
26. The mean and median of a distribution.

What does it mean to be above average in some respect?  A possible answer is above
the middle, or median, of a relevant distribution, defined as the value exceeded with
probability 0.5.  That is, if the relevant random variable, say X, is distributed on [0, ∞)
with p.d.f. f and c.d.f. F and M denotes the median, then

  
Prob(X≤M)=F(M)=f(x)dx

0

M

∫=
1
2

(26.1a)

or, equivalently,

  
Prob(X≥M)=1−F(M)=f(x)dx

M

∞

∫=
1
2

.(26.1b)

For example, from (22.37)-(22.38), the c.d.f. and p.d.f. of a Weibull distribution
with shape parameter c (≥ 1) and scale parameter s (> 0) are defined by1

  F(x)=1−e
−(x/s)

c

(26.2a)

 
  
f(x)=′ F(x)=

c
s

(x/s)
c−1

e
−(x/s)

c

(26.2b)

where, in general, s and c may be any positive numbers, although in this lecture we
assume that c ≥ 1.  If c = 1 then

  
  
f(x)=

1
s

e
−x/s

(26.3)

and the distribution is more commonly known as the exponential: its p.d.f. is strictly
decreasing, i.e., m = 0. If, on the other hand, c > 1, then the distribution is unimodal
with m =   (1−1/c)

1/c
s > 0, by (20.35).  Either way, (1)-(2) imply   exp(−{M/s}

c
) =  1/2 or

    M=sln(2) {}
1
c

(26.4)
(Exercise 1).  The median is illustrated for c = 2 and c = 5 by Figure 1, where shaded area
equals 0.5.  Note that M lies above the mode for c = 2 but below the mode for c = 5, in
accordance with a more general result obtained in Exercise 1.

The median has the disadvantage of giving too little weight to the "tail" of a
distribution, which may extend far to the right.  If comparing an observation to the
average of its distribution is meant to suggest not only whether the observed value is
above or below the middle of that distribution, but also whether it is large or small
(relative to the distribution), then a better definition of average is the balance point, or
mean.  The mean is defined as the value µ at which a cardboard lamina of area 1, cut to
the shape of the region between the horizontal axis and the graph of the p.d.f., would
(in principle) balance on a knife-edge.2  Because the lamina has uniform thickness,
area (=probability) is equivalent to weight.  Weight to the right of the balance point
tends to turn the lamina clockwise, weight to the left tends to turn it anticlockwise,
and the balance point is precisely where these turning effects, or moments, are equal.

Now, if a weight f(x) were concentrated at distance x – µ from the balance point,
then its turning effect about the balance point would be (x–µ)f(x).  It would be positive,

1  The Weibull is defined for c > 0, but we require only the unimodal (c > 1) and exponential (c = 1) cases.
2  As biology majors, you may be interested to know that lamina is animal backwards.
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or clockwise, for x > µ and negative, or anticlockwise, for x < µ.  But f(x) is not a weight;
rather, it is a weight (= probability) density, i.e., a weight per unit length.  Therefore

  T(x)=(x−µ)f(x)(26.5)
is not a turning effect; rather, it is a turning effect density, or turning effect per unit
length.  Accordingly, just as Int(f, [a, b]) is the weight (= probability) associated with the
interval [a, b], so Int(T, [a, b]) is the turning effect associated with [a, b].  Hence the total
positive or clockwise moment about the balance point is

  
Int(T,[µ,∞))=(x−µ)f(x)

µ

∞

∫dx;(26.6)

see Figure 2, where Int(T, [µ,∞)) is the positive shaded area.  Correspondingly, the total
negative or anticlockwise moment about the balance point is

  
Int(T,[0,µ])=(x−µ)f(x)

0

µ

∫dx,(26.7)

i.e., the negative shaded area in Figure 2.  If the lamina is to balance, however, then net
turning effect about x = µ must be precisely zero.  That is, Int(T, [0, µ]) + Int(T, [µ, ∞)) = 0.
Hence (8.25) implies Int(T, [0, ∞)) = 0 or, from (6)-(7),

  
(x−µ)f(x)

0

∞

∫dx=0.(26.8)

Using elementary properties of integrals, we can rewrite (8) as

  
xf(x)

0

∞

∫dx−µf(x)
0

∞

∫dx=0.(26.9)

But Int(f, [0, ∞)) = 1.  So (9) implies

  
µ=xf(x)

0

∞

∫dx,(26.10)

which defines the mean.  For all of the distributions we commonly use, the mean is a
well defined average.  Nevertheless, we will discover in Lecture 27 that there exist well
defined (and potentially useful) distributions for which µ is not a finite quantity.  So an
advantage of the median is that it is guaranteed to exist.

