ. To lighten notations we use σ to trivialize the bundle B which we identify
with ∆× C∗.
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Figure 2.3: Equisingular condition and the path of integration

Theorem 2.25 Let ω be a flat equisingular G-connection. There exists a unique
element β ∈ g of the Lie algebra of G such that ω is equivalent to the flat equi-
singular connection Dγ associated to the following section

γ(z, v) = Te− 1
z

R

v

0
u
Y(β) du

u ∈ G , (2.165)

where the integral is performed on the straight path u = tv, t ∈ [0, 1].

Proof. The proof consists of two main steps. We first prove the vanishing of
the two monodromies of the connection corresponding to the two generators of
the fundamental group of B∗. This implies the existence of a solution of the
equation Dγ = ω. We then show that the equisingularity condition allows us to
apply Theorem 2.18 to the restriction of γ to a section of the bundle B over ∆.
We encode as above a connection on P ∗ in terms of g-valued 1-forms on B∗ and
we use the trivialization σ to write it as

ω = A dz + B
dv

v

in which both A and B are g-valued functions A(z, v) and B(z, v) and dv
v is the

fundamental 1-form of the principal bundle B.
Let ω = A dz + B dv

v be an invariant connection. One has

ω(z, u v) = uY (ω(z, v)) ,

which shows that the coefficients of ω are determined by their restriction to the
section v = 1. Thus one has

ω(z, u) = uY (a) dz + uY (b)
du

u
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for suitable elements a, b ∈ g(K).
The flatness of the connection means that

db

dz
− Y (a) + [a, b] = 0 (2.166)

The positivity of the integral grading Y shows that the connection ω extends to
a flat connection on the product ∆∗ × C. Moreover its restriction to ∆∗ × {0}
is equal to 0 since uY (a) = 0 for u = 0. This suffices to show that the two
generators of π1(B

∗) = Z2 give a trivial monodromy. Indeed the generator
corresponding to a fixed value of z0 ∈ ∆∗ has trivial monodromy since the
connection ω extends to z0×C which is simply connected. The other generator
corresponds to a fixed value of u which one can choose as u = 0, and since the
restriction of the connection to ∆∗ ×{0} is equal to 0 the monodromy vanishes
also. One can then explicitely write down a solution of the differential system

Dγ = ω (2.167)

as in Proposition 2.11, with a base point of the form (z0, 0) ∈ ∆∗×{0}. Taking
a path in ∆∗ × {0} from (z0, 0) to (z, 0) and then the straight path (z, tv),
t ∈ [0, 1] gives the solution (using Proposition 2.10) in the form

γ(z, v) = Te
R

v

0
u
Y(b(z)) du

u , (2.168)

where the integral is performed on the straight path u = tv, t ∈ [0, 1].
This gives a translation invariant loop γ,

γ(z, u) = uY γ(z) (2.169)

fulfilling
γ(z)−1dγ(z) = a dz , γ(z)−1Y γ(z) = b . (2.170)

By hypothesis ω is equisingular and thus the restrictions ωs to the lines ∆s =
{(z, esz); z ∈ ∆∗} are mutually equivalent. By proposition 2.22 and the fact
that the restriction of γ(z, u) = uY γ(z) to ∆s is given by γs(z) = θszγ(z) we
get that the negative parts of the Birkhoff decomposition of the loops γs(z) are
independent of the parameter s.
Thus by the results of section 2.121, there exists an element β ∈ g and a regular
loop γreg(z) such that

γ(z, 1) = Te−1
z

R

0

∞
θ−t(β)dt γreg(z) . (2.171)

Thus up to equivalence, (using the regular loop uY (γreg(z)) to perform the
equivalence) we see that the solution is given by

γ(z, u) = uY (Te−
1
z

R

0

∞
θ−t(β)dt) , (2.172)

which only depends upon β ∈ g. Since uY is an automorphism one can in fact
rewrite (2.172) as

γ(z, v) = Te− 1
z

R

v

0
u
Y(β) du

u , (2.173)
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where the integral is performed on the straight path u = tv, t ∈ [0, 1].

We next need to understand in what way the class of the solution (2.172) de-
pends upon β ∈ g. An equivalence between two equisingular flat connections
generates a relation between solutions of the form

γ2(z, u) = γ1(z, u) h(z, u)

with h regular. Thus the negative pieces of the Birkhoff decomposition of both

γj(z, 1) = Te− 1
z

R

0

∞
θ−t(βj)dt ,

have to be the same which gives β1 = β2 using the equality of residues at z = 0.

Finally we need to show that for any β ∈ g the connection ω = Dγ with γ given
by (2.165) is equisingular. The equivariance follows from the invariance of the
section γ. Let then v(z) ∈ C∗ be a regular function with v(0) = 1 and consider
the section v(z)σ(z) instead of σ(z). The restriction of ω = Dγ to this new
section is now given by

γv(z) = Te− 1
z

R v(z)
0 u

Y(β) du
u ∈ G . (2.174)

We claim that the Birkhoff decomposition of γv is given (up to taking the inverse
of the first term) by,

γv(z) = Te−1
z

R

1

0
u
Y(β) du

u Te−
1
z

R v(z)
1 u

Y(β) du
u . (2.175)

Indeed the first term in the product is a regular function of z−1 and gives a
polynomial in z−1 when paired with any element of H. The second term is a
regular function of z using the Taylor expansion of v(z) at z = 0, (v(0) = 1). 2

In fact the above formula (2.175) for changing the choice of the section shows
that the following holds.

Theorem 2.26 The above correspondence between flat equisingular G-connections
and elements β ∈ g of the Lie algebra of G is independent of the choice of the
local regular section σ : ∆→ B , σ(0) = y0 .
Given two choices σ2 = α σ1 of local sections σj(0) = y0, the regular values
γreg(y0)j of solutions of the above differential system in the corresponding sin-
gular frames are related by

γreg(y0)2 = e−s βγreg(y0)1

where

s = (
dα(z)

dz
)z=0 .

It is this second statement that controls the ambiguity inherent to the renormal-
ization group in the physics context, where there is no prefered choice of local
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regular section σ. In that context, the group is G = Difg(T ), and the principal
bundle B over an infinitesimal disk centered at the critical dimension D admits
as fiber the set of all possible normalizations for the integration in dimension
D − z.
Moreover, in the physics context, the choice of the base point in the fiber V over
the critical dimension D corresponds to a choice of the Planck constant. The
choice of the section σ (up to order one) corresponds to the choice of a “unit of
mass”.

2.14 The universal singular frame

In order to reformulate the results of section 2.13 as a Riemann-Hilbert corre-
spondence, we begin to analyze the representation theoretic datum associated
to the equivalence classes of equisingular flat connections. In Theorem 2.27 be-
low, we classify them in terms of homomorphisms from a group U ∗ to G∗. In
Section (2.16) we will then show how to replace homomorphisms U ∗ → G∗ by
finite dimensional linear representations of U ∗, which will give us the final form
of the Riemann-Hilbert correspondence.

Since we need to get both Z0 and β in the range at the Lie algebra level, it is
natural to first think about the free Lie algebra generated by Z0 and β. It is
important, though, to keep track of the positivity and integrality of the grading
so that the formulae of the previous sections make sense. These properties of
integrality and positivity allow one to write β as an infinite formal sum

β =
∞∑

1

βn , (2.176)

where, for each n, βn is homogeneous of degree n for the grading, i.e. Y (βn) =
nβn.

Assigning β and the action of the grading on it is the same as giving a collection
of homogeneous elements βn that fulfill no restriction besides Y (βn) = nβn. In
particular, there is no condition on their Lie brackets. Thus, these data are the
same as giving a homomorphism from the following affine group scheme U to
G.
At the Lie algebra level U comes from the free graded Lie algebra

F(1, 2, 3, · · · )•

generated by elements e−n of degree n, n > 0. At the Hopf algebra level we
thus take the graded dual of the enveloping algebra U(F) so that

Hu = U(F(1, 2, 3, · · · )•)∨ (2.177)
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As is well known, as an algebra Hu is isomorphic to the linear space of noncom-
mutative polynomials in variables fn, n ∈ N>0 with the product given by the
shuffle.

It defines by construction a pro-unipotent affine group scheme U which is graded
in positive degree. This allows one to construct the semi-direct product U ∗ of U
by the grading as an affine group scheme with a natural morphism : U ∗ → Gm,
where Gm is the multiplicative group.

Thus, we can reformulate the main theorem of section 2.13 as follows

Theorem 2.27 Let G be a positively graded pro-unipotent Lie group.
There exists a canonical bijection between equivalence classes of flat equisingular
G-connections and graded representations

ρ : U → G

of U in G.

