
6. Discrete probability distributions.  Sums of powers of integers

An important application of sequences is to probability distributions.  A probability
distribution consists of a set of possible outcomes for an experiment together with a set
of associated probabilities.  The set of possible outcomes is called the sample space.  We
can always arrange for it to be a set of numbers; for example, if the experiment is the
birth of a child and possible outcomes are boy (B) or girl (G), then we can replace
sample space {B, G} by {1, 2}, where 1 means boy and 2 means girl.  Then an experiment
consists of drawing a number at random from the sample space.  We call the unknown
number a random variable, and denote it by X.

A probability distribution whose sample space is a set of integers is said to be
discrete.  We can always arrange for the set of integers to be [0...∞); e.g., in the case of
childbirth, we would attach zero probability to X = 0 or X ≥ 3.  Then either of two
sequences completely specifies the distribution.  The first sequence, the probability
density function or p.d.f., is the nonnegative sequence {pn} defined by

  pn=Prob(X=n),(6.1)
where Prob(X = n) denotes the probability that n is drawn at random from the sample
space.  For example, in the case of childbirth, if γ (≈0.49) is the probability of a girl, then
p2 = Prob(X = 2) = γ and p1 = Prob(X = 1) = 1 – γ.  The second sequence, the cumulative
distribution function or c.d.f., is the nonnegative sequence {Pn} defined by

  Pn=Prob(X≤n).(6.2)
For example, in the case of childbirth, P1 = Prob(X ≤ 1) = 1 – γ and P2 = Prob(X ≤ 2) = 1.
Note that, because X ≥ 0, we must have

  P0=Prob(X≤0)=Prob(X=0)=p0.(6.3)
In fact, for the sake of simplicity, we will assume that X is strictly positive.  Then (3)
implies

  P0=0=p0.(6.4)
Any number in the sample space is independent of any other number (if you

draw 1, then you cannot at the same time draw 2, and vice versa).  Thus the probability
of k or m must always equal that of k plus that of m, and (4) implies

     
    

Prob(X≤n)=Prob(X=1ORX=2ORLORX=n−1ORX=n)
Prob(X≤n)=Prob(X=1)+Prob(X=2)+L+Prob(X=n−1)+Prob(X=n)

for any n ≥ 1; or, using (1)-(2) and summation notation,

    
Pn=p1+p2+L+pn−1+pn=pk

k=1

n

∑(6.5)

for any n ≥ 1.  Because total probability (i.e., the probability of something happening) is
always 1, the sequence {Pn} must converge to 1, i.e., we must have

  
P∞=limn→∞Pn=Prob(X<∞)=1,(6.6a)

which is usually written as

  
pk=

k=1

∞

∑1.(6.6b)

The easiest way to satisfy (6) is to have pk = 0 and Pk = 1 if k is sufficiently large, say, if k
> M.  For example, we can describe the distribution of 489 leaf thicknesses in D.
linearifolia  by setting M = 15, X = THICKNESS OF RANDOMLY CHOSEN LEAF and
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pk=Prob(X=k)=

FREQUENCYOFTHICKNESSk/60mm

489
.(6.7)

Then

  
Pk=Prob(X≤k)=

FREQUENCYOFTHICKNESS≤k/60mm

489
.(6.8)

See Table 1 and Figure 1.  (It is possible, however, to have pk > 0 for all positive k; see
Exercise 6.)

  k  pk  Pk  k  pk  Pk

00855/16384/163
100930/163114/163
20010118/489460/489
3001117/489159/163
43/1633/163123/163162/163
55/48914/489130162/163
628/48914/163141/489487/489
715/16329/163152/4891

  Table 6.1      Leaf thickness distribution for  Dicerandra linearifolia

Now, if (5) holds for all n ≥ 1, then

  
Pn−1=pk

k=1

n−1

∑(6.9)

must hold for all n – 1 ≥ 1 or n ≥ 2.  The only difference between the right-hand sides of
(5) and (9), however, is that (5) contains the term pn, whereas (9) does not.  Hence

  
Pn−Pn−1=pk

k=1

n

∑−pk
k=1

n−1

∑=pn(6.10)

for any n ≥ 2.  But (10) also holds for n = 1, because P1 – P0 =  P1 – 0 = p1, by (1)-(4).  So
(10) holds for n ≥ 1.  The upshot is that we can always obtain the p.d.f. from the c.d.f. by
using

  pn=Pn−Pn−1,n≥1(6.11a)
and we can always obtain the c.d.f. from the p.d.f by using

  

P0=0

Pn=pk,n≥1.
k=1

n

∑
(6.11b)

For example, in Table 1 we have P9 = 114/163 and P10 = 460/489, implying p10 = P10 – P9
= 118/489, by (31a); and we have pk = 0 for k ≤ 3, p4 = 3/163 and p5 = 5/489, so that P5 = p1
+ p2 + p3 + p4 + p5 = 14/489, by (31b).  Similarly, if X is a clutch size drawn at random
from Hussell's (1972) Lapland Longspur data, then Table 5.2 and (11) imply

  

p1=0p2=
1

54p3=
2

27p4=
2
9

p5=
8

27p6=
17
54p7=

2
27pn=0,n≥8

(6.12a)

and

  

P0=0P1=0P2=
1

54P3=
5

54

P4=
17
54P5=

11
18P6=

25
27Pn=1,n≥7.