Typically, we calculate means by invoking the fundamental theorem of calculus.
To illustrate, consider mean survival time for Lecture 15's melanoma patients.  From
(19.2), the p.d.f. is defined by

 

  

f(t)=
A+

1
4

{1−3A}tif0≤t<2

4(1−A)
t

3if2≤t<∞









         (26.11)

 with A = 0.768.  Clearly,

 

  

tf(t)=
At+

1
4

{1−3A}t
2

if0≤t<2

4(1−A)
t

2if2≤t<∞









         (26.12)

So, from (10), and on using (16.20) in conjunction with Table 18.1, we have
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µ=tf(t)
0

∞

∫dt=tf(t)
0

2

∫dt+tf(t)
2

∞

∫dt

=At+
1
4

{1−3A}t
2 






 0

2

∫dt+4(1−A)t
−2

2

∞

∫dt

=
d
dt

1
2

At
2

+
1

12
{1−3A}t

3 





 0

2

∫dt+4(1−A)
d
dt

−t
−1

{} 2

∞

∫dt

  
=′ U(t)

0

2

∫dt+4(1−A)′ V(t)
2

∞

∫dt,(26.13)

where U is defined on [0, 2] by

  
U(t)=

1
2

At
2

+
1

12
{1−3A}t

3
(26.14)

and V is defined on [2, ∞) by

  
V(t)=−

1
t

.(26.15)

By the fundamental theorem, we easily find that

  
′ U(t)

0

2

∫dt=U(2)−U(0)=
2
3

−0=
2
3

,(26.16)

but the second integral in (13) requires a little more care.  We first observe that, again
by the fundamental theorem,

  
′ V(t)

2

K

∫dt=V(K)−V(2)=−
1
K

−−
1
2





=

1
2

−
1
K

.(26.17)

We now allow K to be come infinitely large.  Then   K
−1

 approaches zero, implying that
1/2 –   K

−1
 approaches 1/2, and so (17) yields

  
′ V(t)

2

∞

∫dt=
1
2

.(26.18)

Now, on substituting from (16) and (18) into (13), we find that

     
  
µ=′ U(t)

0

2

∫dt+4(1−A)′ V(t)
2

∞

∫dt=
2
3

+4(1−A)⋅
1
2

=
8
3

−2A.(26.19)

That is, with A = 0.768, the mean survival time is 1.13 years.  For further practice with
calculating means by invoking the fundamental theorem, see Exercises 5-10.

We don't invariably invoke the fundamental theorem to calculate a mean,
however, and the mean of the Weibull is a case in point.  From (3) and (10), the mean
of a Weibull with arbitrary shape parameter c is

  
µ=xf(x)dx=

0

∞

∫
cx
s

(x/s)
c−1

e
−(x/s)

c

dx
0

∞

∫=c(x/s)
c
e

−(x/s)
c

dx
0

∞

∫.(26.20)

We can simplify this integral by using the substitution

  
u=φ(x)=

x
s

.(26.21)

Because u = x/s implies x = su, the inverse substitution is defined by

  x=ζ(u)=su,(26.22)
implying
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       ′ ζ(u)=s.(26.23)
From (21), φ(0) = 0 and, because s > 0, φ(∞) = ∞.  (Note, however, that s < 0 would imply
φ(∞) = –∞.)  From (21.21), we have

  
g(x)dx

a

b

∫=g(ζ(u))′ ζ(u)du
φ(a)

φ(b)

∫,(26.24)

for arbitrary g.  With g defined by

  g(x)=c(x/s)
c
e

−(x/s)
c

,(26.25)
(20) reduces to

  