The compatibility with the grading means that ρ extends to an homomorphism

ρ∗ : U∗ → G∗

which is the identity on Gm.

The group U∗ plays in the formal theory of equisingular connections the same
role as the Ramis exponential torus in the context of differential Galois theory.

The equality

e =
∞∑

1

e−n , (2.178)

defines an element of the Lie algebra of U . As U is by construction a pro-
unipotent affine group scheme we can lift e to a morphism

rg : Ga → U , (2.179)

of affine group schemes from the additive group Ga to U .

It is this morphism rg that represents the renormalization group in our context.
The corresponding ambiguity is generated as explained above in Theorem 2.26
by the absence of a canonical trivialization for the Gm-bundle corresponding to
integration in dimension D − z.

The formulae above make sense in the universal case where G∗ = U∗ and allow
one to define the universal singular frame by the equality

γU (z, v) = Te−1
z

R

v

0
u
Y(e) du

u ∈ U . (2.180)

The frame (2.180) is easily computed in terms of iterated integrals and one
obtains the following result.
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Proposition 2.28 The universal singular frame is given by

γU (z, v) =
∑

n≥0

∑

kj>0

e(−k1)e(−k2) · · · e(−kn)

k1 (k1 + k2) · · · (k1 + k2 + · · ·+ kn)
v

P

kj z−n. (2.181)

Proof. Using (2.178) and (2.92) we get, for the coefficient of

e(−k1)e(−k2) · · · e(−kn)

the expression

v
P

kj z−n

∫

0≤s1≤···≤sn≤1

sk1−1
1 · · · skn−1

n

∏
dsj ,

which gives the desired result. 2

The same expression appears in the local index formula of [38], where the renor-
malization group idea is used in the case of higher poles in the dimension spec-
trum.

Once one uses this universal singular frame in the dimensional regularization
technique, all divergences disappear and one obtains a finite theory which de-
pends only upon the choice of local trivialization of the Gm-principal bundle
B, whose base ∆ is the space of complexified dimensions around the critical
dimension D, and whose fibers correspond to normalization of the integral in
complex dimensions.

Namely, one can apply the Birkhoff decomposition to γU in the pro-unipotent Lie
group U(C). For a given physical theory T , the resulting γ+

U and γ−
U respectively

map, via the representation ρ : U → G = Difg(T ), to the renormalized values
and the countertems in the minimal subtraction scheme.

2.15 Mixed Tate motives

In this section we recall some aspects and ideas from the theory of motives that
will be useful in interpreting the results of the following Section 2.16 in terms
of motivic Galois theory. The brief exposition given here of some aspects of
the theory of mixed Tate motives, is derived mostly from Deligne–Goncharov
[47]. The relation to the setting of renormalization described above will be the
subject of the next section.

The purpose of the theory of motives, initiated by Grothendieck, is to develop
a unified setting underlying different cohomological theories (Betti, de Rham,
étale, `-adic, crystalline), by constructing an abelian tensor category that pro-
vides a “linearization” of the category of algebraic varieties. For smooth pro-
jective varieties a category of motives (pure motives) is constructed, with mor-
phisms defined using algebraic correspondences between smooth projective va-
rieties, considered modulo equivalence (e.g. numerical equivalence). The fact
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that this category has the desired properties depends upon the still unproven
standard conjectures of Grothendieck.

For more general (non-closed) varieties, the construction of a category of motives
(mixed motives) remains a difficult task. Such category of mixed motives over a
field (or more generally over a scheme S) should be an abelian tensor category,
with the following properties (cf. e.g. [85]). There will be a functor (natural in
S) that assigns to each smooth S-scheme X its motive M(X), with Künneth
isomorphisms M(X) ⊗M(Y ) → M(X ×S Y ). The category will contain Tate
objects Z(n), for n ∈ Z, where Z(0) is the unit for ⊗ and Z(n) ⊗ Z(m) ∼=
Z(n + m). The Ext functors in the category of mixed motives define a “motivic
cohomology”

Hm
mot(X, Z(n)) := Extm(Z(0), M(X)⊗ Z(n)).

This will come endowed with Chern classes cn,m : K2n−m(X)→ Hm
mot(X, Z(n))

from algebraic K-theory that determine natural isomorphisms Grγ
nK2n−m(X)⊗

Q ∼= Hm
mot(X, Z(n)) ⊗ Q, where on the left hand side there is the weight n

eigenspace of the Adams operations. The motivic cohomology will be universal
with respect to all cohomology theories satisfying certain natural properties
(Bloch–Ogus axioms). Namely, for any such cohomology H∗(·, Γ(∗)) there will
be a natural transformation H∗

mot(·, Z(∗)) → H∗(·, Γ(∗)). Moreover, to a map
of schemes f : S1 → S2 there will correspond functors f∗, f∗, f !, f!, behaving
like the corresponding functors of sheaves.

Though, at present, there is not yet a general construction of such a cate-
gory of mixed motives, there are constructions of a triangulated tensor category
DM(S), which has the right properties to be the bounded derived category of
the category of mixed motives. The constructions of DM(S) due to Levine
[85] and Voevodsky [108] are known to be equivalent ([85], VI 2.5.5). The tri-
angulated category of mixed Tate motives DMT (S) is then defined as the full
triangulated subcategory of DM(S) generated by the Tate objects. One can
then hope to find a method that will reconstruct the category knowing only the
derived category. We mention briefly what can be achieved along these lines.

Recall that a triangulated category D is an additive category with an auto-
morphism T and a family of distinguished triangles X → Y → Z → T (X),
satisfying suitable axioms (which we do not recall here). A t-structure consists
of two full subcategories D≤0 and D≥0 with the properties: D≤−1 ⊂ D≤0 and
D≥1 ⊂ D≥0; for all X ∈ D≤0 and all Y ∈ D≥1 one has HomD(X, Y ) = 0; for
all Y ∈ D there exists a distinguished triangle as above with X ∈ D≤0 and
Z ∈ D≥1. Here we used the notation D≥n = D≥0[−n] and D≤n = D≤0[−n],
with X [n] = T n(X) and f [n] = T n(f). The heart of the t-structure is the full
subcategory D0 = D≤0 ∩ D≥0. It is an abelian category.
Thus, given a construction of the triangulated category DMT (S) of mixed Tate
motives, one can try to obtain from it, at least rationally, a category MT (S) of
mixed Tate motives, as the heart of a t-structure on DMT (S)Q = DMT (S)⊗Q.
It is possible to define such a t-structure when the Beilinson–Soulé vanishing
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conjecture holds, namely when

Homj(Q(0), Q(n)) = 0, for n > 0, j ≤ 0. (2.182)

where Homj(M, N) = Hom(M, N [j]) and Q(n) is the image in DMT (S)Q of
the Tate object Z(n) of DMT (S).

The conjecture (2.182) holds in the case of a number field K, by results of Borel
[9] and Beilinson [3]. Thus, in this case it is possible to extract from DMT (K)Q

a tannakian category MT (K) of mixed Tate motives over K. For a number field
K one has

Ext1(Q(0), Q(n)) = K2n−1(K)⊗Q (2.183)

and Ext2(Q(0), Q(n)) = 0.
The category MT (K) has a fiber functor ω : MT (K) → Vect, with M 7→
ω(M) = ⊕nωn(M) where

ωn(M) = Hom(Q(n), Grw
−2n(M)), (2.184)

with Grw
−2n(M) = W−2n(M)/W−2(n+1)(M) the graded structure associated to

the finite increasing weight filtration W•.
If S is a set of finite places of K, it is possible to define the category of mixed
Tate motives MT (OS) over the set of S-integers OS of K as mixed Tate motives
over K that are unramified at each finite place v /∈ S. The condition of being
unramified can be checked in the `-adic realization (cf. [47] Prop.1.7). For
MT (OS) we have

Ext1(Q(0), Q(n)) =






K2n−1(K)⊗Q n ≥ 2

O∗
S ⊗Q n = 1

0 n ≤ 0.

