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Abstract. We present a novel approach to creating flat maps of the
brain. It is impossible to flatten a curved surface in 3D space without
metric and areal distortion; however, the Riemann Mapping Theorem
implies that it is theoretically possible to preserve conformal (angular)
information under flattening. Our approach attempts to preserve the
conformal structure between the original cortical surface in 3-space and
the flattened surface. We demonstrate this with data from the human
cerebellum and we produce maps in the conventional Euclidean plane,
as well as in the hyperbolic plane and on a sphere. Conformal mappings
are uniquely determined once certain normalizations have been chosen,
and this allows one to impose a coordinate system on the surface when
flattening in the hyperbolic or spherical setting. Unlike existing methods,
our approach does not require that cuts be introduced in the original sur-
face. In addition, hyperbolic and spherical maps allow the map focus to
be transformed interactively to correspond to any anatomical landmark.

1 Introduction

The human brain can be divided into regions based on function and anatomy [16].
These divisions are generally determined by the location of folds (gyri) and fis-
sures (sulci) in the cortical surface. However, the surface of the brain is extremely
convoluted, with considerable anatomical variability between individuals. The
combination of fold complexity with anatomical variability makes it difficult to
compare anatomical and functional information within and between subjects.
Current visualization and comparison techniques do not satisfactorily overcome
these difficulties. For example, functional (PET, fMRI, etc.) data can be pro-
jected onto a rendering of the cortical surface extracted from a coregistered mag-
netic resonance (MR) volume. Individual differences in cortical folding make it
difficult to compare the location and extent of activated foci. Foci buried in deep
sulci may appear on the cortical surface and widely separated foci on opposite
walls of a sulcus may appear to be close together.

C. Taylor, A. Colchester (Eds.): MICCAI’99, LNCS 1679, pp. 279–287, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



280 Monica K. Hurdal et al.

Interestingly, the surface representing the cortical grey matter is topologically
equivalent to a two-dimensional sheet. Thus, it is possible to unfold or flatten
this surface to create a 2D flat map of the cortex. This surface-based approach
can assist in visualizing and comparing cortical folding patterns and help to
resolve some of the problems which exist in traditional visualization techniques.

A number of computational tools have been developed to take advantage
of this surface-based approach. Drury et al. [7] have developed an approach
that attempts to reduce the areal and angular distortion between the original
cortical surface in 3D space and the flattened surface in 2D space. This is ac-
complished by iteratively applying torsional and longitudinal forces to adjust
the edge lengths in the mesh. Fischl et al. [8] create a flat map by reducing
geodesic distance distortion while attempting to prevent folds in the flattened
surface. Both techniques have been used successfully in several comparative and
functional investigation studies [5,6,13,14,15].

In this paper we present a novel flat mapping approach that attempts to
preserve the conformal structure between the original cortical surface and the
flattened surface. There are two real advantages to using conformal flattening as
opposed to others. First, it is completely canonical, meaning that such flattenings
are uniquely determined once certain standard normalizations have been chosen.
In particular, it requires no ad hoc cutting of the surface as do some of the
previously described methods for surface flattening [7,8]. Second, the flattening
can be done in either the Euclidean plane or in the hyperbolic plane, and the
surface can also be mapped conformally onto a sphere. Though the setting of
the hyperbolic plane might seem merely incidental and of little practical value,
its use allows the map origin to be transformed interactively so that different
anatomical landmarks can be used as the map focus. This has the advantage
of bringing into sharp relief areas of interest, but at the cost of relegating the
region far removed from the origin to the periphery, where our Euclidean eyes
cannot focus. The primary disadvantage of conformal flattening is that there is
no attempt to control either the metric or areal distortion; indeed, there can
be no such control as the conformal flattening is canonical and offers no such
opportunity without the loss of conformality.

