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Abstract 
In this article, we analyze the morphometric measures 
of dendrite spines of mice derived from electron to-
mography images for different spine types based on 
pre-assigned categories. The morphometric measures 
we consider include the metric distance, volume, sur-
face area, and length of dendrite spines of mice. The 
question of interest is how these morphometric meas-
ures differ by condition of mice; and how the metric 
distance relates to volume, surface area, length, and 
condition of mice. The Large Deformation Diffeomor-
phic Metric Mapping algorithm is the tool we use to 
obtain the metric distances that quantize the mor-
phometry of binary images of dendrite spines with 
respect to a template spine. We demonstrate that for 
the raw scores (i.e., values not adjusted for scale) 
metric distances and other morphometric measures are 
significantly different between the conditions. Fur-
thermore, the morphometric measures (rather than the 
mice condition) explain almost all the variation in 
metric distances.   Since size (or scale) dominates the 
other variables in variation, differences in metric dis-
tances due to other variables might be masked. Hence, 
we adjust metric distances and other morphometric 
measures for scale. We demonstrate that after adjust-
ing for scale, scaled metric distances and other scaled 
morphometric variables still differ for condition, and 
scaled metric distances depend on most significantly 
on scaled morphometric measures. Although the 
methodology used here is applied on morphometric 
measures of dendrite spines, it is also valid for mor-
phometric measures of other organs or tissues and 
other metric distances._____________ 

 
1. Introduction 

The Large Deformation Diffeomorphic Metric 
Mapping (LDDMM) is a recently developed tool that 
quantizes morphometric (shape and size related) dif-
ferences between two binary images. This approach 
has been applied to the analysis of gross brain mor-
phology derived from magnetic resonance imaging 

([2]; [21]; [32]; [15]; [16]).  Here, we apply this tech-
nique to the quantification of shape changes of micro-
scopic structures, the tiny protuberances found on 
many types of neurons termed dendritic spines.  
Changes in dendritic spine size, shape, and number 
are thought to underlie the brain’s ability to change as 
a result of environmental stimulation and occur in 
many pathological conditions.  Thus, the quantifica-
tion of shape changes in dendritic spines is a funda-
mental problem in neuroscience.  A previous version 
of this data (with fewer dendrite spines) was analyzed 
in ([1]) wherein a linear model was fit on metric dis-
tances versus other variables such as volume, surface 
area, and length values. In ([1]), statistical analyses 
were performed on metric distances and condition 
only. The dendritic spines were not matched for size 
and type of spine, so such factors might have caused 
the group differences in the metric distances, rather 
than the condition. Hence, other variables were in-
cluded in the analysis. This same data set is also ana-
lyzed in ([7]), where the influence of the condition, 
spine type, volume, surface area, and length of spines 
on the metric distances was analyzed using a Princi-
pal Component Analysis (PCA).  In this article, we 
analyze the morphometric measures of dendrite 
spines for each spine category, and model the metric 
distances with respect to other variables (volume, 
surface area, length, condition, mouse, spine number, 
and shaft label). 

Methods developed in the field of Computational 
Anatomy (CA) that enable quantification of anatomi-
cal volumes and shapes between and within groups of 
individuals with and without various neurological 
diseases have emerged from several groups in recent 
years ([9]; [13]; [20];  [22]; [28]; [29]; [30]). Based 
on the mathematical principles of general pattern 
theory ([6]; [13]), these methods combine diffeomor-
phic maps between images with representations of 
anatomical shapes as smooth manifolds.  