µ=g(x)dx
0

∞

∫=g(ζ(u))′ ζ(u)du
φ(0)

φ(∞)

∫

=cζ(u)/s ()
c
e

−(ζ(u)/s)
c

′ ζ(u)du
φ(0)

φ(∞)

∫

  
=cu

c
e

−u
c

0

∞

∫sdu,(26.26)

on using (21)-(23).  Because the right-hand side of (26) depends only on s and c, we can
replace x by u:

  
µ=scx

c
e

−x
c

0

∞

∫dx.(26.27)

We now make a fresh substitution,

  u=φ(x)=x
c
,(26.28)

whose inverse is

  x=u
1/c

=ζ(u),(26.29)
implying

  
′ ζ(u)=

1
c

u
1/c−1

.(26.30)

Because c is positive, if x → ∞ then φ(x) → ∞  also.  So (24) with g(x) = sc  x
c
e

−x
c

and (27)
imply

  

µ=scx
c
e

−x
c

0

∞

∫dx=scζ(u) ()
c
e

−{ζ(u)}
c

′ ζ(u)d
φ(0)

φ(∞)

∫u

=scue
−u

0

∞

∫
1
c

u
1/c−1

du

=su
(1+1/c)−1

e
−u

0

∞

∫du.

(26.31)

Now, 1/c + 1 – 1 = 1/c, and in mathematics one always prefers the simplest form
of an expression.  So why do we not write

  
µ=su

1/c
e

−u

0

∞

∫du(26.32)

in place of (31)?  It turns out that (31) yields greater simplicity in the long run, because
the function Γ defined by
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Γ(x)=u

x−1
e

−u

0

∞

∫du,(26.33)

called the Gamma function, is a "known" function of mathematics, just like exp or ln.
In terms of Γ, the mean of the Weibull is simply

       µ=sΓ(1+1/c),(26.34)
on using (31).

The domain of the Gamma function is the largest interval on which the integral
in (26) corresponds to a finite area, or "converges," which turns out to be (0, ∞).  On
this domain, Γ is concave up with global minimum 0.8856 and range [0.8856, ∞); see
Figure 3.  Because 1 ≤ c < ∞, however, we have 1 < 1 + 1/c ≤ 2.  Thus, as far as the mean
of the Weibull is concerned, it suffices to know Γ only on [1, 2].  The restriction of Γ to
this subdomain is graphed in Figure 4.  Note that 1 ≤ x ≤ 2 implies 0.8856 ≤ Γ(x) ≤ 1,
because

  Γ(1)=1=Γ(2)(26.35)

(Exercise 3).  So the mean of a Weibull always lies between 0.8856s and s.  See Figure 5,
where µ, M and m are plotted versus c.3

For example, rat pupil radius in Lecture 22 has a Weibull distribution with
shape parameter c = 2 (as in Figure 2) and scale parameter s = 0.713.  So, by (34) and
Figure 4, mean rat pupil radius is sΓ(3/2) = 0.886s = 0.886 ×  0.713 = 0.63 mm.  Similarly,
c = 7 and s = 0.152 for the Weibull in Figure 19.3, implying that mean leaf thickness in
Dicerandra linearifolia is sΓ(8/7) = 0.152 ×  0.935 = 0.14 mm.  Again, c = 5 and s = 17.84
for the Weibull in Figure 19.5, so that mean size (above base length) in D'Arcy
Thompson's minnows is sΓ(6/5) = 17.8 ×  0.9182 = 16.4 mm.  Finally, c = 1 and s =  1.286
in Figure 19.1, so mean life expectancy among prairie dogs is sΓ(2) = s = 1.286 years.

