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Abstract

The complex geometry of the human brain contains many folds and
fissures, making it impossible to view the entire surface at once.
Since most of the cortical activity occurs on these folds, it is de-
sirable to be able to view the entire surface of the brain in a sin-
gle view. This can be achieved using quasi-conformal flat maps
of the cortical surface. Computational and visualization tools are
now needed to be able to interact with these flat maps of the brain
to gain information about spatial and functional relationships that
might not otherwise be apparent. Such information can contribute
to earlier diagnostic tools for diseases and improved treatment. Our
group is developing visualization and analysis tools that will help
elucidate new information about the human brain through the in-
teraction between a cortical surface and its corresponding quasi-
conformal flat map.
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1 Introduction

The human brain is a highly convoluted organ with many folds and
fissures. There is considerable variability and individual differences
in the size, location and extent of these fissures and folds across
people. The thin layer of the cortical surface – the grey matter or
cerebrum – is about 3 mm thick and is where most of the cortical
activity and functional processing of the brain occur. The interior
of the brain is largely comprised of white matter which transmits
signals and connects cortical regions. The brain can be divided
into various lobes and regions based on function and anatomy. For
example, there are specific regions devoted to vision (the occipital
lobe), smell, hearing and taste (the temporal lobe) and peripheral
sensations from the body (the parietal lobe) [7].

The surface area of the cerebral cortex grey matter is approx-
imately 1570 cm2, of which 60-70% is buried in the folds of
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Figure 1: MRI Brain Slices and an Isosurface of the Cerebrum.

the brain and hidden from view [17]. The surface is topologi-
cally equivalent to a cortical sheet. Non-invasive anatomical data
is obtained from magnetic resonance imaging (MRI) scans and
functional data is obtained from a variety of modalities including
positron emission tomography (PET), functional MRI (fMRI), elec-
troencephalography (EEG) and magnetoencephalograpy (MEG).
See [16] for a compilation of various methods.

Traditionally, brain data is viewed as a series of single MRI slices
with functional activity imposed, as a volume rendering of the re-
constructed cortical surface or as an isosurface (see Figure 1). How-
ever, these methods are inadequate for viewing functional activity
buried in the cortical folds. Flat maps of the cortical surface are
being used to address this deficiency [3, 4, 17].

A member of our group is also a member of the International
Neuroimaging Consortium that is based at the VA Medical Center
at the University of Minneapolis [6] which is funded by the Na-
tional Institutes of Health as part of the Human Brain Project and
neuroinformatics initiatives [14]. Hurdal has developed a cortical
flat mapping tool that is being used by neurologists and researchers
to create quasi-conformal flat maps of the brain. Computational
and visualization tools are now needed to be able to interact with
these flat maps of the brain to gain information about spatial and
functional relationships that might not otherwise be apparent. Our
group is developing visualization and analysis tools that will help
elucidate new information about the human brain through the inter-
action between the cortical surface in 3-space and the 2D flat map.
Although the pipeline from research to clinical practice will take
several years, these interactive visualizations will assist neurosci-
entific researchers in understanding the structure and function of
the human brain.

2 Flat Mapping the Human Brain

The highly folded cortical surface makes it difficult to visualize
and understand functional and spatial relationships of the brain and



quantify anatomical variability. ”Unfolding” the cortical surface
and creating flat maps that are readily mapped to the original sur-
face of the brain are important tools for aiding in the understanding
of the organization and function of the brain.

The cortical surface of the brain is topologically equivalent to
a 2-sphere (i.e. a closed, simply-connected surface with no holes
or handles and has an Euler characteristic of 2). Commonly, each
hemisphere of the brain is used separately for creating flat maps.
A single closed boundary cut is introduced where the hemispheres
were separated along the corpus callosum to act as the map bound-
ary under flattening.