2 Quasi-Conformal Flattening

In constructing flat mappings of anatomical surfaces such as the cerebellum, one
is faced with two major problems. The first is that one must take the raw 3D scan
data and use it to produce a mesh of the 2D surface of interest. Computational
triangulation methods usually result in a topologically complicated surface re-
plete with local artifacts caused by several factors, including the peculiarities
of certain standard algorithms and software packages (e.g. the marching cubes
algorithm) and insufficient spatial resolution of the data. These local artifacts
must be removed by slicing, patching and retriangulating the surface until a
simply connected 2D mesh is obtained in 3D space that conforms to the surface
of interest. In this section, we are concerned with the second major problem
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— that of flattening the highly convoluted mesh that conforms to the original
surface once it has been converted into a topologically defect-free piecewise flat
surface in 3D space. There is no way to flatten a curved 3D surface without met-
ric and areal distortion [11]; however, there is one type of geometric information
that, at least theoretically, can be preserved under flattening, namely conformal
(angular) information encoded in the surface.

Our starting point is a piecewise flat triangulated surface in 3D space that
is topologically a 2D disk. The 3D space coordinates of the vertices of each tri-
angle of the mesh are given, and each edge of the mesh is either an interior edge
contained in exactly two triangles, or a boundary edge contained in exactly one
triangle. There is one boundary component — a single closed chain of bound-
ary edges forming the boundary of the surface. Technically, this piecewise flat
surface carries the structure of a Riemann surface (described below), and by the
Riemann Mapping Theorem [1] it conformally maps onto any proper simply con-
nected region in the complex plane. Our job is to describe a tool for producing
(approximations to) these conformal mappings.

2.1 Riemann Surfaces

The technical description of a Riemann surface is in terms of a complex atlas:
a collection of local mappings that provide local complex coordinates on the
surface so that overlap mappings are analytic [2]. Rather than going into a
detailed technical description for the uninitiated reader, it serves our purposes to
understand that a Riemann surface provides a consistent way to measure angles
that gives a full angle measure of 2π around each interior point, including interior
vertices. For piecewise flat surfaces where all but the finitely many vertices have
small neighborhoods isometric to disks in the Euclidean plane, the measure of an
angle based at a point other than one of the triangle vertices is just the Euclidean
measure of that angle. For an angle based at a vertex the measure determined
by the complex atlas of the Riemann surface is the Euclidean measure linearly
rescaled so that the total angle measure is 2π. Explicitly, denote by Θ(v) the
angle sum about the vertex v, i.e. the sum of the Euclidean measures of the
angles with vertex v from all of the triangles of the triangulation that contain v.
The scale factor used at v for measuring angles is then 2π

Θ(v) . Hence, an angle
with vertex v in our surface that has Euclidean measure θ will be found to
have measure 2πθ

Θ(v) in the complex atlas of the Riemann surface. A conformal
mapping of a Riemann surface to another one is a continuous locally one-to-one
function that preserves all angle measures. Hence a conformal mapping from our
piecewise flat surface to the complex plane is one that preserves the Euclidean
angle measures at non-vertices, and maps neighborhoods of the vertices in such
a way that the “market share” of angles is preserved, i.e. an angle based at
vertex v of Euclidean measure θ has image an angle of Euclidean measure 2πθ

Θ(v)

under any conformal mapping to the plane.
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2.2 Approximating Conformal Mappings Using Circle Packings

Our scheme for approximating conformal mappings of a piecewise flat surface
to flat maps in the plane uses circle packings. Given a triangulation K of a
disk, a circle packing for K is a collection CK = {C(v): v is a vertex of K}
of circles in the plane, one circle for each vertex v of K, with the property
that circles C(v) and C(w) are tangent whenever the vertices v and w form
an edge of K. The Circle Packing Theorem of [4] states that given any disk
triangulation K and any assignment of positive numbers r(v1), · · · , r(vn) to the n
boundary vertices v1, · · · , vn of K, there is a unique (up to Euclidean isometry)
circle packing in the plane with boundary circle C(vi) having radius r(vi), for
i = 1, · · · , n.