Although we restricted Γ to subdomain [1, 2], which suffices for the mean of a
Weibull, it turns out that [1, 2] is the only subdomain on which Γ need ever be known
(so that Figure 4 is an extremely useful diagram).  Why?  The answer is that the
Gamma function has a recursive property, namely,

  Γ(r+1)=rΓ(r)(26.36)

for any r > 0 (see Exercise 4 and Appendix 26).  If, for example, we require both Γ(0.5)
and Γ(3.7), we can use (36) to obtain reasonably accurate answers from Figure 4, even
though neither 0.5 nor 3.7 belongs to [1, 2].  In the first case, setting r = 0.5 in (36) yields
Γ(1.5) = 0.5Γ(0.5), so that Γ(0.5) = 2Γ(1.5) = 2 × 0.886 = 1.772.  In the second case, setting r =
2.7 in (36) yields Γ(3.7) = 2.7Γ(2.7), and setting r = 1.7 yields Γ(2.7) = 1.7Γ(1.7), so that
Γ(3.7) = 2.7 × 1.7 × Γ(1.7) = 2.7 × 1.7 × 0.909 = 4.17.

The quantity Γ(0.5) will surface again in Lecture 28, in an important context.  So
we conclude by noting for later reference that Γ(0.5) = 1.772 is merely a numerical
approximation to a precise relationship, namely,

3 Note that the curves in Figure 5 do not all intersect at the same point: The mode rises above the median
at c = 3.26 and above the mean at c = 3.31, whereas the mean does not fall below the median until c = 3.44.
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  Γ
1
2 ()=π,(26.37)

where π is the ratio between circumference and diameter of a circle.
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Exercises 26

26.1(i)Verify that M =    sln(2) {}
1
c
  for the Weibull distribution defined by (2).

(ii)Verify that M lies above or below the mode according to whether c < c* or
c > c*, where c* =   1−ln(2) {}

−1
 ≈ 3.26.

26.2Find the median of the distribution defined on [0, ∞) by

  

f(x)=

2
3x

1
3(3−x)

0








if0≤x<1
if1≤x<3
if3≤x<∞

26.3Show that 
  

d
du

−e
−u

{} =   e
−u

 and 
  

d
du

−(u+1)e
−u

{} = u  e
−u

.  Hence establish (35).

26.4Use mathematical induction (Appendix 17B) to show that if r is an integer, then
Γ(r+1) = r!, where r! (or r factorial) is the product of the first r positive integers, 
i.e., r! = 1⋅2⋅3⋅  ... ⋅(r–1)r.

26.5The p.d.f. of a distribution on [0, ∞) is defined by

  
f(x)=

x(2−x)/Lif0≤x<2
0if2≤x<∞





where L is a constant.  Find (i) L   (ii) m   (iii) µ   (iv)   the c.d.f.

26.6The p.d.f. of a distribution on [0, ∞) is defined by

  
f(x)=

x
2
(2−x)/Lif0≤x<2

0if2≤x<∞




where L is a constant.  Find (i) L   (ii) m   (iii) µ   (iv)   the c.d.f.

26.7*The p.d.f. of a distribution on [0, ∞) is defined by

  
f(x)=

x(2−x)
2

/Lif0≤x<2
0if2≤x<∞





where L is a constant.  Find (i) L   (ii) m   (iii) µ   (iv)   the c.d.f.

26.8The p.d.f. of a distribution on [0, ∞) is defined by

  
f(x)=

x
2
(2−x)

2
/Lif0≤x<2

0if2≤x<∞




where L is a constant.  Find (i) L   (ii) m   (iii) µ   (iv)   the c.d.f.

26.9The exponential distribution defined by (36) and the distributions defined in 
Exercises 22.9-22.11 are all special cases of the "Gamma" distribution.  The p.d.f. 
of the Gamma with shape parameter c and scale parameter s is f defined by

  
f(x)=

x
c−1

e
−x/s

L
,
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where L is a constant chosen to ensure Int(f, [0, ∞)) = 1.  Find (i) L  (ii) µ  (iii) m.
Hint: For (i)-(ii), use (21)-(24) and (33)

26.10* A truncated exponential distribution is defined on [0, ∞) by

  
f(x)=

1
Le

−λx
if0≤x≤b

0ifb≤x≤∞




where λ, b are parameters and L is a constant to ensure that Int(f, [0, ∞)) = 1.
Find  (i)  L  (ii)  µ  (iii)  M  (iv)  the c.d.f.  Verify that the c.d.f. is continuous.
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Appendix 26: The recursive property of the Gamma function

The purpose of this appendix is to establish that Γ(r + 1) = r Γ(r) for any r > 0.  The key
observation is that   u

r
e

−u
 approaches zero as u → ∞, no matter how large the value of r.