An important task in CA is the study of neuro-
anatomical variability ([13]). The anatomic model is a 
quadruple ( )Ω, , ,G I P  consisting of Ω  the tem-
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plate coordinate space (in 3R ), defined as the union 
of 0, 1, 2, 3-dimensional manifolds, : Ω ↔ΩG  a 
set of diffeomorphic transformations on Ω , I  the 
space of anatomies, is the orbit of a template anatomy 

0I  under G , and P  the family of probability meas-

ures on G . In this framework, a geodesic 
[0 1]φ : , →G  is computed where each point 

[0 1]t tφ ∈ , ∈ ,G  is a diffeomorphism of the do-

mainΩ . The evolution of the template image 0I  

along path φ  is given by 1
0 0t tI Iφ φ−=  such that 

the end point of the geodesic connects the template 

0I  to the target 1I  via 1
1 1 0 0 1 .I I Iφ φ−= =  Thus; 

anatomical variability in the target is encoded by 
these geodesic transformations when a template is 
fixed. 

Furthermore, geodesic curves induce metric dis-
tances between the template and the target shapes in 
the orbit. The diffeomorphisms are constructed as a 
flow of ordinary differential equations ( )t t tvφ φ= , 

[0,1]t∈  with 0 idφ =  the identity map, and associ-

ated vector fields tv , [0,1]t∈ . The optimal velocity 
vector field parameterizing the geodesic path is found 
by solving 

1
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ˆ arg inf  such that 
t t

t V
v v dt id

v v dt I I
φ φ φ

φ −

= =

= =
∫

∫
 

where tv V∈ , the Hilbert space of smooth vec-

tor fields with norm 
V
⋅  defined through a differen-

tial operator enforcing smoothness. The length of the 
minimal geodesic path through the space of transfor-
mations connecting the given anatomical configura-
tions in 0I  and 1I  defines a metric distance, D, be-

tween anatomical shapes in 0I  and 1I  via 
1

0 1 0
ˆ( , ) t V

D I I v dt= ∫  

where t̂v  is the optimizer calculated from the 
LDDMM algorithm ([3]). The construction of such a 
metric space allows one to quantify similarities and 
differences between anatomical shapes in the orbit. 
This is the vision laid out by D’Arcy W. Thompson 
almost one hundred years ago ([27]).  

The notion of mathematical biomarker in the 
form of metric distance can be used in different ways. 
One way is to generate metric distances of shapes 
relative to a template ([24]; [3]). Another way is to 
\\aqgenerate metric distances between each shape 

within a collection ([23]). The latter approach allows 
for sophisticated pattern classification analysis but is 
computationally expensive. We adopt the former 
approach here.  

Previously, in ([1]) we demonstrated that almost 
all of the variation in the metric distances could be 
explained by 1/3V , 1/ 2S and L where V, S, and L are 
volume, surface area, and length, respectively. That 
is, the size of the dendrites was shown to have the 
largest effect on the metric distances. However, when 
data was scaled, the condition was significant after 
accounting for scaled V, S, and L, and type of spine. 
In ([7]), we first considered the PCA on the numeri-
cal morphometric variables (V, S, and L), then used 
multiple linear regression on metric distances versus 
the principal components and other (categorical) 
variables. We demonstrate that the size component 
explains almost all the variation in the metric dis-
tances rendering the effect of condition insignificant. 
Since spine type is based on the size and shape of the 
dendrite spines, the morphometry of the spines at 
each spine category is (expected to be) more uniform 
than spines at different categories. Hence we analyze 
the morphometric features of dendrite spines at each 
spine type category.  
 

2. Data acquisition 

Pyramidial cells from layer V of primary visual 
cortex from genetically modified and control mice 
were injected with Lucifer yellow. Tissue was subse-
quently photo-oxidized and prepared for electron 
microscopy. 411 triangulated surface reconstructions 
of spine dendrites were produced by manual contour-
ing of tomographic reconstructions of neurons and 
curated at the Cell-Centered DataBase at 
https://ccdb.ucsd.edu/CCDB/index.shtml ([18], [19]).  
The reconstructed spines were aligned with a standard 
coordinate system with respect to the smallest Wild 
Type (WT) spine via similitude matching (scale or no-
scale, rotation, translation) of 14 landmarks suitably 
placed on each spine. LDDMM was applied to bi-
narized images of the surfaces from which metric 
distances between the spines and the template (refer-
ence) spine were generated ([3]). 