(2.185)

and Ext2(Q(0), Q(n)) = 0. In fact, the difference between (2.185) in MT (OS)
and (2.183) in MT (K) is the Ext1(Q(0), Q(1)) which is finite dimensional in the
case (2.185) of S-integers and infinite dimensional in the case (2.183) of K.
The category MT (OS) is a tannakian category, hence there exists a correspond-
ing group scheme Gω = Gω〈MT (OS)〉, given by the automorphisms of the
fiber functor ω. This functor determines an equivalence of categories between
MT (OS) and finite dimensional linear representations of Gω. The action of Gω

on ω(M) is functorial in M and is compatible with the weight filtration. The
action on ω(Q(1)) = Q defines a morphism Gω → Gm and a decomposition

Gω = Uω o Gm, (2.186)

as a semidirect product, for a unipotent affine group scheme Uω. The Gm ac-
tion compatible with the weight filtration determines a positive integer grading
on the Lie algebra Lie(Uω). The functor ω gives an equivalence of categories
between MT (OS) and the category of finite dimensional graded vector spaces
with an action of Lie(Uω) compatible with the grading.
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The fact that Ext2(Q(0), Q(n) = 0 shows that Lie(Uω) is freely generated by a
set of homogeneous generators in degree n identified with a basis of the dual
of Ext1(Q(0), Q(n)) (cf. Prop. 2.3 of [47]). There is however no canonical
identification between Lie(Uω) and the free Lie algebra generated by the graded
vector space ⊕Ext1(Q(0), Q(n))∨.
A tannakian category T has a canonical affine T-group scheme (cf. [46] and
also Section 2.15.2 below), which one calls the fundamental group π(T). The
morphism Gω → Gm that gives the decomposition (2.186) is the ω-realization
of a homomorphism

π(MT (OS))→ Gm (2.187)

given by the action of π(MT (OS)) on Q(1), and the group Uω is the ω-realization
of the kernel U of (2.187).

We mention, in particular, the following case ([47], [66]), which will be relevant
in our context of renormalization.

Proposition 2.29 Consider the case of the scheme SN = O[1/N ] for K =
Q(ζN ) the cyclotomic field of level N . For N = 3 or 4, the Lie algebra Lie(Uω)
is (noncanonically) isomorphic to the free Lie algebra with one generator in each
degree n.

2.15.1 Motives and noncommutative geometry: analogies

There is an intriguing analogy between these motivic constructions and those
of KK-theory and cyclic cohomology in noncommutative geometry.

Indeed the basic steps in the construction of the category DM(S) parallel the
basic steps in the construction of the Kasparov bivariant theory KK. The basic
ingredients are the same, namely the correspondences which, in both cases, have
a finiteness property “on one side”. One then passes in both cases to complexes.
In the case of KK this is achieved by simply taking formal finite differences of
“infinite” correspondences. Moreover, the basic equivalence relations between
these “cycles” includes homotopy in very much the same way as in the theory
of motives (cf. e.g. p.7 of [47]). Also as in the theory of motives one obtains an
additive category which can be viewed as a “linearization” of the category of
algebras. Finally, one should note, in the case of KK, that a slight improvement
(concerning exactness) and a great technical simplification are obtained if one
considers “deformations” rather than correspondences as the basic “cycles” of
the theory, as is achieved in E-theory.

Next, when instead of working over Z one considers the category DM(k)Q ob-
tained by tensorization by Q, one can pursue the analogy much further and
make contact with cyclic cohomology, where also one works rationally, with a
similar role of filtrations. There also the obtained “linearization” of the category
of algebras is fairly explicit and simple in noncommutative geometry. The ob-
tained category is just the category of Λ-modules, based on the cyclic category
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Λ. One obtains a functor A→ A\, which allows one to treat algebras as objects
in an abelian category, where many tools such as the bifunctors Extn(X, Y )
are readily available. The key ingredient is the cyclic category. It is a small
category which has the same classifying space as the compact group U(1) (cf.
[21]).

Finally, it is noteworthy that algebraic K-theory and regulators already ap-
peared in the context of quantum field theory and noncommutative geometry
in [28].

2.15.2 Motivic fundamental groupoid

Grothendieck initiated the field of “anabelian algebraic geometry” meant pri-
marily as the study of the action of absolute Galois groups like Gal(Q̄/Q) on the
profinite fundamental group of algebraic varieties (cf. [70]). The most celebrated
example is the projective line minus three points. In this case, a finite cover of
P1r{0, 1,∞} defines an algebraic curve. If the projective line is considered over
Q, and so are the ramification points, the curve obtained this way is defined
over Q̄, hence the absolute Galois group Gal(Q̄/Q) acts. Bielyi’s theorem shows
that, in fact, all algebraic curves defined over Q̄ arise as coverings of the projec-
tive line ramified only over the points {0, 1,∞}. This has the effect of realizing
the absolute Galois group as a subgroup of outer automorphisms of the profi-
nite fundamental group of the projective line minus three points. Motivated
by Grothendieck’s “esquisse d’un programme” [70], Drinfel’d introduced in the
context of transformations of structures of quasi-triangular quasi-Hopf algebras
[50] a Grothendieck–Teichmüller group GT , which is a pro-unipotent version of
the group of automorphisms of the fundamental group of P1 r {0, 1,∞}, with
an injective homomorphism Gal(Q̄/Q)→ GT .

Deligne introduced in [45] a notion of “motivic fundamental group” in the con-
text of mixed motives. Like Grothendieck’s theory of motives provides a coho-
mology theory that lies behind all the known realizations, the notion of motivic
fundamental group lies behind all notions of fundamental group developed in the
algebro-geometric context. For instance, the motivic fundamental group has as
Betti realization a pro-unipotent algebraic envelope of the nilpotent quotient of
the classical fundamental group, and as de Rham realization a unipotent affine
group scheme whose finite-dimensional representations classify vector bundles
with nilpotent integrable connections. In the case of P1 r {0, 1,∞}, the motivic
fundamental group is an iterated extension of Tate motives.

For K a number field, X the complement of a finite set of rational points on
a projective line over K, and x, y ∈ X(K), Deligne constructed in §13 of [45]
motivic path spaces Py,x and motivic fundamental groups πmot

1 (X, x) = Px,x.
One has πmot

1 (Gm, x) = Q(1) as well as local monodromies Q(1)→ πmot
1 (X, x).

More generally, the motivic path spaces can be defined for a class of unirational
arithmetic varieties over a number field, [45], §13.
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Given an embedding σ : K ↪→ C, the corresponding realization of πmot
1 (X, x)

is the algebraic pro-unipotent envelope of the fundamental group π1(X(C), x),
namely the spectrum of the commutative Hopf algebra

colim
(
Q [π1(X(C), x)] /JN

)∨
, (2.188)

where J is the augmentation ideal of Q[π1(X(C), x)].
We recall the notion of Ind-objects, which allows one to enrich an abelian
category by adding inductive limits. If C is an abelian category, and C∨ de-
notes the category of contravariant functors of C to Sets, then Ind(C) is de-
fined as the full subcategory of C∨ whose objects are functors of the form
X 7→ lim−→HomC(X, Xα), for {Xα} a directed system in C.
One can use the notion above to define “commutative algebras” in the context
of Tannakian categories. In fact, given a Tannakian category T, one defines
a commutative algebra with unit as an object A of Ind(T) with a product
A ⊗ A → A and a unit 1 → A satisfying the usual axioms. The category of
affine T-schemes is dual to that of commutative algebras with unit, with Spec(A)
denoting the affine T-scheme associated to A (cf. [45], [46]). The motivic path
spaces constructed in [45] are affine MT (K)-schemes, Py,x = Spec(Ay,x). The
Py,x form a groupoid with respect to composition of paths

Pz,y × Py,x → Pz,x. (2.189)

In the following we consider the case of

X = P1 r V, where V = {0,∞}∪ µN , (2.190)

with µN the set of Nth roots of unity. The Py,x are unramified outside of the
set of places of K over a prime dividing N (cf. Proposition 4.17 of [47]). Thus,
they can be regarded as MT (O[1/N ])-schemes.
For such X = P1 rV , one first extends the fundamental groupoid to base points
in V using “tangent directions”. One then restricts the resulting groupoid to
points in V . One obtains this way the system of MT (O[1/N ])-schemes Py,x, for
x, y ∈ V , with the composition law (2.189), the local monodromies Q(1)→ Px,x

and equivariance under the action of the dihedral group µN oZ/2 (or of a larger
symmetry group for N = 1, 2, 4).
One then considers the ω-realization ω(Py,x). There are canonical paths γxy ∈
ω(Px,y) associated to pairs of points x, y ∈ V such that γxy ◦ γyz = γxz. This
gives an explicit equivalence (analogous to a Morita equivalence) between the
groupoid ω(P ) and a pro-unipotent affine group scheme Π. This is described as

Π = lim←− exp(L/ deg ≥ n), (2.191)

where L is the graded Lie algebra freely generated by degree one elements e0, eζ

for ζ ∈ µN .
Thus, after applying the fiber functor ω, the properties of the system of the
Py,x translate to the data of the vector space Q = ω(Q(1)), a copy of the group
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Π for each pair x, y ∈ V , the group law of Π determined by the groupoid law
(2.189), the local monodromies given by Lie algebra morphisms

Q→ Lie(Π), 1 7→ ex, x ∈ V,

and group homomorphisms α : Π → Π for α ∈ µN o Z/2, given at the Lie
algebra level by

α : Lie(Π)→ Lie(Π) α : ex 7→ eαx.