(6.12b)

More generally, any sequence {pn} on [1 ... ∞) is potentially the p.d.f. of some
distribution if it satisfies only two conditions, namely,
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pn≥0,1≤n<∞

pn=
n=1

∞

∑1.
(6.13a)

Correspondingly, any sequence {Pn} on [0 ... ∞) is potentially the c.d.f. of a distribution if
it satisfies only three conditions, namely,

  

P0=0
Pn≥Pn−1,1≤n<∞
P∞=limn→∞Pn=1

 (6.13b)

These two sets of conditions are equivalent, by (11).
We can exploit this equivalence to obtain expressions for sums of powers of

positive integers, which we need in Lecture 10.  We will obtain an expression for the
sum of squares, leaving analogous results for cubes and other powers to the exercises;
see Exercises 2-4.  Accordingly, consider the sequence defined on [0 ... ∞) by

  

Pn=
n(n+1)(2n+1)

M(M+1)(2M+1)
if0≤n≤M

1ifM+1≤n<∞.






(6.14)

You can see by inspection that P0 = 0, P∞ = 1 and Pn ≥ Pn-1 (in fact Pn > Pn-1 for 1 ≤ n ≤ M).
Thus {Pn} defines a probability distribution, implying in particular that (11a) and (13a)
must hold.  Note that PM = 1.  Thus Pn = 1 for n ≥ M, implying Pn-1 = 1 for n ≥ M + 1, so
that (11a) implies pn = Pn – Pn-1 = 1 – 1 = 0 for n ≥ M + 1.  Hence (13a) reduces to

  
pn=

n=1

M

∑1,(6.15)

and it follows immediately from (11a) that

  
{Pn−Pn−1}=

n=1

M

∑1.(6.16)

For n ≤ M, however, (14) implies

  

Pn−Pn−1=
n(n+1)(2n+1)

M(M+1)(2M+1)
−

(n−1)(n−1+1)(2{n−1}+1)
M(M+1)(2M+1)

=
n(n+1)(2n+1)

M(M+1)(2M+1)
−

(n−1)n(2n−1)
M(M+1)(2M+1)

=
n

M(M+1)(2M+1)
(n+1)(2n+1)−(n−1)(2n−1) {}

=
n

M(M+1)(2M+1)
2n

2
+3n+1−(2n

2
−3n+1) {}

=
n⋅6n

M(M+1)(2M+1)
.

(6.17)

Substituting into (15), we find that

  

6n
2

M(M+1)(2M+1)
=

n=1

M

∑1,(6.18)

implying

  

6
M(M+1)(2M+1)

n
2

=
n=1

M

∑1(6.19)

because anything that does not depend on n can be brought outside the summation
sign.  So the sum of the squares of the first M positive integers is
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n

2

n=1

M

∑=
1
6

M(M+1)(2M+1).(6.20)

For example,   1
2

+2
2

+3
2

=3(3+1)(2⋅3+1)/6=3⋅4⋅7/6=14,    1
2

+2
2

+3
2

+4
2

=

  4(4+1)(2⋅4+1)/6=4⋅5⋅9/6=30, and so on.  We will need (20) and similar results in
Lectures 10-11.
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Exercises 6

6.1Table 5.2 shows clutch sizes observed among four species of arctic passerine.  For
each species, produce the analogues of Table 1 and Figure 1.

6.2Use the c.d.f. defined by

  

Pn=
n(n+1)

M(M+1)
if0≤n≤M

1ifM+1≤n<∞






and the method of this lecture to establish that

    
  

n
n=1

M

∑=
1
2

M(M+1).

6.3Use the c.d.f. defined by

  

Pn=
n

2
(n+1)

2

M
2
(M+1)

2if0≤n≤M

1ifM+1≤n<∞






and the method of this lecture to establish that

    
  

n
3

n=1

M

∑=
1
4

M
2
(M+1)

2
.

6.4Use the c.d.f. defined by

  

Pn=
n(n+1)(2n+1)(3n

2
+3n−1)

M(M+1)(2M+1)(3M
2

+3M−1)
if0≤n≤M

1ifM+1≤n<∞






and the method of this lecture to establish that

  
n

4

n=1

M

∑=
1

30
M(M+1)(2M+1)(3M

2
+3M−1).

6.5A discrete probability density function is defined by

    
pn=

bnifn=1,2,K,M
0ifn≥M+1





where b is a constant.  What must be the value of b?

6.6A discrete probability density function is defined by

  
pn=

6
π

2
n

2,n≥1.

(i)Sketch the graph of the c.d.f. {Pn} on subdomain [0 ... 10].
(ii)What must be the sum of the series

  

1
n

2
n=1

∞

∑=
1
1

2+
1
2

2+
1
3

2+
1
4

2+...?
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Answers and Hints for Selected Exercises

6.3For n = M we have Pn = 
  
PM=

M
2
(M+1)

2

M
2
(M+1)

2=1.  For n ≥ M + 1 we have   Pn=1.  So 

for n ≥ M we have   Pn=1, implying   Pn−1=1 for n ≥ M + 1.  So for n ≥ M + 1 we  
have   Pn−Pn−1=1−1=0.  That is, pn = 0 for n > M, by (3.31a).  So, by (3.35),

  

1={Pn−Pn−1}=
n=1

M

∑
n

2
(n+1)

2

M
2
(M+1)

2−
(n−1)

2
({n−1}+1)

2

M
2
(M+1)

2







 n=1

M

∑

=
n

2
(n+1)

2

M
2
(M+1)

2−
(n−1)

2
n

2

M
2
(M+1)

2







 n=1

M

∑

=
1

M
2
(M+1)

2n
2

(n+1)
2

−(n−1)
2

{} n=1

M

∑

=
1

M
2
(M+1)

2n
2

n
2

+2n+1−(n
2

−2n+1) {} n=1

M

∑

=
1

M
2
(M+1)

24n
3

n=1

M

∑=
4

M
2
(M+1)

2n
3
,

n=1

M

∑
which implies the result.

6.5From Exercise 2, 
  
b=

2
M(M+1)

.

6.6(ii)
  

π
2

6