The variables we consider include spine number, 
mouse label, shaft label, condition, volume (V), sur-
face area (SA), metric distance (D) values, length (L), 
scale (Sc) values, and classification category (i.e., 
type of spines). Mouse Label refers to labeling of 
each of 7 mice in the study; Shaft label refers to the 
shaft label for the associated mice; Spine Number 
refers to to the spine associated with the shaft; Condi-
tion of Mice refers to whether the spine originated 
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from a WT mouse or a genetically modified mouse. 
The WT mice are expected to have a normal genetic 
make-up because they originate from natural mice 
populations. However, in the Knock-Out (KO) mice, 
one specific gene is inactivated in order to mimic a 
human neurological condition. The six spine types are 
Double, Filopodia, Long Mushroom, Mushroom, 
Stubby, and Thin ([14]). L is the Euclidean distance 
between the neck landmark at the point closest to the 
dendrite shaft and the head landmark at the point 
furthest from the dendrite shaft and is measured in µm 
(micron or micrometer); V is measured in µm3, and 
SA in µm2. Furthermore, scale (Sc) is the scale of 
mice with respect to the template spine obtained from 
similitude matching ([31]). 

3. Results  
3.1. Analysis of Unscaled Morphometric Measures 

First, we analyze the unscaled numerical vari-
ables, namely, D, V, SA, and L measures and Sc val-
ues of dendrite spines. Since all of these variables are 
significantly non-normal ( .0001Lp <  for each 

variable where Lp  stands for Lilliefor’s test of nor-
mality ([26])), we use Kruskal-Wallis (K-W) test ([8]) 
for the (distributional) equality of each of the mor-
phometric variables (i.e., D, V, SA, and L measures 
and Sc values) between the spine type categories. We 
find that there are significant differences in each of 
these variables between the spine type categories (the 
p-value based on K-W test is .0001KWp <  for each 
variable). 

Among 411 spines, 225 are pre-assigned to type 
Thin, 59 to type Mushroom, 44 to type Filopodia, 31 
to type Long Mushroom, 25 to type Stubby, and 4 to 
type Double; however 23 are not pre-assigned to any 
category.  As there are too few Double type spines, 
the statistical tests involving Double spines will have 
virtually no power; hence we only investigate the 
morphometry of the other spine type categories.  At 
each spine type category, the standard deviations of 
the morphometric measures (i.e., D, V, SA, L) for KO 
and WT mice have different order for spine type 
levels. See Table 1 for the p-values from Brown-
Forsythe (B-F) equality or homogeneity of variances 
(HOV) tests ([16] C.B. Kirwan, C. Jones, M.I. Miller, 
C.E.L. Stark, "High-resolution fMRI investi-
gation of the medial temporal lobe", Human 
Brain Mapping, 2007, (in press). 

]) and the direction of the alternatives. Significant 
p-values at .05 level are marked with an asterisk (*). 
Observe that HOV is not rejected for Sc values at 
each spine type category. When significant, ( ) al-
ternative implies that the variance of KO spines are 

significantly smaller than that of WT spines; i.e., 
there is less variation in the morphometry (shape and 
size) of KO spines compared WT spines; and vice 
versa for the (g) alternative.  Notice also that most 
variation in the morphometry occurs for Thin spines, 
least variation occurs for Mushroom type spines, and 
the variable with most significant variation is V (sig-
nificant for three spine types).  

The following variables are significantly non-
normal based on Lilliefor’s test of normality: D, V, 
SA, and Sc for KO and WT Thin dendrite spines; Sc 
for WT, V and L for KO Mushroom type dendrite 
spines; V and SA for KO Filopodia type dendrite 
spines; D and L for KO Long Mushroom type den-
drite spines; and V and SA for KO Stubby dendrite 
spines. Normality is not rejected for the other vari-
ables at α = .05 level.  Based on lack of HOV for 
some variables (see Table 1) and non-normality of 
most of the variables, we resort to the non-parametric 
Wilcoxon rank sum test to compare the variables for 
KO vs WT mice ([10]).  The p-values and the direc-
tion of the alternatives are provided in Table 2 where 
significant p-values at .05 level are marked with an 
asterisk (*). Notice that D, V, SA, and L values for 
KO mice are significantly larger than those for WT 
mice at each spine type category (except for D for 
Stubby spines). That is, KO mice are significantly 
larger and longer in size and more different from the 
template spine in morphometry compared to WT 
mice.  On the other hand, Sc values are significantly 
smaller for KO mice than WT mice (except for 
Stubby mice).  That is, KO mice are closer in scale to 
the template spine than the WT mice. 