One restricts the above data to V r {∞}. The structure obtained this way has
a group scheme of automorphisms Hω. Its action on Q = ω(Q(1)) determines a
semidirect product decomposition

Hω = Vω o Gm, (2.192)

as in (2.186). Using the image of the straight path γ01 under the action of
the automorphisms, one can identify Lie(Vω) and Lie(Π) at the level of vector
spaces (Proposition 5.11, [47]), while the Lie bracket on Lie(Vω) defines a new
bracket on Lie(Π) described explicitly in Prop.5.13 of [47].
We can then consider the Gω action on the ω(Py,x). This action does depend
on x, y. In particular, for the pair 0, 1, one obtains this way a homomorphism

Gω = Uω o Gm −→ Hω = Vω o Gm, (2.193)

compatible with the semidirect product decomposition given by the Gm-actions.
Little is known explicitly about the image of Lie(Uω) in Lie(Vω). Only in the
case of N = 2, 3, 4 the map Uω → Vω is known to be injective and the dimension
of the graded pieces of the image of Lie(Uω) in Lie(Vω) is then known (Theorem
5.23 and Corollary 5.25 of [47], cf. also Proposition 2.29 in Section 2.15 above).
The groups Hω and Vω are ω-realizations of MT (O[1/N ])-group schemes H and
V , as in the case of Uω and U , where V is the kernel of the morphism H → Gm

determined by the action of H on Q(1).

2.15.3 Expansional and multiple polylogarithms

Passing to complex coefficients (i.e. using the Lie algebra C〈〈e0, eζ〉〉), the mul-
tiple polylogarithms at roots of unity appear as coefficients of an expansional
taken with respect to the path γ01 in X = P1\{0, µN ,∞} and the universal flat
connection on X given below in (2.195). We briefly recall here this well known
fact (cf. §5.16 and Prop. 5.17 of [47] and §2.2 of [103]).

The multiple polylogarithms are defined for ki ∈ Z>0, 0 < |zi| ≤ 1, by the
expression

Li k1,...,km
(z1, z2, . . . , zm) =

∑

0<n1<n2<···<nm

zn1
1 zn2

2 · · · znm
m

nk1
1 nk2

2 · · ·nkm
m

(2.194)

which converges for (km, |zm|) 6= (1, 1).
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Kontsevich’s formula for multiple zeta values as iterated integrals was general-
ized by Goncharov to multiple polylogarithms using the connection

α(z)dz =
∑

a∈µN∪{0}

dz

z − a
ea. (2.195)

It is possible to give meaning to the expansional

γ = Te
R

1

0
α(z) dz, (2.196)

using a simple regularization at 0 and 1 (cf. [47]) by dropping the logarithmic
terms (log ε)k, (log η)k in the expansion of

γ = Te
R

1−η
ε

α(z) dz.

when ε→ 0 and η → 0.

Proposition 2.30 For ki > 0, the coefficient of eζ1 ek1−1
0 eζ2 ek2−1

0 . . . eζm
ekm−1
0

in the expansional (2.196) is given by

(−1)m Li k1,...,km
(z1, z2, . . . , zm)

where the roots of unity zj are given by zj = ζ−1
j ζj+1, for j < m and zm = ζ−1

m .

Racinet used this iterated integral description to study the shuffle relations for
values of multiple polylogarithms at roots of unity [103].

2.16 The “cosmic Galois group” of renormaliza-

tion as a motivic Galois group

In this section we construct a category of equivalence classes of equisingular flat
vector bundles. This allows us to reformulate the Riemann–Hilbert correspon-
dence underlying perturbative renormalization in terms of finite dimensional
linear representations of the “cosmic Galois group”, that is, the group scheme
U∗ introduced in Section 2.14 above. The relation to the formulation given in
the Section 2.14 consists of passing to finite dimensional representations of the
group G∗. In fact, since G∗ is an affine group scheme, there are enough such
representations, and they are specified (cf. [47]) by assigning the data of

• A graded vector space E = ⊕n∈ZEn ,,

• A graded representation π of G in E.
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Notice that a graded representation of G in E can equivalently be described as
a graded representation of g in E. Moreover, since the Lie algebra g is positively
graded, both representations are compatible with the weight filtration given by

W−n(E) = ⊕m≥nEm . (2.197)

At the group level, the corresponding representation in the associated graded

GrW
n = W−n(E)/W−n−1(E) .

is the identity.

We now consider equisingular flat bundles, defined as follows.

Definition 2.31 Let (E, W ) be a filtered vector bundle with a given trivializa-
tion of the associated graded GrW (E).

1. A W -connection on E is a connection ∇ on E, which is compatible with
the filtration (i.e. restricts to all W k(E)) and induces the trivial connection
on the associated graded GrW (E).

2. Two W -connections on E are W -equivalent iff there exists an automor-
phism of E preserving the filtration, inducing the identity on GrW (E),
and conjugating the connections.

Let B be the principal Gm-bundle considered in Section 2.13. The above defi-
nition 2.31 is extended to the relative case of the pair (B, B∗). Namely, (E, W )
makes sense on B, the connection ∇ is defined on B∗ and the automorphism
implementing the equivalence extends to B.

We define a category E of equisingular flat bundles. The objects of E are the
equivalence classes of pairs

Θ = (E,∇),

where

• E is a Z-graded finite dimensional vector space.

• ∇ is an equisingular flat W -connection on B∗, defined on the Gm-equivariant
filtered vector bundle (Ẽ, W ) induced by E with its weight filtration
(2.197).

By construction Ẽ is the trivial bundle B ×E endowed with the action of Gm

given by the grading. The trivialization of the associated graded GrW (Ẽ) is
simply given by the identification with the trivial bundle with fiber E. The
equisingularity of ∇ here means that it is Gm-invariant and that all restrictions
to sections σ of B with σ(0) = y0 are W -equivalent on B.

We refer to such pairs Θ = (E,∇) as flat equisingular bundles. We only retain
the datum of the W -equivalence class of the connection ∇ on B as explained
above.
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Given two flat equisingular bundles Θ, Θ′ we define the morphisms

T ∈ Hom(Θ, Θ′)

in the category E as linear maps T : E → E ′ , compatible with the grading,
fulfilling the condition that the following W -connections ∇j , j = 1, 2, on Ẽ′⊕ Ẽ
are W -equivalent (on B),

∇1 =

[
∇′ T ∇− ∇′ T
0 ∇

]
∼ ∇2 =

[
∇′ 0
0 ∇

]
. (2.198)

Notice that this is well defined, since condition (2.198) is independent of the
choice of representatives for the connections ∇ and ∇′. The condition (2.198)
is obtained by conjugating ∇2 by the unipotent matrix

[
1 T
0 1

]
.

In all the above we worked over C, with convergent Laurent series. However,
much of it can be rephrased with formal Laurent series. Since the universal
singular frame is given in rational terms by proposition 2.28, the results of this
section hold over any field k of characteristic zero and in particular over Q.

For Θ = (E,∇), we set ω(Θ) = E and we view ω as a functor from the category
of equisingular flat bundles to the category of vector spaces. We then have the
following result.

Theorem 2.32 Let E be the category of equisingular flat bundles defined above,
over a field k of characteristic zero.

1. E is a Tannakian category.

2. The functor ω is a fiber functor.

3. E is equivalent to the category of finite dimensional representations of U ∗.

Proof. Let E be a finite dimensional graded vector space over k. We consider
the unipotent algebraic group G such that G(k) consists of endomorphisms
S ∈ End(E) satisfying the conditions

S W−n(E) ⊂W−n(E), (2.199)

where W·(E) is the weight filtration, and

S|Grn
= 1, (2.200)

where Grn denote the associated graded.

The group G can be identified with the unipotent group of upper triangular ma-
trices. Its Lie algebra is then identified with strictly upper triangular matrices.

The following is a direct translation between W -connections and G-valued con-
nections.
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Proposition 2.33 Let (E,∇) be an object in E.

1. ∇ defines an equisingular G-valued connection, for G as above.

2. All equisingular G-valued connections are obtained this way.

3. This bijection preserves equivalence.

In fact, since W -connections are compatible with the filtration and trivial on
the associated graded, they are obtained by adding a Lie(G)-valued 1-form to
the trivial connection. Similarly, W -equivalence is given by the equivalence as
in Definition 2.24.