To be sure, for any r > 0,   u
r
 increases with u; and the larger the value of r, the more

rapidly   u
r
 increases.  At the same time, however,   e

−u
 decreases with u.  So   u

r
e

−u
 is the

product of something that gets bigger and bigger as u → ∞  and something that gets
smaller and smaller.  It is as though an arms race exists between   u

r
, which is on its way

to infinity, and   e
−u

, which is on its way to zero; but the winner of this arms race is   e
−u

,
no matter how large the value of r.

The easiest way to see this result is to compare the graph of z = u/r with that of z
= ln(u).  The first is a straight line with with positive slope through the origin of
coordinates; the second is a concave down curve (Figure 22.1).  Because z = ln(u) keeps
turning down as u increases, there must come a point beyond which z = ln(u) stays
below z = u/r forever; and the further u increases beyond this point, the greater the
divergence between z = u/r and z = ln(u).  In other words, u/r – ln(u) must approach
infinity as u → ∞. Hence u – rln(u) must also approach infinity as u → ∞, implying that
exp( –{u – rln(u)}) must approach zero as u → ∞.  But exp( –{u – rln(u)}) =   u

r
e

−u
, from

(22.22) and (22.28).  Therefore   u
r
e

−u
 → 0 as u → ∞.

We now apply the product rule to   u
r
e

−u
.  From (17.21), (22.31) and Exercise 3, we

have

  

d
du

u
r
e

−u
{}=

d
du

u
r

{}e
−u

+u
rd

du
e

−u
{}

=ru
r−1

e
−u

+u
r

−e
−u

{}
=ru

r−1
e

−u
−e

−u
u

r
,

(26.A1)

implying

  
ru

r−1
e

−u
−e

−u
u

r
{}du

0

∞

∫=
d

du
u

r
e

−u
{}du

0

∞

∫.(26.A2)

So (12.25) and (18.20) imply

  
ru

r−1
e

−u
du

0

∞

∫−u
(r+1)−1

e
−u

du
0

∞

∫=u
r
e

−u

0

∞
.(26.A3)

Now (33) implies

  
rΓ(r)−Γ(r+1)=limu→∞u

r
e

−u
−0=0−0=0,(26.A4)

from which Γ(r + 1) = r Γ(r), as required.



M. Mesterton-Gibbons: Biocalculus, Lecture 26, Page 10

Answers and Hints for Selected Exercises

26.2
  

f(x)dx
0

1

∫=
2
3xdx

0

1

∫=
d

dx
1
3x

2
()dx

0

1

∫=
1
3x

2

0

1
=

1
31

2
−

1
30

2
=

1
3, which is less than 1/2, 

implying M > 1.  So use 
  

f(x)dx
M

∞

∫=
1
2

⇒
1
3(3−x)dx

M

3

∫=
1
2

.  But  
  

1
3(3−x)dx

M

3

∫  =

  

d
dx−

1
6{3−x}

2
()dx

M

3

∫=−
1
6{3−x}

2

M

3
=−

1
60

2
+

1
6{3−M}

2
=

1
6{M−3}

2
.  So  

1
6{M−3}

2
  =  

  
1
2, implying  {M−3}

2
=3⇒M−3=−3 (because, clearly, M <   3).   So M  =

3 –   3 = 1.268.

26.3
  

d
du

e
−u

{}=−e
−u

 follows from Exercise 22.5 with λ = –1.  The product rule yields 

  

d
du

−(u+1)e
−u

{}=
d

du
(u+1)(−e

−u
) {}

=
d

du
(u+1) 








⋅(−e
−u

)+(u+1)
d

du
(−e

−u
)

={1+0}⋅(−e
−u

)+(u+1)e
−u

=ue
−u

.
Now, from (26) with x = 1 and the fundamental theorem,

  