Our first attempt to approximate conformal mappings uses these circle pack-
ings in the following way. Starting with a piecewise flat surface in 3D space,
collect the combinatorial data from the surface in an abstract triangulation K.
This is merely a list of the vertices of the surface (not their 3-space coordinates),
the pairs of vertices in edges, and the (oriented) triples of vertices in triangular
faces. Assign positive numbers to the boundary vertices (perhaps set all equal to
one, or to the average of the lengths of the two edges containing a given vertex)
and find the unique circle packing CK guaranteed by the Circle Packing Theo-
rem. The packing CK serves the role of our flat mapping of the surface and the
question is how well this circle packing mapping approximates a conformal
mapping. We certainly do not expect the mapping to be conformal since none
of the conformal data of the piecewise flat surface are used in constructing the
circle packing — it is only the combinatorial data along with arbitrary boundary
radii assignments that are used in constructing the circle packing. Nonetheless,
the Ring Lemma of [12] applies to guarantee that this circle packing mapping
is quasi-conformal, meaning that there is but a bounded amount of percent-
age angular distortion. To obtain closer approximations to the actual conformal
mappings requires certain modifications of the circle packing routine that are
designed to reduce the quasi-conformal distortion. Unfortunately, space consid-
erations prevent a description of the necessary modifications and details will
appear elsewhere.

2.3 Flat Maps in the Hyperbolic Plane

This approximation scheme works just as well in the hyperbolic plane as in the
Euclidean plane (i.e. the complex plane C). There is a version of the Circle Pack-
ing Theorem for the hyperbolic plane where hyperbolic radii are used as well as
hyperbolic lines and triangles [4]. The Poincaré disk model of the hyperbolic
plane [3] consists of the unit disk ∆ = {z ∈ C: |z| < 1} with metric determined
by the line element ds = 2|dz|

1−|z|2 , the Euclidean line element |dz| = (dx2+dy2)1/2

scaled by twice the reciprocal of 1 − |z|2. This means that the hyperbolic an-
gle measures are the same as the Euclidean angle measures, but the hyperbolic
distances are distorted when seen through our Euclidean eyes by constant hy-
perbolic lengths appearing smaller and smaller as the segment moves toward the
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unit circle boundary of ∆. We may apply the circle packing routine described
previously, using hyperbolic measurements rather than Euclidean, and obtain
quasi-conformal mappings of our piecewise flat surfaces to the hyperbolic plane.
The portions of the flat mapping lying near the boundary unit circle are greatly
distorted to our Euclidean eyes (though not so distorted to hyperbolic eyes),
but the portions lying near the origin have small distortion in comparison. The
nice feature of this is that one may arbitrarily choose what vertex of our sur-
face should be mapped to the origin. This way, different portions of the original
surface can be brought into focus with more distant portions relegated to the
edges, and this can be automated easily to provide an interactive tool for view-
ing local features of interest on our surface. Extensions that allow interactive
quasi-conformal spherical mappings are also available.

3 Flattening the Cerebellum

We obtained a high resolution MRI scan from the Montreal Neurological Insti-
tute, which was produced by registering and intensity averaging a series of 27 T1
weighted images from a single subject [9]. This volume is composed of isovox-
els and has dimension 2173. We chose to flatten the cerebellum in an effort to
facilitate the description of activated cerebellar foci in functional neuroimaging.

The cerebellum was extracted from the MRI volume by defining a plane
parallel to the posterior commissure-obex line and orthogonal to a plane passing
through the vermal midline. Cortical regions defined by various lobes and fissures
were color coded for identification purposes. We produced a triangulated surface
representing the cerebellar surface using the marching cubes algorithm [10]. The
output of this surface was checked for any topological errors and corrected as
necessary. This triangulated mesh is topologically equivalent to a sphere as all
edges in the surface occur exactly twice. This surface is composed of 41804
triangles with 20904 vertices and 62706 edges and is illustrated in Fig. 1. We
introduced a single closed chain of boundary edges in the surface based around
the brainstem and walls and apex of the fourth ventricle to act as the boundary
of the flattened map. This mesh, representing the surface of the cerebellum, is a
piecewise flat simply connected surface that is topologically equivalent to a disk.

