Second Assignment

Due at 1:25 p.m. on Monday, March 6, 2017

1. Use the corner conditions to carefully deduce ${ }^{\mathbb{\pi}}$ a unique admissible broken extremal for the problem of minimizing

$$
\begin{equation*}
J[y]=\int_{0}^{2} y^{2}\left(1-y^{\prime}\right)^{2} d x \tag{10}
\end{equation*}
$$

subject to $y(0)=0$ and $y(2)=1$.
2. For the problem of minimizing

$$
\begin{equation*}
J[y]=\int_{0}^{b} \frac{1+y^{2}}{y^{\prime 2}} d x \tag{10}
\end{equation*}
$$

subject to $y(0)=0$ and $y(b)=\sinh (b)$, find all $b>0$ such that an admissible extremal satisfies both Legendre's and Jacobi's necessary condition.
3. For the problem of minimizing

$$
J[x]=\int_{0}^{2} \sqrt{1+x^{2} \dot{x}^{2}} d t
$$

subject to $x(0)=1$ and $x(2)=3$:
(a) Find the unique admissible extremal.
(b) Show that it satisfies Weierstrass's necessary condition directly, that is, use (10.24)-(10.25), not (10.27).
4. For the problem of minimizing

$$
J[x]=\int_{0}^{2} \sqrt{1+\left(\frac{\dot{x}}{x}\right)^{2}} d t
$$

subject to $x(0)=1$ and $x(2)=3$:
(a) Find the unique admissible extremal.
(b) Show that it satisfies Weierstrass's necessary condition directly, that is, use (10.24)-(10.25), not (10.27).

[^0]
[^0]: ${ }^{4}$ No credit for simply knowing the answer already from Assignment 1.