Lemma 2.34 Let Θ = (E,∇) be an object in E. Then there exists a unique
representation ρ = ρΘ of U∗ in E, such that

Dρ(γU ) ' ∇, (2.201)

where γU is the universal singular frame. Given a representation ρ of U ∗ in E,
there exists a ∇, unique up to equivalence, such that (E,∇) is an object in E
and ∇ satisfies (2.201).

Proof of Lemma. Let G be as above. By Proposition 2.33 we view ∇ as a G-
valued connection. By applying Theorem 2.27 we get a unique element β ∈
Lie(G) such that equation (2.201) holds. For the second statement, notice that
(2.91) gives a rational expression for the operator D. This, together with the
fact that the coefficients of the universal singular frame are rational, implies
that we obtain a rational ∇. 2

Lemma 2.35 Let (E,∇) be an object in E.

1. For any S ∈ Aut(E) compatible with the grading, S∇S−1 is an equisin-
gular connection.

2. ρ(E,S ∇S−1) = S ρ(E,∇) S−1.

3. S∇S−1 ∼ ∇ ⇔ [ρ(E,∇), S] = 0.

Proof of Lemma. The equisingular condition is satisfied, since the Gm-invariance
follows by compatibility with the grading and restriction to sections satisfies

σ∗(S∇S−1) = S σ∗(∇) S−1.

The second statement follows by compatibility of S with the grading. In fact,
we have

S Te−
1
z

R

v

0
u
Y(β) du

u S−1 = Te−
1
z

R

v

0
u
Y(Sβ S

−1) du
u .

The third statement follows immediately from the second, since equivalence
corresponds to having the same β, by Theorem 2.25. 2
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Proposition 2.36 Let Θ = (E,∇) and Θ′ = (E′,∇′) be object of E. Let
T : E → E′ be a linear map compatible with the grading. Then the following
two conditions are equivalent.

1. T ∈ Hom(Θ, Θ′);

2. T ρΘ = ρΘ′ T .

Proof of Proposition. Let

S =

(
1 T
0 1

)
.

By construction, S is an automorphism of E ′⊕E, compatible with the grading.
By (3) of the previous Lemma, we have

S

(
∇′ 0
0 ∇

)
S−1 ∼

(
∇′ 0
0 ∇

)

if and only if (
β′ 0
0 β

)
S = S

(
β′ 0
0 β

)
.

This holds if and only if β′ T = T β. 2

Finally, we check that the tensor product structures are compatible. We have

(E,∇) ⊗ (E′,∇′) = (E ⊗E′,∇⊗ 1 + 1⊗∇′).

The equisingularity of the resulting connection comes from the functoriality of
the construction.

We check that the functor ρ 7→ Dρ(γU ) constructed above, from the category
of representations of U∗ to E , is compatible with tensor products. This follows
by the explicit formula

Te−
1
z

R

v

0
u
Y(β⊗1+1⊗β′) du

u = Te−
1
z

R

v

0
u
Y(β) du

u ⊗ Te−
1
z

R

v

0
u
Y(β′) du

u .

On morphisms, it is sufficient to check the compatibility on 1⊗ T and T ⊗ 1.

We have shown that the tensor category E is equivalent to the category of finite
dimensional representations of U∗. The first two statements of the Theorem
then follow from the third (cf. [46]).
2

For each integer n ∈ Z, we then define an object Q(n) in the category E of
equisingular flat bundles as the trivial bundle given by a one-dimensional Q-
vector space placed in degree n, endowed with the trivial connection on the
associated bundle over B.

For any flat equisingular bundle Θ let

ωn(Θ) = Hom(Q(n), GrW
−n(Θ)) ,
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and notice that ω = ⊕ωn.

The group U∗ can be regarded as a motivic Galois group. One has, for instance,
the following identification ([66], [47], cf. also Proposition 2.29 in Section 2.15
above).

Proposition 2.37 There is a (non-canonical) isomorphism

U∗ ∼ GMT
(O) . (2.202)

of the affine group scheme U∗ with the motivic Galois group GMT
(O) of the

scheme S4 of 4-cyclotomic integers.

It is important here to stress the fact (cf. the “mise en garde” of [47]) that there
is so far no “canonical” choice of a free basis in the Lie algebra of the above
motivic Galois group so that the above isomorphism still requires making a large
number of non-canonical choices. In particular it is premature to assert that the
above category of equisingular flat bundles is directly related to the category
of 4-cyclotomic Tate motives. The isomorphism (2.202) does not determine the
scheme S4 uniquely. In fact, a similar isomorphism holds with S3 the scheme of
3-cyclotomic integers.

On the other hand, when considering the category MT in relation to physics,
inverting the prime 2 is relevant to the definition of geometry in terms of K-
homology, which is at the center stage in noncommutative geometry. We recall,
in that respect, that it is only after inverting the prime 2 that (in sufficiently
high dimension) a manifold structure on a simply connected homotopy type is
determined by the K-homology fundamental class.

Moreover, passing from Q to a field with a complex place, such as the above
cyclotomic fields k, allows for the existence of non-trivial regulators for all alge-
braic K-theory groups K2n−1(k). It is noteworthy also that algebraic K-theory
and regulators already appeared in the context of quantum field theory and
NCG in [28]. The appearance of multiple polylogarithms in the coefficients of
divergences in QFT, discovered by Broadhurst and Kreimer ([11], [12]), as well
as recent considerations of Kreimer on analogies between residues of quantum
fields and variations of mixed Hodge–Tate structures associated to polyloga-
rithms (cf. [80]), suggest the existence for the above category of equisingular
flat bundles of suitable Hodge-Tate realizations given by a specific choice of
Quantum Field Theory.

2.17 The wild fundamental group

We return here to the general discussion of the Riemann–Hilbert correspondence
in the irregular case, which we began in Section 2.11.4.
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The universal differential Galois group G of (2.154) governs the irregular Riemann–
Hilbert correspondence at the formal level, namely over the differential field
C((z)) of formal Laurent series. In general, when passing to the non-formal level,
over convergent Laurent series C({z}), the corresponding universal differential
Galois group acquires additional generators, which depend upon resummation
of divergent series and are related to the Stokes phenomenon (see e.g. the last
section of [102] for a brief overview).

At first, it may then seem surprising that, in the Riemann–Hilbert correspon-
dence underlying perturbative renormalization that we derived in Sections 2.14
and 2.16, we found the same affine group scheme U ∗, regardless of whether we
work over C((z)) or over C({z}). This is, in fact, not quite so strange. There
are known classes of equations (cf. e.g. Proposition 3.40 of [101]) for which the
differential Galois group is the same over C((z)) and over C({z}). Moreover,
in our particular case, it is not hard to understand the conceptual reason why
this should be the case. It can be traced to the result of Proposition 2.9, which
shows that, due to the pro-unipotent nature of the group G, the expansional
formula is in fact algebraic. Thus, when considering differential systems with
G-valued connections, one can pass from the formal to the non-formal case (cf.
also Proposition 2.11).

This means that the Stokes part of Ramis’ wild fundamental group will only ap-
pear, in the context of renormalization, when one incorporates non-perturbative
effects. In fact, in the non-perturbative setting, the group G = Difg(T ) of dif-
feographisms, or rather its image in the group of formal diffeomorphisms as
discussed in Section 2.10, gets upgraded to actual diffeomorphisms analytic in
sectors. In this section we discuss briefly some issues related to the wild funda-
mental group and the non-perturbative effects.

The aspect of the Riemann–Hilbert problem, which is relevant to the non-
perturbative case, is related to methods of “summation” of divergent series
modulo functions with exponential decrease of a certain order, namely Borel
summability, or more generally multisummability (a good reference is e.g. [104].)

In this case, the local wild fundamental group is obtained via the following
procedure (cf. [88]). The way to pass from formal to actual solutions consists
of applying a suitable process of summability to formal solutions (2.153).

The method of Borel summability is derived from the well known fact that, if a
formal series

f̂(z) =

∞∑

n=0

fn zn (2.203)

is convergent on some disk, with f(z) = Sf̂(z) the sum of the series (2.203)
defining a holomorphic function, then the formal Borel transform

B̂f̂(w) =
∞∑

n=1

fn

(n− 1)!
wn (2.204)

78



has infinite radius of convergence and the sum b(w) := SB̂f̂(w) has the property
that its Laplace transform recovers the original function f ,

f(z) = L(b)(z) =

∫ ∞

0

b(w) e−w/z dw, (2.205)

that is, Sf̂(z) = (L ◦ S ◦ B̂)f̂(z). The advantage of this procedure is that it
continues to make sense for a class of (Borel summable) divergent series, for
which a “sum” can be defined by the procedure

f(z) := (L ◦ S ◦ B̂)f̂(z). (2.206)

Very useful generalizations of (2.206) include replacing integration along the
positive real axis in (2.205) with another oriented half line h in C,

Lh (b)(z) =

∫

h

b(w) e−w/z dw,

as well as a more refined notion of Borel summability that involves ramification

ρk(f) (z) = f(z1/k), (2.207)

with B̂k = ρ−1
k B̂ ρk and Lk,h = ρ−1

k Lhk ρk, with corresponding summation

operators Sh := Lh ◦ S ◦ B̂ and Sk,h := Lk,h ◦ S ◦ B̂k. A formal series (2.203)

is Borel k-summable in the direction h if B̂kf̂ is a convergent series such that
SB̂kf̂ can be continued analytically on an angular sector at the origin bisected
by h to a holomorphic function exponentially of order at most k.

