
4. Quotients, inverses and limits.  Modelling photosynthesis

Almost everything about ordinary functions can be approached from either a graphical or
an algebraic perspective.  We saw in Lectures 1 and 2 that functions can be defined either
way.  We saw in Lecture 1 that extrema can be found graphically, and we will discover in
Lecture 16 that they can also be found algebraically.  We saw in Lecture 3 that concavity
can be determined graphically, and we will discover in Lecture 16 that it can also be
determined algebraically.  We saw in Lecture 1 that the inverse of a function can be found
graphically, and we will discover in this lecture that it can also be found algebraically.
First, however, we need to define another category of function combination.

Accordingly, let g and h have the same domain, and assume that 0 does not belong
to the range of h.  Then the quotient of g and h is the function Q = g/h defined by Q(x) =
g(x)/h(x). Suppose, for example, that g(x) = Ax and h(x) = x + B define linear functions
with positive parameters A, B on some domain where x ≥ 0.  Because x ≥ 0 implies x + B ≥
B  and B > 0, we have h(x) > 0, implying in particular that h(x) ≠ 0; that is, 0 does not
belong to the range of h.   So a quotient Q is well defined by

  
Q(x)=

Ax
x+B

.(4.1)

A quotient of two linear functions is a special case of a rational function, i.e., a quotient of
polynomials.

Plant scientists have used the relationship y = Q(x) to model both the effect of
potassium concentration on rate of ion absorption in roots (see, e.g., Fitter and Hay, 1987,
pp. 89-90) and the effect of carbon dioxide concentration, or [CO2],  on the rate of
photosynthesis in leaves (e.g., Rabinowitch, 1951, p. 920).  In the case of photosynthesis,
the independent variable x denotes interstitial [CO2] in micromoles per mole (which may
differ from [CO2] in the surrounding air); the dependent variable y = Q(x) denotes the rate
in micromoles per square meter per second at which CO2 is assimilated by a leaf; the
parameter A denotes the "saturation" rate of photosynthesis (in micromol   m

−2
  s

−1
); and the

parameter B denotes the "half-saturation concentration"  (in micromol   mol
−1

, same as for
x).  A lower value of B implies a higher "affinity" of the leaf for CO2; it is called the half-
saturation concentration because if x = B then y = A/2 or

  Q(B)=
1
2A.(4.2)

But why is A called the saturation rate?  That is an interesting question, to which we will
shortly return.

The actual values of A and B depend on temperature, light intensity and a number
of other factors, but become largely irrelevant if we first of all "scale" y with respect to A
and x with respect to B, i.e., if we first define a new independent variable u and a new
dependent variable z by

      
  
z=

y
A

,u=
x
B

.(4.3)

Then, from (1) and y = Q(x), we have

  
z=

y
A

=
Q(x)

A
=

x
x+B

=
x/B

x/B+1
=

u
u+1

.(4.4)

So in terms of scaled variables we have z = K(u) where K

  
K(u)=

u
u+1

.(4.5)

Note that z = 1/2 when u = 1; i.e., (2) becomes
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K(1)=

1
2

(4.6)

The graph of the resulting quotient K is shown in Figure 1 for subdomain [0, 19].
What is the full domain of K?  Although it doesn't make sense for a concentration to

be negative, provided u ≥ 0, there is no (mathematical) restriction on how large u can be.
That is, (5) defines K on any interval of the form  [0,   umax], no matter how large   umax.  The
mathematical shorthand for "any domain of the form [0,   umax], no matter how large   umax"  is
[0, ∞).  So K has domain [0, ∞).  Its domain is said to be infinite.

What kind of function is K?  From Figure 1, K is concave down, increasing, and
therefore invertible.  It is also smooth, and therefore continuous.  A continuous function on
a finite domain has a unique global maximum.  But K has an infinite domain, which means
that it need not have a maximum; and in fact it does not, because K(u) gets larger and
larger as u gets larger and larger.  On the other hand, as u gets larger, K(u) gets larger by
smaller amounts; and it cannot exceed 1, because (5) implies that

  
1−K(u)=1−

u
u+1

=
1

u+1
,(4.7)

which is positive.  We say that 1 is an upper bound of K.  But if K(u) cannot exceed 1, then
it also cannot exceed 2, which makes 2 an upper bound of K as well.  For that matter, so
are 3 and 10.  What makes 1 special is that it is the least such bound: there is no number
smaller than 1 that always exceeds K(u).  So we say that 1 is the least upper bound of K.

There is, however, more to be said. As u becomes indefinitely large, K(u) becomes
arbitrarily close to 1.  As so often in calculus, there are two perspectives from which to
view this statement.  We can first of all view it graphically.  In Figure 1(a), the dashed line
corresponds to z = 1 and the curve to z = K(u).  So 1 – K(u) is the vertical distance between
the dashed line and the curve.  The further you move to the right (as far as you please, way
off the page), the smaller the distance becomes, until eventually you move so far to the
right that, for all practical purposes, the curve and the line are indistinguishable.  We say
that the distance approaches zero as u becomes indefinitely large, for which the
mathematical shorthand is

  
Limu→∞

1−K(u)=0.(4.8)

But to say that the distance between K(u) and 1 approaches zero as u becomes indefinitely
large is just another way of saying that K(u) approaches 1 as u becomes indefinitely large,
for which the mathematical shorthand is

  
Limu→∞K(u)=1.(4.9)

We say that the limit of K(u) as u tends to infinity equals 1.  We also say that z = 1 is a
horizontal asymptote to the graph of K in Figure 1(a).