Next, we will run ANOVA on D versus other 
variables (V, SA, L, Sc, spine, condition, mouse, and 
shaft type) one variable at a time at each spine type 
level. See Figure 1 for the pair plots between these 
numerical variables (D, V, SA, and 1/Sc) with all the 
spines combined. The pair plots of the variables at 
each spine type (not presented) are similar. Observe 
that all the variables seem to be highly (positively) 
correlated with each other. But two of the major as-
sumptions for linear models (and ANOVA) are the 
normality of errors and lack of autocorrelation be-
tween the errors. We have shown above that most of 
the variables are significantly non-normal. We trans-
form the variables (and remove the few outliers if 
any) so that the variables satisfy normality and lack of 
autocorrelation. See Table 3 for the transformations. 
The transformed variables can be assumed to be nor-
mal ( .05Lp >  for each) ([26]). For the kernel den-
sity plots of the raw and transformed variables, for 
e.g. Mushroom type spines, see Figure 2. Observe 
that the kernel density plots for the transformed vari-
ables look like normal density curves. The kernel 
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density plots of the raw and transformed variables are 
similar for other spine type categories (not presented). 
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Figure 1: The pair plots of the morphometric meas-
ures (D, V, SA, and 1/Sc) of the dendrite spines for all 
the spine types categories combined. 

To determine which variables significantly ex-
plain the variation in metric distances, we run a linear 
model with tD being the response and each trans-
formed variable being a predictor, one variable at a 
time. We record the variables that significantly ex-
plain the variation in tD measures (when included in 
the model one at a time) at each spine type category 
and present them in Table 3 in decreasing order of 
significance. Observe that shaft and spine variables 
are significant only for Thin spines, while the trans-
formed morphometric (numerical) variables are sig-
nificant for all spine types. Each significant variable 
at α=.05 level is retained for further consideration, 
while others are discarded from the model. 

At each spine type category, we run a linear 
model for which tD is the response variable, while all 
other variables that were found to be significant (see 
Table 4) with all possible interactions as predictor 
variables. On this full model we choose a reduced 
model by Akaike information criteria (AIC) in a 
stepwise algorithm, then use a stepwise backward 
elimination procedure on the resulting model ([5]). 
We stop the elimination procedure when all the re-
maining variables are significant at α = .05 level. The 
resulting models for each spine type are provided in 
Table 5,  where ijtD  is the distance for spine j for 
type i (i=1 for Thin, 2 for Mushroom, 3 for Filopodia, 
4 for Long Mushroom, and 5 for Stubby), iµ  is the 

overall mean for spines of type i, tSA
ijX  is the tSA 

value for spine j of type i, tSc
ijX  is the tSc value for 
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Figure 2: The kernel density estimates of raw D, V, 
SA, and Sc values (left) and of tD, tV, tSA, and tSc 
values (right) for Mushroom type spines. 
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spine j of type i, tV
ijX  is the tV for spine j of type 

i, tSA
iβ  is the slope for tSA  for spine type i, tV

iβ  is 

the slope for tV  for spine type i, tSc
iβ  is the slope for 

tSc value for spine type i, and ijε  is the error term. 