Γ(1)=u
1−1

e
−u

du
0

∞

∫=
d

du
−e

−u
{}du

0

∞

∫

=−e
−u

0

∞
=limx→∞−e

−u

0

x

=limx→∞−e
−x

−(−e
−0

) {}
=limx→∞1−e

−x
{}=limx→∞1−

1
e

x








=1

because   e
x
 becomes arbitrarily large as x → ∞.  Similarly, from (26) with x = 2 

and the fundamental theorem,

  

Γ(2)=u
2−1

e
−u

du
0

∞

∫=ue
−u

du
0

∞

∫=
d

du
−(u+1)e

−u
{}du

0

∞

∫

=−(u+1)e
−u

0

∞
=limx→∞−(u+1)e

−u

0

x

=limx→∞−(x+1)e
−x

+(0+1)e
0

{}
=limx→∞1−(x+1)e

−x
{}=limx→∞1−

x+1
e

x








=1

because   e
x
 approaches infinity much more rapidly than x + 1 as x → ∞ from 

Figure 7.2 (or Appendix 26).

26.5(i)     L = 4/3        (ii)    m = 1(iii)µ = 1(iv)F(t) = 
  

1
4

t
2
(3−t)
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26.6(i)     L = 4/3        (ii)    m = 4/3(iii)µ = 6/5(iv)F(t) = 
  

1
16

t
3
(8−3t)

26.7(i)Define g by

  
g(x)=

x(2−x)
2

if0≤x<2
0if2≤x<∞





 Then f(x) = g(x)/L.  So

  
f(x)dx

0

∞

∫=1⇒
g(x)

L
dx

0

∞

∫=1⇒
1
L

g(x)
L

dx
0

∞

∫=1,

implying

  

L=g(x)dx
0

∞

∫=x(2−x)
2
dx

0

2

∫+0dx
2

∞

∫

=x{4−4x+x
2
}dx

0

2

∫+0

={4x−4x
2

+x
3
}dx

0

2

∫

=
d

dx
{2x

2
−

4
3x

3
+

1
4x

4
}dx

0

2

∫
=2x

2
−

4
3x

3
+

1
4x

4

0

2

=2⋅2
2

−
4
32

3
+

1
42

4
−{2⋅0

2
−

4
30

3
+

1
40

4
}=

4
3

.

(ii)Clearly, 0 < m < 2.  For x < 2, we have 
  
f(x)=

3x
4

(2−x)
2
  ⇒

  

′ f(x)=
3
4

d
dx

x(2−x)
2

{}
=

3
4

d
dx

x{}⋅(2−x)
2

+x
d

dx
2−x)

2
{} 








=
3
4

1⋅(2−x)
2

+x2(2−x)
d

dx
(2−x) 
















=
3
4

1⋅(2−x)
2

+x2(2−x)(−1) {} {}
=

3
4

(2−x)2−x+x(−2) {}=
3
4

(2−x)2−3x {},

on using the product rule.  So   ′ f(x) > 0 if 0 < x < 2/3 but   ′ f(x) < 0 if 2/3 < x < 2, 
implying that f has a maximum 8/9 where x = 2/3.  This maximizer is the mode.
That is, m = 2/3.
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(iii)From (12),

  

µ=xf(x)dx
0

∞

∫=x
3
4

x(2−x)
2 








dx
0

2

∫+x0dx
2

∞

∫

=
3
4

x
2
(2−x)

2
dx

0

2

∫+0

=
3
4

x
2
(4−4x+x

2
)dx

0

2

∫

=
3
4

{4x
2

−4x
3

+x
4
}dx

0

2

∫

=
3
4

d
dx

{
4
3x

3
−x

4
+

1
5x

5
}dx

0

2

∫

=
3
4

4
3x

3
−x

4
+

1
5x

5

0

2

()=
3
4

4
3⋅2

3
−2

4
+

1
52

5
−0 ()

=
3
4

2
34

3−2+
1
52

2
() ()=2

34
3−2+

1
52

2
()=

3
4

⋅8⋅
2

15
=

4
5

.