The condition of k-summability can be more conveniently expressed in terms of
an estimate on the remainder of the series

∣∣∣∣∣f(x)−
∑

n<N

anxn

∣∣∣∣∣ ≤ c AnΓ(1 + N/k) |x|n, (2.208)

on sectors of opening at least π/k. This corresponds to the case where the
Newton polygon has one edge of slope k.

There are formal series that fail to be Borel k-summable for any k > 0. Typ-
ically the lack of summability arises from the fact that the formal series is a
combination of parts that are summable, but for different values of k (cf. [104]).
This is taken care of by a suitable notion of multisummability that involves it-
erating the Borel summation process. This way, one can sum a formal series f̂
that is (k1, . . . , kr)-multisummable in the direction h by

f(x) := Sk1,...,kr;h f̂ , (2.209)

with the summation operator

Sk1,...,kr;h = Lκ1,d · · · Lκr ,dSB̂κr
· · · B̂κ1 , (2.210)
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for 1/ki = 1/κ1 + · · ·+ 1/κi and i = 1, . . . , r.

Actual solutions of a differential system (2.139) with (2.151) can then be ob-
tained from formal solutions of the form (2.153), in the form

Fh(x) = Hd(u)uνLeQ(1/u), (2.211)

with uν = z, for some ν ∈ N×, by applying summation operators Sk1,...,kr ;h to

Ĥ, indexed by the positive slopes k1 > k2 > . . . > kr > 0 of the Newton polygon
of the equation, and with the half line h varying among all but a finite number of
directions in C. The singular directions are the jumps between different deter-
minations on angular sectors, and correspond to the Stokes phenomenon. This
further contributes to the divergence/ambiguity principle already illustrated in
(2.98).

We have corresponding summation operators

f±
ε (x) = Sk1,...,kr;h±

ε
f̂(x), (2.212)

along directions h±
ε close to h, and a corresponding Stokes operator

Sth = (S+
k1,...,kr;h)−1 S−

k1,...,kr;h .

These operators can be interpreted as monodromies associated to the singular
directions. They are unipotent, hence they admit a logarithm. These log Sth

are related to Ecalle’s alien derivations (cf. e.g. [14], [55]).

The wild fundamental group (cf. [88]) is then obtained by considering a semidi-
rect product of an affine group scheme N , which contains the affine group
scheme generated by the Stokes operators Sth, by the affine group scheme G of
the formal case,

πwild
1 (∆∗) = N o G. (2.213)

At the Lie algebra level, one considers a free Lie algebra R (the “resurgent Lie
algebra”) generated by symbols δ(q,h) with q ∈ E and h ∈ R such that reih is

a direction of maximal decrease of exp(
∫

q dz
z ) (these correspond to the alien

derivations). There are compatible actions of the exponential torus T and of
the formal monodromy γ on R by

τ exp(δ(q,h))τ
−1 = exp(τ(q)δ(q,h)),

γ exp(δ(q,h))γ
−1 = exp(δ(q,h−2πi)).

(2.214)

The Lie algebra LieN is isomorphic to a certain completion of R as a projective
limit (cf. Theorem 6.3 of [102]).

The structure (2.213) of the wild fundamental group reflects the fact that, while
the algebraic hull Z̄ corresponds to the formal monodromy along a nontrivial
loop in an infinitesimal punctured disk around the origin, due to the presence of
singularities that accumulate at the origin, when considering Borel transforms,
the monodromy along a loop in a finite disk also picks up monodromies around
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all the singular points near the origin. The logarithms of these monodromies
correspond to the alien derivations.

The main result of [88] on the wild Riemann–Hilbert correspondence is that
again there is an equivalence of categories, this time between germs of mero-
morphic connections at the origin (without the regular singular assumption) and
finite dimensional linear representations of the wild fundamental group (2.213).

Even though we have seen in Section 2.16 that only an analog of the exponen-
tial torus part of the wild fundamental group appears in the Riemann–Hilbert
correspondence underlying perturbative renormalization, still the Stokes part
will play a role when non-perturbative effects are taken into account. In fact,
already in its simplest form (2.206), the method of Borel summation is well

known in QFT, as a method for evaluating divergent formal series f̂(g) in the
coupling constants. In certain theories (super-renormalizable gφ4 and Yukawa

theories) the formal series f̂(g) has the property that its formal Borel trans-

form B̂f̂(g) is convergent, while in more general situations one may have to use

other k-summabilities or multisummability. Already in the cases with B̂f̂(g)

convergent, however, one can see that f̂(g) need not be Borel summable in the

direction h = [0,∞), due to the fact that the function SB̂f̂(g) acquires sin-
gularities on the positive real axis. Such singularities reflect the presence of
nonperturbative effects, for instance in the presence of tunneling between dif-
ferent vacua, or when the perturbative vacuum is really a metastable state (cf.
e.g. [95]).

In many cases of physical interest (cf. e.g. [95]–[98]), singularities in the Borel
plane appear along the positive real axis, namely h = R+ is a Stokes line. For
physical reasons one wants a summation method that yields a real valued sum,
hence it is necessary to sum “through” the infinitely near singularities on the real
line. In the linear case, by the method of Martinet–Ramis [88], one can sum
along directions near the Stokes line, and correct the result using the square
root of the Stokes operator. In the nonlinear case, however, the procedure of
summing along Stokes directions becomes much more delicate (cf. e.g. [43]).

In the setting of renormalization, in addition to the perturbative case analyzed
in CK [29]–[32], there are two possible ways to proceed, in order to account
for the nonperturbative effects and still obtain a geometric description for the
nonperturbative theory. These are illustrated in the diagram:

Unrenormalized perturbative
geff (z)

//

Birkhoff
��

Unrenormalized nonperturbative

Birkhoff
��

Renormalized perturbative
g
+
eff

(0)
// Renormalized nonperturbative

(2.215)

On the left hand side, the vertical arrow corresponds to the result of CK ex-
pressing perturbative renormalization in terms of the Birkhoff decomposition
(2.138), where g+

eff(0) is the effective coupling of the renormalized perturbative
theory. The bottom horizontal arrow introduces the nonperturbative effects by
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applying Borel summation techniques to the formal series g+
eff(0). On the other

hand, the upper horizontal arrow corresponds to applying a suitable process of
summability to the unrenormalized effective coupling constant geff(z), viewed as
a power series in g, hence replacing formal diffeomorphisms by germs of actual
diffeomorphisms analytic in sectors. The right vertical arrow then yields the
renormalized nonperturbative theory by applying a Birkhoff decomposition in
the group of germs of analytic diffeomorphisms. This type of Birkhoff decom-
position was investigated by Menous [91], who proved its existence in the non-
formal case for several classes of diffeomorphisms, relevant to non-perturbative
renormalization.

2.18 Questions and directions

In this section we discuss some possible further directions that complement and
continue along the lines of the results presented in this paper. Some of these
questions lead naturally to other topics, like noncommutative geometry at the
archimedean primes, which will be treated elsewhere. Other questions are more
closely related to the issue of renormalization, like incorporating nonperturba-
tive effects, or the crucial question of the relation to noncommutative geometry
via the local index formula, which leads to the idea of an underlying renormal-
ization of the geometry by effect of the divergences of quantum field theory.

2.18.1 Renormalization of geometries

In this paper we have shown that there is a universal affine group scheme U ∗,
the “cosmic Galois group”, that maps to the group of diffeographisms Difg(T )
of a given physical theory T , hence acting on the set of physical constants,
with the renormalization group action determined by a canonical one-parameter
subgroup of U∗. We illustrated explicitly how all this happens in the sufficiently
generic case of T = φ3

6, the φ3 theory in dimension D = 6.

Some delicate issues arise, however, when one wishes to apply a similar setting to
gauge theories. First of all a gauge theory may appear to be non-renormalizable,
unless one handles the gauge degrees of freedom by passing to a suitable BRS
cohomology. This means that a reformulation of the main result is needed,
where the Hopf algebra of the theory is replaced by a suitable cohomological
version.