The adjusted 2R  values and p-values based on 
Shapiro-Wilk normality test and Durbin-Watson 
autocorrelation test ([25]), denoted as SWp  

and DWp , respectively, are also provided in Table 5.  
Observe that the best predictors are tSA and tSc for 
Thin spines; tV for Mushroom and Filopodia spines; 
tSA for Long Mushroom spines; and tSc for Stubby 
spines. Therefore, tSA, tV, tSc, (i.e., size components) 
explain almost all of the variation in metric distances 
(e.g., 82 % for Mushroom type spines). However, 
differences in shape could be masked by the size of 
the dendrite spines. Note also that the normality of the 
errors is attained for all spine types except Thin 
spines, despite the transformations and removal of 
outliers.  Hence, we estimate the significance of tSA, 
tSc, and condition variable by bootstrapping with 
1000000 replicates ([11]) and obtain p<.00001, 
p=.0041, and p=.5328 for tSA, tSc, and condition, 
respectively.  So the model for Thin spines in Table 5 
is appropriate.  

 
3.2. Analysis of Scaled Morphometric Measures 

To overcome the highly dominant effect of size, 
we adjust the morphometric measures by scaling the 
dendrite spines and measure the D, V, SA, and L val-
ues for the scaled spines. For example, we obtain the 
scaled metric distances by applying the LDDMM 
algorithm to the scaled data (spines) rather than the 
distances that could be construed by scaling all the 
metric distances.   

We consider the scaled numerical variables, 
namely, scaled metric distance (sD), scaled volume 
(sV), scaled surface area (sSA), and scaled length (sL) 
measures and the scale (Sc) values together with the 
categorical variables.  After scaling, sD and sSA are 
more of shape measures, and sV and sL are expected 
to be more uniform compared to the unscaled ver-
sions. Since all of the numerical variables are signifi-
cantly non-normal ( .0001Lp <  for each), we em-
ploy K-W test and find that there are significant dif-
ferences in each of these scaled variables between the 
spine type categories (p<.0001). 

At each spine type category, we perform B-F test 
for HOV of the variables for KO and WT mice. The 
resulting p-values and the direction of the alternatives 
are provided in Table 6 where significant p-values at 
α = .05 level are marked with an asterisk (*). Observe 

that after scaling, HOV is rejected for sL of Thin and 
Filopodia spines, for sSA of Filopodia and Stubby 
spines, and for sV of Stubby spines. Furthermore, 
after scaling the morphometric measures obtain less 
spread or variation (see Tables 1 and 6), because the 
size variation is partly removed by scaling. 

The following variables are significantly non-
normal based on Lilliefor’s test of normality: sV, sSA, 
and sL for KO Thin dendrite spines and sD, sV, and 
sSA for WT Thin dendrite spines; and sV for WT 
Long Mushroom type dendrite spines. Normality is 
not rejected for the other variables at .05 level. Notice 
that the scaled variables tend to satisfy normality 
more often than the unscaled variables. Due to the 
lack of HOV (see Table 6) and non-normality of 
some of the scaled variables, we use Wilcoxon rank 
sum test to compare the variables for KO vs WT 
mice.  See Table 7 for the corresponding p-values and 
direction of the alternatives. Comparing Tables 2 and 
7, we see that after scaling most morphometric vari-
ables do not significantly differ between KO vs WT 
mice for Thin, Mushroom, Long Mushroom, and 
Stubby spines except for sL of Thin spines. But for 
Filopodia spines, KO mice have significantly larger 
sV, sSA, and sL, and smaller sD values compared to 
WT mice.  That is, the scaled size for KO Filopodia 
spines is larger than WT Filopodia spines, and KO 
Filopodia spines are more similar in shape to the 
template. 

We will run ANOVA on sD versus other scaled 
variables (i.e., sV, sSA, sL), Sc, spine, condition, 
mouse, and shaft type one at a time at each spine type 
level. See Figure 3 for the pair plots of the scaled 
variables. Observe that sD seems to be negatively 
correlated with sV, sSA, and Sc, while sV, sSA, and Sc 
are (mutually) positively correlated. First, to attain 
normality and lack of autocorrelation, we transform 
the scaled variables or remove outliers when neces-
sary. See Table 8 for the transformations to render the 
scaled variables normal. The transformed variables 
can be assumed to be normal ( .05Lp >  for each). 
Comparing Tables 3 and 8, we see that after scaling a 
smaller number of variables requires transformations 
to attain normality; furthermore, the transformations 
are less complicated.  