Our quasi-conformal flattening procedure was applied to this surface to pro-
duce a number of flat maps. Firstly, in Fig. 2 we present the flat map that was
created in the Euclidean plane. In this case, the circles for the boundary ver-
tices were assigned a radius which was the average of the lengths of the two
boundary edges containing that vertex. As with flat maps produced by other
researchers [7,8], the shape of this map is largely determined by the length and
number of edges in the chosen boundary and will vary in shape from map to
map.

Fig. 2 also illustrates a spherical mapping, where two arbitrary points may
be chosen as the north and south poles and no cuts need be introduced. This
representation may be more natural for some anatomical shapes.
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Flat maps that were created in the hyperbolic plane are illustrated in Fig. 3.
There are a number of important features to note about these maps. Since we
look at these maps with Euclidean eyes, portions of the map lying near the origin
have small distortion and appear similar to those on a Euclidean map. However,
regions of the map lying near the boundary of the unit circle (map border) are
greatly distorted. Nevertheless, we are able to move the focus of the hyperbolic
map to change the regions which are in focus and which are relegated to the map
edges (with large distortion). This is the difference between the hyperbolic maps
in Fig. 3. These transformations can be performed in real computation time by
simply indicating the new map origin. Another feature of the hyperbolic maps
is the boundary shape corresponds to the unit circle. This facilitates comparison
of different maps. A coordinate system can easily be imposed by specifying two
points, or a point and a direction. We do not need to introduce multiple cuts in
the surface (other than the boundary); and perhaps most importantly, the maps
are mathematically unique (up to certain transformations). The utility of quasi-
conformal maps for studying functional imaging data is yet to be determined,
but we believe these features will produce favorable results.

Fig. 1. Surface Representing the Cerebellum. Colors correspond to the following
cortical regions: forest green = lobulus semilunaris, lobulus semilunaris inferior,
lobulus biventer; red = tonsils, flocculus; yellow = lingula, lobus centralis, lobulus
quadrangularis; blue = lobulus simplex, lobulus semilunaris superior; grey =
white matter; bright green = fissura prima; cyan = fissura secunda; magenta =
fissura horizontalis; purple = boundary used for flat maps.

4 Discussion

We have introduced a novel approach to unfolding and flattening the cortical
surface which attempts to preserve the conformal structure of the original surface
in 3-space. Our approach offers a number of advantages over existing approaches
including:
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Fig. 2. Euclidean Flat Map and Spherical Map of the Cerebellar Surface. Colors
correspond to regions shown in Fig. 1. A boundary is required to create a flap
map of the cerebellum (left figure); however, the cerebellar surface is topolog-
ically equivalent to a sphere, so no boundary is required to quasi-conformally
map it to the surface of sphere.

Fig. 3. Hyperbolic Flat Maps of the Cerebellar Surface. Colors correspond to
regions shown in Fig. 1. The origin (map focus) is marked in black in the center
of the maps. The map on the right has been transformed to a different map focus
to display regions in the lower portion of the map. The black circle located near
the bottom of the left map is used as the map origin in the right map. Similarly,
the black circle located near the top of the right map corresponds to the map
focus of the left map.
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– conformal mappings control and minimize angular distortion
– conformal mappings are canonical, and hence mathematically unique
– cutting of the original surface is not required to reduce distortion
– flattening can be done in the Euclidean and hyperbolic planes and mapping
to a sphere is also possible

– a coordinate system can be easily imposed on the hyperbolic maps
– the map origin in the hyperbolic plane can be transformed interactively to
change the map focus and alter the primary locations of map distortion

– computation times are on the order of minutes with real time user interac-
tion.

Our approach produces quasi-conformal maps which may allow us to better
localize functional regions of activation in normal subjects and patients with
ataxia and other hereditary diseases. We are currently working on extensions
that will produce closer approximations to the true conformal mapping.

This work is supported in part by NIH grants MH57180 and NS33718.
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