Another important point in trying to extend our results to a gauge theoretic
setting, regards the chiral case, where one faces the technical issue of how to treat
the γ5 within the dimensional regularization and minimal subtraction scheme.
In fact, in dimension D = 4, the symbol γ5 indicates the product

γ5 = iγ0γ1γ2γ3, (2.216)

82



where the γµ satisfy the Clifford relations

{γµ, γν} = 2gµν I, with Tr(I) = 4, (2.217)

and γ5 anticommutes with them,

{γ5, γ
µ} = 0. (2.218)

It is well known that, when one complexifies the dimension around a critical
dimension D, the naive prescription which formally sets γ5 to still anticommute
with symbols γµ while keeping the cyclicity of the trace is not consistent and
produces contradictions ([20], §13.2). Even the very optimistic but unproven
claim that the ambiguities introduced by this naive prescription should be al-
ways proportional to the coefficient of the chiral gauge anomaly would restrict
the validity of the naive approach to theories with cancellation of anomalies.

There are better strategies that allow one to handle the γ5 within the Dim-Reg
scheme (see [86] for a recent detailed treatment of this issue). One approach
(cf. Collins [20] §4.6 and §13) consists of providing an explicit construction of
an infinite family of gamma matrices γµ, µ ∈ N, satisfying (2.217). These
are given by infinite rank matrices. The definition of γ5, for complex dimen-
sion d 6= 4, is then still given through the product (2.216) of the first four
gamma matrices. Up to dropping the anticommutativity relation (2.218) (cf. ’t
Hooft–Veltman [73]) it can be shown that this definition is consistent, though
not fully Lorentz invariant, due to the preferred choice of these spacetime di-
mensions. The Breitenlohner–Maison approach (cf. [10], [86]) does not give an
explicit expression for the gamma matrices in complexified dimension, but de-
fines them (and the γ5 given by (2.216)) through their formal properties. Finally
D. Kreimer in [78] produces a scheme in which γ5 still anticommutes with γµ

but the trace is no longer cyclic. His scheme is presumably equivalent to the
BM-scheme (cf. [78] section 5).

The issue of treating the gamma matrices in the Dim-Reg and minimal subtrac-
tion scheme is also related to the important question of the relation between
our results on perturbative renormalization and noncommutative geometry, es-
pecially through the local index formula.

The explicit computation in Proposition 2.28 of the coefficients of the universal
singular frame is a concrete starting point for understanding this relation. The
next necessary step is how to include the Dirac operator, hence the problem
of the gamma matrices. In this respect, it should also be mentioned that the
local index formula of [38] is closely related to anomalies (cf. e.g. [99]). From a
more conceptual standpoint, the connection to the local index formula seems to
suggest that the procedure of renormalization in quantum field theory should
in fact be thought of as a “renormalization of the geometry”. The formulation
of Riemannian spin geometry in the setting of noncommutative geometry, in
fact, has already built in the possibility of considering a geometric space at
dimensions that are complex numbers rather than integers. This is seen through
the dimension spectrum, which is the set of points in the complex plane at
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which a space manifests itself with a nontrivial geometry. There are examples
where the dimension spectrum contains points off the real lines (e.g. the case
of Cantor sets), but here one is rather looking for something like a deformation
of the geometry in a small neighborhood of a point of the dimension spectrum,
which would reflect the Dim-Reg procedure.

The possibility of recasting the Dim-Reg procedure in such setting is intriguing,
due to the possibility of extending the results to curved spacetimes as well as to
actual noncommutative spaces, such as those underlying a geometric interpre-
tation of the Standard Model ([22], [17]).

There is another, completely different, source of inspiration for the idea of de-
forming geometric spaces to complex dimension. In arithmetic geometry, the
Beilinson conjectures relate the values and orders of vanishing at integer points
of the motivic L-functions of algebraic varieties to periods, namely numbers
obtained by integration of algebraic differential forms on algebraic varieties (cf.
e.g. [77]). It is at least extremely suggestive to imagine that the values at
non-integer points may correspond to a dimensional regularization of algebraic
varieties and periods.

2.18.2 Nonperturbative effects

In the passage from the perturbative to the nonperturbative theory described
by the two horizontal arrows of diagram (2.215), it is crucial to understand the
Stokes’ phenomena associated to the formal series geff(g, z) and g+

eff(g, 0). In
particular, it is possible to apply Ecalle’s “alien calculus” to the formal diffeo-
morphisms

geff(g, z) =


g +

∑
g2`+1 U(Γ)

S(Γ)





1−

∑
g2` U(Γ)

S(Γ)




−3/2

.

There is, in fact, a way of constructing a set of invariants {Aω(z)} of the formal
diffeomorphism geff(·, z) up to conjugacy by analytic diffeomorphisms tangent
to the identity. This can be achieved by considering a formal solution of the
difference equation

xz(u + 1) = geff(xz(u), z), (2.219)

defined after a change of variables u ∼ 1/g. Equation (2.219) has the effect of
conjugating geff to a homographic transformation. The solution xz satisfies the
bridge equation (cf. [55] [57])

∆̇ωxz = Aω(z) ∂u xz , (2.220)

which relates alien derivations ∆̇ω and ordinary derivatives and provides the
invariants {Aω(z)}, where ω parameterizes the Stokes directions. Via the anal-
ysis of the bridge equation (2.220), one can investigate the persistence at z = 0
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of Stokes’ phenomena induced by z 6= 0 (cf. [57]), similarly to what hap-
pens already at the perturbative level in the case of the renormalization group
Ft = exp(tβ) at z = 0, induced via the limit formula (2.104) by “instantonic
effects” (cf. (2.117)) at z 6= 0. In this respect, Frédéric Fauvet noticed a formal
analogy between the bridge equation (2.220) and the action on (2.132) of the
derivations ∂Γ, for Γ a 1PI graph with two or three external legs, given by

∂Γ geff = ρΓ g2`+1 ∂

∂g
geff ,

where ρΓ = 3/2 for 2-point graphs, ρΓ = 1 for 3-point graphs and ` = L(Γ) is
the loop number (cf. [32] eq.(34)).

Moreover, if the formal series geff(g, z) is multisummable, for some multi-index
(k1, . . . , kr) with k1 > · · · > kr > 0, then the corresponding sums (2.209) are
defined for almost all the directions h in the plane of the complexified coupling
constant. At the critical directions there are corresponding Stokes operators Sth

Sth(z) : geff(g, z) 7→ σh(g, z) geff(g, z).

These can be used to obtain representations ρz of (a suitable completion of)
the wild fundamental group πwild

1 (∆∗) in the group of analytic diffeomorphisms
tangent to the identity. Under the wild Riemann–Hilbert correspondence, these
data acquire a geometric interpretation in the form of a nonlinear principal bun-
dle over the open set C∗ in the plane of the complexified coupling constant, with
local trivializations over sectors and transition functions given by the σh(g, z),
with a meromorphic connection locally of the form σ−1

h A σh + σ−1
h dσh. This

should be understood as a microbundle connection. In fact, in passing from the
case of finite dimensional linear representations to local diffeomorphisms, it is
necessary to work with a suitable completion of the wild fundamental group,
corresponding to the fact that there are infinitely many alien derivations in a
direction h.

2.18.3 The field of physical constants

The computations ordinarily performed by physicists show that many of the
“constants” that occur in quantum field theory, such as the coupling constants
g of the fundamental interactions (electromagnetic, weak and strong), are in fact
not at all “constant”. They really depend on the energy scale µ at which the
experiments are realized and are therefore functions g(µ). Thus, high energy
physics implicitly extends the “field of constants”, passing from the field of
scalars C to a field of functions containing the g(µ). The generator of the
renormalization group is simply µ ∂/∂µ.

It is well known to physicists that the renormalization group plays the role of a
group of ambiguity. One cannot distinguish between two physical theories that
belong to the same orbit of this group. In this paper we have given a precise
mathematical content to a Galois interpretation of the renormalization group
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via the canonical homomorphism (2.179). The fixed points of the renormaliza-
tion group are ordinary scalars, but it can very well be that quantum physics
conspires to prevent us from hoping to obtain a theory that includes all of par-
ticle physics and is constructed as a fixed point of the renormalization group.
Strong interactions are asymptotically free and one can analyse them at very
high energy using fixed points of the renormalization group, but the presence of
the electrodynamical sector shows that it is hopeless to stick to the fixed points
to describe a theory that includes all observed forces. The problem is the same
in the infrared, where the role of strong and weak interactions is reversed.