We can also view the above result algebraically.  If u becomes indefinitely large,
then it is all the more true that u + 1 becomes indefinitely large, which means that 1/(u +
1) becomes arbitrarily small, or approaches zero.  That is,

  
Limu→∞

1
u+1

=0.(4.10)

By (7), (10) is equivalent to (8), and therefore again implies (9).
What is the range of K?  Because, from  Figure 1(a), K eventually reaches every

value between 0 and 1 except 1 itself, the range of K is [0, 1] with the endpoint 1 removed.
A possible mathematical shorthand for "[0, 1] with the endpoint 1 removed" is [0, 1] – {1},
but a much more elegant one is [0, 1).  So the range of K is [0, 1).  More generally, [a, b)
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denotes the "half-open" interval [a, b] – {b} and (a, b] denotes the "half-open" interval [a, b]
– {a}, whereas (a, b) denotes the completely open interval [a, b] – {a} – {b}.

We have thus established that K is an increasing function with domain [0, ∞) and
range [0, 1).  It is therefore invertible, and if L denotes the inverse function, then L has
domain [0, 1) and range [0, ∞).  The graph of L is readily determined by the method of
Lecture 1 and is shown in Figure 1(b).  Note that, as z approaches 1 from the left, L(z)
becomes indefinitely large, for which mathematical shorthand is either

  
Limz→1−L(z)=∞(4.11a)

or simply

  L(1−)=∞.(4.11b)
We also say that z = 1 is a vertical asymptote to the graph of L.  Note that L is concave up
whereas K is concave down (but both functions are increasing).

We have found the inverse graphically, but we can also find it algebraically.  In
general, finding the inverse L of a function K means rewriting z = K(u) as u = L(z).  So, in
this particular case, finding the inverse L of K means solving z = u/(1+u) for u in terms of
z.  But z = u/(1+u) is the same thing as z(1+u) = u or z + zu = u, implying z = u(1 – z) or u
= z/(1–z).  Thus the inverse of K is defined algebraically on [0, 1) by

  
L(z)=

z
1−z

.(4.12)

See Exercises 1-3 for further practice.
We now return to whether A in (1) should be called the saturation rate, because in

practice we think of a saturation rate as a rate that can actually be achieved.  According to
our model, K(u) is always strictly less than 1, even when u is extremely large, and so it
follows from (4)-(5) that Q(x) is always strictly less than A, even when [CO2] is very high.
In practice, however, the photosynthetic reaction appears to saturate at quite moderate
concentrations of CO2, for example, at 40-50 micromol/liter under 407 lux in the water
plant Cabomba caroliniana  (Rabinowitch, 1951, p. 897).  More generally, there appears to
exist a concentration C such that

  Q(x)=Aifx≥C.(4.13)

We call C the saturation concentration.  From (4)-(5), we can rewrite (13) as

  K(u)=1ifu≥c(4.14)
where

  
c=

C
B

(4.15)

is the ratio of full-saturation concentration to half-saturation concentration.  For numerous
species of plants, representative values of c can be inferred from Table 27.I of Rabinowitch
(1951, pp. 892-893).  Most of these values fall between 2 and 5 (although some are higher).
So any K satisfying (6) and (14) with 2 ≤ c ≤ 5 is potentially a better photosynthesis model
than (5).  For example, we could take c = 3.41 and define

  
K(u)=

0.586u1−0.146u {}if0≤u≤3.41
1if3.41≤u<∞





(4.16)

The graph of this join is plotted in Figure 2, with the rational function shown dotted for
comparison.  Note that even if the new K really is a better model for CO2 assimilation rate
versus [CO2] concentration, the old K may still be a better model for CO2 assimilation rate
versus other variables, e.g., light intensity; see, e.g., Coombs et al (1985, p. 89).
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Note also that (5) and (16) both satisfy (9).  That is, in either case it is true that K(u)
is arbitrarily close to 1 for indefinitely large u.  But (5) and (16) satisfy (9) in different ways:
In (5), K approaches 1 only asymptotically, whereas in (16) K equals 1 on [c, ∞).  In a sense,
(16) satisfies (9) by default: K(u) has no choice but to be arbitrarily close to 1 when it is also
actually equal to 1.
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Exercises 4

4.1Find, by algebraic methods, the inverse B of the function A defined by (2.2), i.e.,

  A(t)=4πt
2

/81.

4.2Verify that g and h in Table 2.1 are inverses of one another.

4.3Verify that q and r in Table 2.1 are inverses of one another.