A topologically correct, tessellated mesh representing the grey
matter surface of the brain is required for flattening. Creating such
a surface requires considerable processing of the MRI data. After
an MRI volume is acquired, inhomogeneities from the scan must
be removed [12]. Then undesired regions (such as the scalp and
skull) must be removed or stripped away, leaving a volume con-
taining the cerebral cortex. This new volume can be parcellated
into anatomical regions for identification purposes [11] and this in-
formation can also be transferred to any flat map that is created. The
volume is segmented into various tissue types, including grey mat-
ter, white matter and cerebrospinal fluid [9]. An isosurface of the
grey matter is created using, for example, a variant of the marching
cubes algorithm [8]. Topological problems such as holes, handles
and fins must then be removed, resulting in a topologically correct
2-manifold.

It is impossible to flatten a surface with intrinsic curvature (such
as the brain) without introducing metric or areal distortions (i.e. a
surface with non-constant Gaussian curvature can not be mapped
isometrically to a surface with constant Gaussian curvature). How-
ever, the Riemann Mapping Theorem of 1852 [1] from complex
function theory indicates that it is possible to preserve conformal
(angular) information under flattening. This theorem is an exis-
tence theorem and until recently it was impossible to compute the
conformal map for surfaces as complicated as the brain. Hurdal
[4] has adapted a method that uses circle packings to compute an
approximation to the conformal map of a cortical surface.

A circle packing is a pattern of circles with a specified pattern
of tangencies. More specifically, we can describe our triangulated
mesh,S, in terms of its combinatoricsK and its geometric realiza-
tion V , whereK is a (abstract) simplicial 2-complex representing
the connectivity of the vertices, edges and faces andV is a set of
vertex positions (points inR3) defining the shape of the mesh. At
each vertexv of K is placed a circlecv so thatcv is tangent tocu
when〈v, u〉 is an edge ofK and the triple〈cv, cu, cw〉 of mutually
tangent circles is positively oriented inS whenever〈v, u, w〉 is a
positively oriented face ofK. This collection of circles is a circle
packing and gives us a new surface inR2 which is our flat mapping
of S (see Figure 2).

A circle packing is computed using an iterative process that cal-
culates the circle radius for each circlecv. Initial radii values for
each vertex are computed based on metric information ofS. Any
interior vertexv of S has a closed chain of contiguous neighboring

Figure 2: A Surface and its Circle Packing.

vertices that form the triangular faces surroundingv. The surface
at a vertexv can be ”flattened” if the angles formed atv from its
triangles sum to2π. Trigonometry provides a packing condition
for flatness at interiorv using the radii ofcv and its neighbors. The
radii of the interior circles are adjusted until the packing condition
is satisfied for all interiorv. Typically there is no packing condi-
tion for boundary vertices, which accounts for the extra degrees of
freedom a boundary provides.

The circle packing gives the radii of the circles and it is easy
compute the location of the circle centers (i.e. vertices) inR

2 once
the first two tangent circles are laid out. We know that circle pack-
ings exist and these circle packing mappings are quasi-conformal,
meaning that there is but a bounded amount of percentage angu-
lar distortion that depends only on the maximum degree of vertices
[2], [10]. There is a comprehensive theory guaranteeing we can
compute a circle packing and that it converges to the unique circle
packing. It should be noted that the method for computing the circle
packing is purelynumeric, not geometric, meaning that the circle
packing does not exist on the original surfaceS in 3D and there
is no coherent circle packing (i.e. flat map) possible until a suffi-
ciently accurate approximation of the final packing (i.e. flat map) is
reached. More details can be found in [5] and [13].

This circle packing approach offers a number of advantages over
other flattening schemes. Circle packing provides a theoretical
framework (i.e. a mathematical characterization) for computing a
first approximation to a conformal map, as well as a flat map.
These maps are quasi-conformal and guaranteed to be mathemat-
ically unique. In contrast to isometric flat maps, we have the guar-
anteed existence of conformal flat maps. Maps can be displayed
in three geometries: the Euclidean and hyperbolic planes and on
a sphere. Conformal maps offer a wide variety of useful manip-
ulations, including M̈obius transformations which can be used to
zoom and focus the maps in a particular region of interest. A single
closed boundary cut is introduced where the cortical surface is iso-
lated from other neural tissues, such as along the brain stem or cor-
pus collosum. Other extraneous cuts are not required. Conformal
maps preserve angle proportion. Hence subtle shape information is
preserved and this could play a role in cortical studies. Examples
of flat maps from the human cerebral cortex are shown in Figure 3
(and its corresponding color plate).