To determine which variables significantly ex-
plain the variation in the scaled metric distances, we 
run a linear model with tsD being the response and 
each scaled variable is a predictor, one at a time. See 
Table 9 for the variables in decreasing order of sig-
nificance with significant variables marked with an 
asterisk (*).  We retain only the scaled variables that 
are significant at α = .05 level, while others being 
discarded from the model.  Observe that after scaling, 
no variable is significant in explaining the tsD for 
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Mushroom type spines, and the categorical variables 
are all non-significant except for mouse number for 
Thin spines. Furthermore, after scaling, the variables 
are less significant in explaining the variation in 
scaled distances; still tsV and tsSA are best predictors 
for tsD.  
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Figure 3: Pairs plot of the scaled morphometric 

measures together with Sc values with all spine types 
combined. 

At each spine type category, we run a linear 
model for which tsD is the response variable, while 
all other variables that were found to be significant 
(see Table 9) with all possible interactions as predic-
tor variables. Then we apply the same model selec-
tion procedure of Section 3.1 on this full model. The 
resulting models are presented in Table 10, where 

ijtsD  is the scaled distance for spine j for type i, iµ  

is the overall mean for spines of type i, tsSA
ijX  is the 

tsSA value for spine j of type i, tsV
ijX  is the tsV value 

for spine j of type i, tsSA
iβ  is the slope for tsSA value 

for spine type i, tsV
iβ  is the slope for tsV for spine 

type i, 1
tsVtsSAβ  is the slope for the interaction between 

tsV
ijX and tsSA

ijX (i.e., the product 1 1×tsV tsSA
j jX X ), and 

ijε  is the error term. The adjusted 2R , SWp , and 

DWp   values also provided in Table 10. Notice that 
normality of and lack of autocorrelation between 
errors are satisfied for each model. Furthermore, we 
see that tsSA (shape component) and tV (scaled size 

component) explain almost all of the variation in the 
scaled metric distances (e.g., 74 % for Thin dendrite 
spines).  
4. Discussion and Conclusions 

In this study, we investigate various morphomet-
ric measures, namely, metric distance, volume, sur-
face area, length, and scale of dendrite spines of mice 
with two conditions (mice with a genetic modification 
designed to mimic a human neurological condition 
versus healthy mice) at different spine type levels 
which are based on pre-assigned shape categories.. 
We use the Large Deformation Diffeomorphic Metric 
Mapping algorithm to compute metric distances to 
measure morphometric differences between dendrite 
spines of mice. We compare the variances and distri-
butions of these variables between the two mice con-
ditions. We find that the healthy dendrite spines sig-
nificantly differ in morphometry (size and shape) 
from the diseased spines. We also model the metric 
distances with respect to various other morphometric 
measures (such as volume, surface area, and length), 
and condition (healthy vs diseased) of spines.  The 
morphometric measures significantly affect or explain 
the variation in the metric distances; so that in their 
presence the disease condition seem to not signifi-
cantly affect the metric distances. But this does not 
mean that metric distances do not significantly differ 
with respect to the condition of mice, but rather met-
ric distances are highly correlated with the other mor-
phometric features, which ---when present in the 
model --- make the condition variable redundant.  
More precisely, morphometry of mice significantly 
differs due to the condition, but the variation in metric 
distances is mostly accounted for by the variation in 
other morphometric measures.  We have also ex-
plored the effects of scaling on the morphometric 
measures and their relation to metric distances. We 
demonstrate that metric distances are highly depend-
ent on the (scaled) morphometry of dendrite spines; 
and scaling changes the importance and order of this 
dependence. Therefore, computing metric distances 
with LDDMM is a powerful tool in detecting mor-
phometric differences between dendrite spines of 
various sizes and shape; and scaling removes a con-
siderable amount of the size influence so that the 
scaled distance becomes more of a measure of shape. 
However, in order to make scaling and within-spine 
type analysis more powerful (to detect the mor-
phometric differences more specific to the condition) 
we recommend choosing a template for each spine 
type level, and then measuring the distances and scal-
ing with respect to that spine for the spines of the 
same type as the template at each spine type level.  
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6. TABLES 