(iv)If t > 2 then F(t) = 1.  If 0 ≤ t ≤ 2, then

  

F(t)=f(x)dx
0

t

∫=
3
4x(2−x)

2
dx

0

t

∫

=
3
4

d
dx

{2x
2

−
4
3x

3
+

1
4x

4
}dx

0

t

∫

=
3
4

2x
2

−
4
3x

3
+

1
4x

4

0

t

()=
3
4

2t
2

−
4
3t

3
+

1
4t

4
−0 ()

=
3
2t

2
−t

3
+

3
16t

4
.

Note that F(2) = 1.

26.8(i)Define g by

  
g(x)=

x
2
(2−x)

2
if0≤x<2

0if2≤x<∞




 Then f(x) = g(x)/L.  So, as in the previous exercise, L = Int(g, [0, ∞)), implying

  

L=x
2
(2−x)

2
dx

0

2

∫+0dx
2

∞

∫

=x
2
{4−4x+x

2
}dx

0

2

∫+0

={4x
2

−4x
3

+x
4
}dx

0

2

∫
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=
d

dx
{

4
3x

3
−x

4
+

1
5x

5
}dx

0

2

∫
=

4
3x

3
−x

4
+

1
5x

5

0

2

=
4
3⋅2

3
−2

4
+

1
52

5
−{

4
3⋅0

3
−0

4
+

1
50

5
}=

16
15

.

(ii)Clearly, 0 < m < 2.  For x < 2, we have 
  
f(x)=

15x
2

16
(2−x)

2
  ⇒

  

′ f(x)=
15
16

d
dx

x
2
(2−x)

2
{}

=
15
16

d
dx

x
2

{}⋅(2−x)
2

+x
2d

dx
2−x)

2
{} 








=
15
16

2x⋅(2−x)
2

+x
2

2(2−x)(−1) {} {}
=

15
16

x(2−x)2(2−x)+2x(−1) {}=
15
4

x(2−x)1−x {}.

So   ′ f(x) > 0 when 0 < x < 1 but   ′ f(x) < 0 when 1 < x < 2, implying that f has a 
maximum 15/16 where x = 1.  This maximizer is the mode.  That is, m = 1.

(iii)From (12),

  

µ=xf(x)dx
0

∞

∫=x
15
16

x
2
(2−x)

2 







dx
0

2

∫

=
15
16

x
3
(2−x)

2
dx

0

2

∫

=
15
16

x
3
(4−4x+x

2
)dx

0

2

∫

=
15
16

{4x
3

−4x
4

+x
5
}dx

0

2

∫

=
15
16

d
dx

{x
4

−
4
5x

5
+

1
6x

6
}dx

0

2

∫

=
15
16

x
4

−
4
5x

5
+

1
6x

6

0

2

()=
15
16

2
4

−
4
52

5
+

1
62

6
−0 ()=1.

A simpler way to show that m = 1 = µ in this case will emerge in Lecture 27.



M. Mesterton-Gibbons: Biocalculus, Lecture 26, Page 14

(iv)If t > 2 then F(t) = 1.  If 0 ≤ t ≤ 2, then

  

F(t)=f(x)dx
0

t

∫=
15
16x

2
(2−x)

2
dx

0

t

∫

=
15
16

d
dx

{
4
3x

3
−x

4
+

1
5x

5
}dx

0

t

∫

=
15
16

4
3x

3
−x

4
+

1
5x

5

0

t

()=
15
16

4
3t

3
−t

4
+

1
5t

5
−0 ()

=
1

16
t

3
(20−15t+3t

2
).

Note that F(2) = 1.

26.9(i)  L=s
c
Γ(c)(ii)See (27.28)

(iii)On using the product rule,

  

′ f(x)=
1
L

d
dx

x
c−1

e
−x/s

{}
=

1
L

d
dx

x
c−1

{}e
−x/s

+x
c−1d

dx
e

−x/s
{} 








=
1
L

(c−1)x
c−2

e
−x/s

+x
c−1

−
1
s

e
−x/s 
















=
x

c−2
e

−x/s

L
c−1−

x
s








.

So   ′ f(x) > 0 when 0 < x < (c–1)s but   ′ f(x) < 0 when (c–1)s < x < ∞, implying that f 
has a maximum where x =(c–1)s.  That is, m = (c–1)s.