Figure 3: The Human Cerebral Cortex. Top left: the cerebrum;
top right: Euclidean flat map; bottom left: hyperbolic flat map;
bottom right: hyperbolic map with transformation applied. Colors
correspond to various anatomical lobes (see color plate).



3 Interacting with Flat Maps

3.1 Morphing the Cortical Surface onto the Flat
Map

As indicated in the previous section, there are no intermediate cor-
tical maps produced in the flattening process. The circle packing
approach yields a single, final flat map inR2 which is a quasi-
conformal map of the cortical surface. Recall that each circle in
the flat map corresponds to a vertex in the cortical surface mesh
in R3. Significant information, such as anatomical labeling or cur-
vature, can be transferred from the original surface to the flattened
surface via this correspondence.

It is instructive to be able to understand how the original cortical
surface is morphed onto one of our flat map target geometries (i.e.
the Euclidean plane, the hyperbolic plane or sphere). Our group
used Open Inventor to interactively morph between the original cor-
tical surface mesh inR3 and the precomputed flat map inR2. We
used a surface corresponding to the cerebral cortex of the “Visi-
ble Man” from The National Library of Medicine’s Visible Human
Project [15]. This surface consists of 103,845 triangles and 52,360
vertices (see Figure 3 and its corresponding color plate). For this
data, a boundary cut along the corpus collosum and four extraneous
cuts along various fissures have been introduced to create a surface
boundary. Although these extraneous cuts are not needed for the
circle packing approach, they are of interest to other neuroscientific
researchers [17].

A texture map of the circle packing flat map was imposed on
the original cortical surface. This serves the additional purpose of
being able to observe the circle deformations that occur when the
circles from the circle packing flat map are taken back onto the
original surface. The textured circle map is generated from the cir-
cle packing using a two dimensional tent filter that spreads points
across a given circle radius from the circle packing flat map at the
appropriate location. The circle locations are normalized and the
circle packing guarantees that each circle corresponds one to one to
a vertex in the 3D mesh.

Linear interpolation was used to compute the morphing that
takes the cortical surface onto the precomputed flat map. The user
manipulates a 3D widget within the program to control the morph-
ing. The morphing variable can range from 0.0 (flat map) to 1.0
(3D mesh). Linear interpolation takes each circle in the flat map
and interpolates it to its final location in 3D based on the morph-
ing variable. A movie from a user session is provided and some
frames are illustrated in Figure 4 (and its corresponding color plate).
Again, it should be emphasized that the quasi-conformal map is not
computed via this morphing process — a different morphing algo-
rithm will produce different intermediate maps, with only the orig-
inal surface and the final flat map remaining the same. However, it
is instructive to neuroscientific researchers to understand the defor-
mations and curvature changes that the original surface undergoes
to obtain the final quasi-conformal flat map.

Figure 4: Morphing the Cerebral Cortex onto the Euclidean Flat
Map (see color plate). Note that the quasi-conformal flat map isnot
computed via this morphing process. A movie from a user session
is also provided.

3.2 Interacting with Regions of Interest

Flat maps of cortical surfaces allow the complex geometry of the
brain to be visualized all at once. Although interesting as a visu-
alization tool, neuroscientists want to be able to obtain meaningful
information from these flat maps. Interaction between flat maps
and 3D surfaces is needed as a means of being able to understand
map distortions, for locating of regions of interest including func-
tional activations and for being able to compare similarities and
differences between individuals. With this in mind, our group is
developing other visualization tools to gain a greater understanding
of the changes the cortical surface undergoes during the flattening
process.

Surface area and geodesic distances on the brain are not pre-
served under any flattening scheme. However, these features are
related to neuronal density and functional activation [7]. Thus, it is
important for neuroscientists to be able to understand and visualize
surface area and the distortion that occurs on a flat map.