Variance Comparisons for KO vs WT at each spine type level for each variable 
 Thin Mushroom Filopodia Long Mushroom Stubby 

D .0006*   (g) .9546  ( ) .9448 (g) .1106 ( ) .0022* ( ) 
V <.0001* ( ) .4158 ( ) .0450* ( ) .0007* ( ) .0566 ( ) 

SA <.0001* ( ) .5998 ( ) .0601 ( ) .0051* ( ) .0446* ( ) 
L <.0001* ( ) .6193 (g) .1254 ( ) .1829 ( ) .4966 ( ) 
Sc .0793    (g) .2209 (g) .6010 (g) .8939 (g) .7580 (g) 

Table 1: The p-values for the HOV tests for spines of KO vs WT mice for each morphometric variable; (g) stands 
for KO>WT alternative and ( ) stands for KO<WT alternative. 

 
Distributional Comparisons for KO vs WT at each spine type level for each variable 

 Thin Mushroom Filopodia Long Mushroom Stubby 
D .0001*   (g) .0356* (g) .0013*   (g) .0161* (g) .1835 (g) 
V <.0001* (g) .0147* (g) <.0001* (g) .0058* (g) .0132* (g) 

SA <.0001* (g) .0206* (g) <.0001* (g) .0065* (g) .0058* (g) 
L <.0001* (g) .0113* (g) .0145*   (g) .0179* (g) .0311* (g) 
Sc <.0001* ( ) .0343* ( ) .0333*   ( ) .0219* ( ) .0719 ( ) 

Table 2: The p-values for Wilcoxon rank sum tests for spines of KO vs WT mice for each morphometric variable; 
(g) stands for KO>WT alternative and ( ) stands for KO<WT alternative. 
 

 
Transformations of the variables at each spine type to attain normality. 

 Thin Mushroom Filopodia Long Mushroom Stubby 
tD = ( )log D  ( )log D  ( )log D  ( )log D  ( )log D  

tV = ( )4 log V  ( )3log V  ( )log V  ( )log V  ( )log V  

tSA = ( )log SA  ( )3log SA  ( )log SA  ( )log SA  ( )log SA  

tL = ( )2log L  4 L  ( )5 log L  ( )log L  L  

tSc = ( )log 1 Sc  1 Sc  ( )log 1 Sc  ( )log 1 Sc  Sc  
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Table 3: Transformations of the variables at each spine type to attain normality. 
 

(Transformed) variables in ANOVA F-test to explain variation in tD values at each spine type level 
Type Variables 
Thin tSA* tV* tSc* tL* cond* mouse* shaft* spine* 

Mushroom tV* tSA* tSc* tL* cond mouse spine shaft 
Filopodia tV* tSA* cond* tL* tSc* mouse* shaft spine 

Long Mush-
room 

tSA* tV* tSc* tL* cond* mouse shaft spine 

Stubby tSc* tV* tSA* tL* mouse cond spine shaft 
Table 4: The variables for the ANOVA F-tests for tD vs other (transformed) variables one at a time. The significant 
variables at .05 level are marked with an asterisk (*) and the variables are sorted in decreasing order of significance 
(from left to right).   