4.4*During the last 0.15 seconds – the atrial contraction phase – of a human cardiac 
cycle, the volume of the left ventricle increases by 9 ml.  Let R(t) denote recharge at 
any time t during this phase (so that, in particular, R(0) = 0 and R(0.15) = 9).  It is 
modelled by

  
R(t)=

800t
2

if0≤t≤0.075

9−2(3−20t)
2

if0.075≤t<0.15





(a)  Using Mathematica or otherwise, sketch the graph on [0, 0.15] of the join R.
(b)  Why must R be invertible? What does its inverse tell you?
(c)   Find R's inverse graphically.
(d)  Find R's inverse algebraically.
(e)  Describe the concavity of both R and its inverse.

4.5*In a photosynthetic reaction, rate of assimilation (as a proportion of the saturation 
rate) at concentration x (measured in units of half-saturation concentration) is K(x), 
where K is the join defined on [0, ∞) by

  

K(x)=
8
9−1

2x−4
3 ()

2

if0≤x≤1

1−1
6x

2if1≤x<∞







(a)  Using Mathematica or otherwise, sketch the graph of K on subdomain [0, 10].
(b)  Why must K be invertible? What does its inverse tell you?
(c)   Find K's inverse graphically.
(d)  Find K's inverse algebraically.
(e)  Describe the concavity of both K and its inverse.
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Answers and Hints for Selected Exercises

4.1B(y)  =  
  

9
2

y
π

4.4(b) R must be invertible because R is increasing.  Call the inverse function Q.  Let
y be an arbitrary volume between 0 and 9 ml.  Then Q(y) is the time (in seconds) 
when the recharge is y.
(d)On subdomain [0, 0.075], R is defined by y = R(t) where R(t) =   800t

2
.  R is 

increasing on this subdomain, and so its range is [R(0), R(0.075)] = [0, 4.5]. 
That means the inverse function has domain [0, 4.5] and range [0, 0.075].  
Call the inverse Q.  Then, on [0, 4.5], t = Q(y) must be the same thing as y = 
R(t).  But y = R(t) means y =   800t

2
, which is the same thing as t =   2y/40.  

So the inverse is defined on [0, 4.5] by Q(y) = 2y/40.
On subdomain [0.075, 0.15], however, R is defined by y = R(t) where R(t) = 

  9−2(3−20t)
2
.  R is increasing on this subdomain also, and so its range is

[R(0.075), R(0.15)] = [4.5, 9.0].  That means the inverse function has domain [4.5, 9] 
and range [0.075, 0.15].  The inverse is still called Q, even though it is restricted to a 
different subdomain, namely, [4.5, 9]; and on that subdomain, t = Q(y) is still be the
same thing as y = R(t).  But y = R(t) means y =   9−2(3−20t)

2
, which is the same 

thing as   (3−20t)
2
 = (9–y)/2 or  3 – 20t =   (9−y)/2 (because 3 ≥ 20t if t ≤ 0.15).  So t

= (3 –   (9−y)/2)/20, and the inverse is defined on [4.5, 9] by

  
Q(y)=

1
20

3−
9−y

2





.

We have now determined each component of Q. Combining our results, we obtain 
the join on [0, 9] defined by

  

Q(y)=

2y
40

if0≤y≤4.5

1
20

3−
9−y

2





if4.5≤y<9










(e)R is concave up on [0, 0.075] and concave down on [0.075, 0.15].  Q is concave
down on [0, 4.5] and concave up on [4.5, 9].
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4.5(b) K must be invertible because K is increasing.
(d) Call the inverse function L.  Let y be an arbitrary assimilation rate.  Then, on 
subdomain [0, 1], K is defined by y = K(x) where

  
K(x)=8

9−1
2x−4

3 ()
2

.

  K is increasing on this subdomain, and so its range is [K(0), K(1)] = [0, 5/6].  That 
means the inverse has subdomain [0, 5/6] and subrange [0, 1], with x = L(y).  But

  
y=8

9−1
2x−4

3 ()
2

⇒x−4
3 ()

2

 = 28
9−y ()⇒x = 4

3±28
9−y ()

to begin with.  This equation does not define a function because it is ambiguous, 
and a function is a rule for labelling things unambiguously.  Rather, the above 
equation defines two functions, each with domain [0, 5/6], say  L defined by

  
L(y) = 4

3+28
9−y ()

and   ̂L defined by

  
L̂(y) = 4

3−28
9−y ().

Which of these two functions is the inverse of K? In other words, is L =  L, or is L = 
? Well, you know that L(y) must belong to [0, 1].  But   L(y) is never less than 4/3.  
So it is always bigger than 1.  So it cannot belong to [0, 1].  Therefore it must be the 
case that L =   ̂L.  In other words,

  
L(y) = 4

3−28
9−y ()

on [0, 5/6].  Similarly, on subdomain [5/6, 1) of L, we have

  
y=1−1

6x
2⇒1

6x
2 = 1−y⇒x = 

1
6(1−y)

.

So L is the join defined on [0, 1) by

  

L(y)=

4
3−28

9−y ()if0≤y≤
5
6

1
6(1−y)

if
5
6≤y<1










(e)  The inverse tells you the concentration at which a particular assimilation 
rate will be observed.