We have developed tools using X windows to allow the user to
interact with the flat map and visualize significant properties and re-
lationships between the flat map and cortical surface. One method
is to specify a region within the flat map and view its corresponding
region inR3. User interaction quickly demonstrated that it was dif-
ficult to pinpoint specific regions on the flat map and view their lo-
cation on a surface mesh inR3 because of the complexity and folds
of the brain. A bump mapped image of the flat map was generated
to aid in finding particular regions and navigating on the flat map.
The software generates the bump mapped flat map by computing a
fake diffuse component for each circle using the surface normal in
R

3. The color for each circle is then scaled based on the diffuse
value. Figure 5 (and its corresponding color plate) illustrates the
improvement made when using bump map coloring.

Figure 5: Enhancing the Flat Map. Left: flat map without bump
map coloring. Right: bump map coloring assists navigation on the
flat map by revealing folds and fissures of the brain (see color plate).

Another feature is that the application calculates the area for the
selected region both inR2 andR3 and the results are displayed. A
user click on the flat map is translated into a normalized circle point
in order to find the closest circle location. After future clicks, the
region can be closed and the area is computed for the two dimen-
sional and three dimensional regions using that boundary. A movie
from a user session is provided.

For the example given in Figure 6 and its corresponding color
plate, the selected region which is indicated by the arrow and out-
lined (in red on the color plate) has a surface area of 121.82 mm2

in R2. This region underwent considerable area distortion as its
original surface area inR3 is 338.89 mm2. Note that the demar-
cated region on the flattened map is similar in shape to the region
on the 3D surface. This is one of the consequences, and advantages,
of conformal mapping. From this information, neuroscientists are
able to better understand and navigate on the flat map.



Figure 6: Selecting Regions and Calculating Surface Area. The
surface area of the selected region which is indicated by the arrow
and outlined (in red on the color plate) is 121.82 mm2 on the flat
map and the corresponding area inR3 is 338.89 mm2. Notice that
the shape of the region is similar on the cortical surface and flat
map. This is one of the advantages of conformal mapping. A movie
from a user session is also provided.

4 Conclusions and Future Work

One of the goals of neuroscientific researchers is to be able to bet-
ter understand the functional processing of the human brain and
to be able to make conclusions regarding individual differences in
functional organization. This can lead to better diagnostic tools for
detecting diseases earlier as well as treating brain disorders in new
ways. Brain atlases and brain maps can assist in this regard and
cortical flat maps are the first step in this process.

These visualization tools represent an initial attempt at being
able to interact with cortical flat maps. We are working with neu-
roscientists to extend the capabilities of these tools by including
features such as drawing directly on the mesh inR3 and region
to region comparison. The region selecting algorithm can also be
enhanced to calculate geodesics on the surface of the brain so the
shortest path between two points can be computed and displayed.
Extracting and conveying pertinent information from these maps
will allow brain maps to be compared and morphed to a template so
significant locations, metrics and statistics can be computed. One
researcher commented that being able to interactively control the
degree of flattening while allowing 3D rotations is quite powerful.
Conformal flat maps of cortical surfaces and interaction with them
will lead us to better localize functional regions of activation in nor-
mal subjects and in patients with hereditary or other diseases.
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Color Plate of Figure 3: The Human Cerebral Cortex. Left to right: the cerebrum; Euclidean flat map; hyperbolic flat map; hyperbolic map
with transformation applied. Colors correspond to various anatomical lobes.

Color Plate of Figure 4: Morphing the Cerebral Cortex onto the Euclidean Flat Map. Note that the quasi-conformal flat map isnot computed
via this morphing process. A movie from a user session is also provided.

Color Plate of Figure 5: Enhancing the Flat Map. Left: flat map without bump map coloring. Right: bump map coloring assists navigation
on the flat map by revealing folds and fissures of the brain.

Color Plate of Figure 6: Selecting Regions and Calculating Surface Area. The surface area of the selected region which is indicated by the
arrow and outlined (in red on the color plate) is 121.82 mm2 on the flat map and the corresponding area inR

3 is 338.89 mm2. Notice that the
shape of the region is similar on the cortical surface and flat map. This is one of the advantages of conformal mapping. A movie from a user
session is also provided.


