First Assignment

Due at 1:25 p.m. on Friday, February 10, 2017

1. Find an admissible extremal for the problem of minimizing

$$
\begin{equation*}
J[x]=\int_{0}^{\frac{\pi}{2}}\left\{x^{2}-\dot{x}^{2}-2 x \sin (t)\right\} d t \tag{10}
\end{equation*}
$$

subject to $x(0)=0$ and $x\left(\frac{\pi}{2}\right)=1$.
2. (a) Show that there is no admissible extremal for the problem of minimizing

$$
J[y]=\int_{0}^{2} y^{2}\left(1-y^{\prime}\right)^{2} d x
$$

subject to $y(0)=0$ and $y(2)=1$.
(b) Find by inspection a broken extremal that minimizes $J[y]$.
3. For the problem of minimizing

$$
J[x]=\int_{0}^{\sqrt{2}}\left\{\dot{x}^{2}+2 t x \dot{x}+t^{2} x^{2}\right\} d t
$$

subject to $x(0)=1$ and $x(\sqrt{2})=1 / e$:
(a) Show that $\phi(t)=e^{-t^{2} / 2}$ is an admissible extremal.
(b) Use a direct method to confirm that ϕ is the minimizer.
4. Find an admissible extremal for the problem of minimizing

$$
\begin{equation*}
J[x]=\int_{1}^{2} \frac{\sqrt{1+(\dot{x})^{2}}}{x} d t \tag{10}
\end{equation*}
$$

with $x(1)=2$ and $x(2)=1$.
Hint: Use the substitution $\dot{x}=\tan (\theta)$.