One can describe the simpler case of the elliptic function field Kq in the same
form, as a field of functions g(µ) with a scaling action generated by µ ∂/∂µ.
This is achieved by passing to loxodromic functions, that is, setting µ = e2πiz,
so that the first periodicity (that in z 7→ z + 1) is automatic and the second is
written as g(q µ) = g(µ). The group of automorphisms of an elliptic curve is
then also generated by µ ∂/∂µ.

In this setup, the equation µ ∂µ f = β f , relating the scaling of the mass pa-
rameter µ to the beta function (cf. (2.114)), can be seen as a regular singular
Riemann–Hilbert problem on a punctured disk ∆∗, with β the generator of the
local monodromy ρ(`) = exp(2πi `β). This interpretation of β as log of the
monodromy appears in [42] in the context of arithmetic geometry [31], [41].

The field Kq of elliptic functions plays an important role in the recent work
of Connes–Dubois Violette on noncommutative spherical manifolds ([26] [27]).
There the Sklyanin algebra (cf. [106]) appeared as solutions in dimension three
of a classification problem formulated in [34]. The regular representation of such
algebra generates a von Neumann algebra, direct integral of approximately finite
type II1 factors, all isomorphic to the hyperfinite factor R. The corresponding
homomorphisms of the Sklyanin algebra to the factor R miraculously factorizes
through the crossed product of the field Kq of elliptic functions, where the
module q = e2πiτ is real, by the automorphism of translation by a real number
(in general irrational). One obtains this way the factor R as a crossed product
of the field Kq by a subgroup of the Galois group. The results of [36] on
the quantum statistical mechanics of 2-dimensional Q-lattices suggests that an
analogous construction for the type III1 case should be possible using the to
modular field.

This type of results are related to the question of an interpretation of arithmetic
geometry at the archimedean places in terms of noncommutative geometry,
which will be treated in [37]. In fact, it was shown in [23] that the classification
of approximately finite factors provides a nontrivial Brauer theory for central
simple algebras over C. This provides an analog, in the archimedean case, of
the module of central simple algebras over a nonarchimedean local field. In
Brauer theory the relation to the Galois group is obtained via the construction
of central simple algebras as crossed products of a field by a group of automor-
phisms. Thus, finding natural examples of constructions of factors as crossed
product of a field F , which is a transcendental extension of C, by a group of
automorphisms is the next step in this direction.
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2.18.4 Birkhoff decomposition and integrable systems

The Birkhoff decomposition of loops with values in a complex Lie group G is
closely related to the geometric theory of solitons developed by Drinfel’d and
Sokolov (cf. e.g. [51]) and to the corresponding hierarchies of integrable systems.

This naturally poses the question of whether there may be interesting connec-
tions between the mathematical formulation of perturbative renormalization in
terms of Birkhoff decomposition of [32] and integrable systems. Some results in
this direction were obtained in [105].

In the Drinfel’d–Sokolov approach, one assigns to a pair (g, X) of a simple Lie
algebra g = Lie G and an element in a Cartan subalgebra h a hierarchy of
integrable systems parameterized by data (Y, k), with Y ∈ h and k ∈ N. These
have the form of a Lax equation Ut − Vx + [U, V ] = 0, which can be seen as the
vanishing curvature condition for a connection

∇ =

(
∂

∂x
− U(x, t; z),

∂

∂t
− V (x, t; z)

)
. (2.221)

This geometic formulation in terms of connections proves to be a convenient
point of view. In fact, it immediately shows that the system has a large group
of symmetries given by gauge transformations U 7→ γ−1Uγ + γ−1 ∂x γ and
V 7→ γ−1V γ + γ−1 ∂t γ. The system associated to the data (Y, k) is specified by
a “bare” potential

∇0 =

(
∂

∂x
−X z,

∂

∂t
− X̃ zk

)
, (2.222)

with [X, X̃] = 0 so that ∇0 is flat, and solutions are then obtained by acting on
∇0 with the “dressing” action of the loop group LG by gauge transformations
preserving the type of singularities of ∇0. This is done by the Zakharov–Shabat
method [110]. Namely, one first looks for functions (x, t) 7→ γ(x,t)(z), where
γ(x,t) ∈ LG, such that γ−1∇0γ = ∇0. One sees that these will be of the form

γ(x,t)(z) = exp(xXz + tX̃zk) γ(z) exp(−xXz − tX̃zk), (2.223)

where γ(z) is a G-valued loop. If γ is contained in the “big cell” where one
has Birkhoff decomposition γ(z) = γ−(z)−1γ+(z), one obtains a corresponding
Birkhoff decomposition for γ(x,t) and a connection

∇ = γ−
(x,t)(z)−1∇0 γ−

(x,t)(z) = γ+
(x,t)(z)∇0 γ+

(x,t)(z)−1, (2.224)

which has again the same type of singularities as ∇0. The new local gauge
potentials are of the form U = Xz+u(x, t) and V = X̃zk+

∑k−1
i=1 vi(x, t)zi. Here

u(x, t) is u = [X, Resγ]. For u(x, t) =
∑

α uα(x, t) eα, where g = ⊕αCeα⊕h, one
obtains nonlinear soliton equations ∂tuα = Fα(uβ) by expressing the vi(x, t) as
some universal local expressions in the uα.

Even though the Lie algebra of renormalization does not fit directly into this
general setup, this setting suggests the possibility of considering similar connec-
tions (recall, for instance, that [Z0, Resγ] = Y Resγ = β), and working with the
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doubly infinite Lie algebra of insertion and elimination defined in [33], with the
Birkhoff decomposition provided by renormalization.

2.19 Further developments

The presence of subtle algebraic structures related to the calculation of Feynman
diagrams is acquiring an increasingly important role in experimental physics.
In fact, it is well known that the standard model of elementary particle physics
gives extremely accurate predictions, which have been tested experimentally to
a high order of precision. This means that, in order to investigate the existence
of new physics, within the energy range currently available to experimental
technology, it is important to stretch the computational power of the theoret-
ical prediction to higher loop perturbative corrections, in the hope to detect
discrepancies from the observed data large enough to justify the introduction of
physics beyond the standard model. The huge number of terms involved in any
such calculation requires developing an effective computational way of handling
them. This requires the development of efficient algorithms for the expansion of
higher transcendental functions to a very high order. The interesting fact is that
abstract algebraic and number theoretic objects – Hopf algebras, Euler–Zagier
sums, multiple polylogarithms – appear very naturally in this context.

Much work has been done recently by physicists (cf. the work of Moch, Uwer,
and Weinzierl [93], [109]) in developing such algorithms for nested sums based on
Hopf algebras. They produce explicit recursive algorithms treating expansions of
nested finite or infinite sums involving ratios of Gamma functions and Z–sums,
which naturally generalize multiple polylogarithms [64], Euler–Zagier sums, and
multiple ζ-values. Such sums typically arise in the calculation of multi-scale
multi-loop integrals. The algorithms are designed to recursively reduce the Z-
sums involved to simpler ones with lower weight or depth, and are based on the
fact that Z-sums form a Hopf algebra, whose co-algebra structure is the same as
that of the CK Hopf algebra. Other interesting explicit algorithmic calculations
of QFT based on the CK Hopf algebra of Feynman graphs can be found in the
work of Bierenbaum, Kreckel, and Kreimer [6]. Hopf algebra structures based on
rooted trees, that encode the combinatorics of Epstein–Glaser renormalization
were developed by Bergbauer and Kreimer [5].

Kreimer developed an approach to the Dyson–Schwinger equation via a method
of factorization in primitive graphs based on the Hochschild cohomology of the
CK Hopf algebras of Feynman graphs ([81], [82], [80], cf. also [13]).

Work of Ebrahimi-Fard, Guo, and Kreimer ([52], [53], [54]) recasts the Birkhoff
decomposition that appears in the CK theory of perturbative renormalization
in terms of the formalism of Rota–Baxter relations. Berg and Cartier [4] related
the Lie algebra of Feynman graphs to a matrix Lie algebra and the insertion
product to a Ihara bracket. Using the fact that the Lie algebra of Feynman
graphs has two natural representations (by creating or eliminating subgraphs)
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as derivations on the Hopf algebra of Feynman graphs, Connes and Kreimer
introduced in [33] a larger Lie algebra of derivations which accounts for both
operations. Work of Mencattini and Kreimer further relates this Lie algebra (in
the ladder case) to a classical infinite dimensional Lie algebra.

Connections between the operadic formalism and the CK Hopf algebra have
been considered by van der Laan and Moerdijk [83], [94]. The CK Hopf algebra
also appears in relation to a conjecture of Deligne on the existence of an action
of a chain model of the little disks operad on the Hochschild cochains of an
associative algebra (cf. Kaufmann [75]).
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unipotents. Séminaire Bourbaki, Vol. 2000/2001. Astérisque No. 282 (2002),
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