 
Spine Type Model Adj. 2R  SWp  DWp  

Thin 
1 1 1 1 1 1 1

tSA tSA tSc tSc
j j j jtD X Xµ β β ε= + + +  .48 <.0001 .3761 

Mushroom 
2 2 2 2 2

tV tV
j j jtD Xµ β ε= + +  .82 .3363 .6698 

Filopodia 
3 3 3 3 3

tV tV
j j jtD Xµ β ε= + +  .61 .1099 .4472 

Long Mushroom 
4 4 4 4 4

tSA tSA
j j jtD Xµ β ε= + +  .85 .2430 .8880 

Stubby 
5 5 5 5 5

tSc tSc
j j jtD Xµ β ε= + +  .70 .2092 .3480 

Table 5: The models to explain the variation in tD values at each spine type category. 
 

 
Variance Comparisons for KO vs WT at each spine type level for each scaled variable 

 Thin Mushroom Filopodia Long Mushroom Stubby 
sD .3004  ( ) .3181  ( ) .8059 ( ) .1353 (g) .3891 ( ) 
sV .2637 (g) .6818 ( ) .0735 ( ) .1218 (g) .0039* ( ) 
sSA .8509 (g) .2435 ( ) .0194* ( ) .4872 (g) .0060* ( ) 
sL .0201* (g) .8569 (g) .0332* (g) .4107 ( ) .9930 ( ) 

Table 6: The p-values for the B-F HOV tests for spines of KO vs WT mice for each scaled morphometric variable. 
 

Distributional Comparisons for KO vs WT at each spine type level for each scaled variable 
 Thin Mushroom Filopodia Long Mushroom Stubby 

sD .4680 ( ) .4192 ( ) .0145* ( ) .2851 ( ) .4245 ( ) 
sV .4005 (g) .1612 (g) .0091* (g) .3997 (g) .3617 (g) 
sSA .1754 (g) .2387 (g) .0004* (g) .2985 (g) .2142 (g) 
sL .0016* (g) .1382 (g) .0392* (g) .3263 (g) .1190 ( ) 

Table 7: The p-values for the Wilcoxon rank sum tests for spines of KO vs WT mice for each scaled morphometric 
variable. 
 

Transformations of the scaled variables at each spine type to attain normality. 
 Thin Mushroom Filopodia Long Mushroom Stubby 

tsD = 4 sD  2sD  ( )log sD  sD  sD  

tsV = 4 sV  sV  sV  ( )log sV  sV  

tsSA = ( )5log sSA  sSA  ( )log sSA  sSA  sSA  

tsL = 4sL  sL  3sL  sL  sL  
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Table 8: Transformations of the scaled variables at each spine type to attain normality. 
 

(Transformed) scaled variables significant in ANOVA F-test to explain variation in tsD values at each spine 
type level 

Type  Variables 
Thin tsV* tsSA* tSc* mouse* shaft tsL spine Cond 

Mushroom mouse cond tsL tSc tsV shaft spine tsSA 
Filopodia tsV* tsSA* cond mouse tSc tsL spine shaft 

Long Mush-
room 

tsV* tsSA* spine tSc tsL cond mouse shaft 

Stubby tsSA* tsV* tSc mouse tsL spine cond shaft 
Table 9: The variables for the ANOVA F-tests for tsD vs other (transformed) scaled variables one at a time. The 
significant variables at .05 level are marked with an asterisk (*), and the variables sorted in decreasing order of sig-
nificance (from left to right). 
Spine Type Model Adj. 2R   SWp  DWp  
Thin 

1 1 1 1 1 1 1 1 1 1= + + + × +tsV tsV tsSA tsSA tsVtsSA tsV tsSA
j j j j j jtsD X X X Xµ β β β ε  .74 .2473 .1054 

Mushroom 
2 2 2= +j jtsD µ ε  NA .5537 .4754 

Filopodia 
3 3 3 3 3= + +tsV tsV

j j jtsD Xµ β ε  .36 .3266 .7741 

Long Mush-
room 4 4 4 4 4 4 4= + + +tsV tsV tsSA tsSA

j j j jtsD X Xµ β β ε  .60 .8268 .4061 

Stubby 
5 5 5 5 5= + +tsSA tsSA

j j jtsD Xµ β ε  .31 .9174 .5882 

Table 10: The models to explain tsD values at each spine type category. 
 


