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Abstract

We employ 3D arrangements of curves to represent and
analyze biological shapes, in particular, the anatomy of
the human brain. The arrangements of curves may vary
from fairly sparse – such as a collection of sulcal lines that
coarsely approximates the global shape of the brain – to
very dense decompositions of the cortical surface into space
curves. A space of shapes of such arrangements is con-
structed equipped with geodesic metrics that can be used
in conjunction with curve registration techniques to quan-
tify shape resemblance or dissimilarity, as well as to iden-
tify the regions where anatomical differences are most pro-
nounced. The metric is applied to the parcellation and la-
beling of configurations associated with the left and right
hemispheres of the brain. Examples are also given of
geodesic interpolations between decompositions into space
curves of surfaces representing the entire left hemisphere of
the brain.

1. Introduction

It is well known that the human brain varies consider-
ably in the size, shape and extent of its folding patterns [4].
It is estimated that 60-70% of the cortex is buried in the
folds. Additionally, the shape of the cortex changes as we
age [22], as well as with conditions such as Alzheimer’s
disease, schizophrenia or bipolar disorder [1, 23, 13].

Some changes in function occur on a widespread scale,
affecting many regions of the cortex, while other aspects
of functional activity may be more localized. For example,
some morphological differences have been demonstrated in
speech and language areas. Increased white matter volumes
have been found in regions of the perisylvian speech and
language areas and in prefrontal and sensorimotor areas of
the right hemisphere (including the superior temporal gyrus,
precentral gyrus and inferior frontal gyrus) for stutterers as
compared to non-stutterers [8]. These differences may be
related to the known left-hemisphere dominance for speech.

Interhemispheric differences in the primary auditory cortex
have also been detected [14, 20]. It would seem plausi-
ble then, that hemispheric morphological differences on the
cortex could be detected by shape characteristics.

Increasingly, geometric properties of the cortex are be-
ing used to study and quantify these changes. To date,
most studies have focused on cortical thickness or volume
[2, 16, 6]. However, these features may not demonstrate
more subtle changes in the cortex and may only become ap-
parent with large changes, or after a disease has progressed
significantly. It is important to be able to identify changes in
the cortex as early as possible. However, to be able to iden-
tify changes that are related to diseases, one also needs to
understand what constitutes normal variations in the cortex,
including those due to aging and gender.

Computational anatomy and image processing methods
enable us to reconstruct the cortical surface S as a triangu-
lated mesh from magnetic resonance imaging (MRI) scans.
Typically, the cortical surface of the gray matter (GM) or
white matter (WM) is reconstructed. The GM cortical sur-
face is the interface between the GM and the cerebrospinal
fluid and the WM surface is the interface between the GM
and WM. In this paper, we develop techniques to represent
and analyze both the entire cortical surface and subsets of
features consisting of sulcal paths or sulcal curves, which
give a coarse approximation to the global anatomy of the
brain. We shall employ arrangements of curves in 3D space
to represent a shape. These arrangements of curves may
consist of a fairly sparse sets of curves that only encode
large-scale anatomical properties, but they may also rep-
resent a very dense decomposition of a surface into space
curves. We develop a novel framework to analyze the shape
of such configurations. We construct shape spaces of ar-
rangements of parametric curves equipped with geodesic
metrics derived from Sobolev metrics that can be utilized
to quantify anatomical similarity or divergence. The met-
ric is used in conjunction with shape registration techniques
that are employed to extract “preferred” parametrizations
for shape comparison. Both the registration techniques and
the metric are dependent upon the entire configuration, so



that they do not simply capture dissimilarities observed in
individual curves in the arrangement. As the metric is ob-
tained via integration of local contributions, the method also
allow us to detect areas where morphological differences
are most pronounced.

We employ the shape metric in the classification and la-
beling of arrangements of sulcal curves representing the left
and right hemispheres of the brain. We also offer examples
of geodesic interpolations of arrangements associated with
the entire left hemispheres of different brains. The ability
to estimate such deformations is an important step towards
developing statistical models of normal shape variations in
the cortex, as well as those associated with diseases.

A word about the organization of the paper: in Section 2,
we construct geodesic shape spaces of arrangements of 3D
space curves, including algorithmic procedures to calculate
geodesic distances and geodesic paths associated with first-
order Sobolev metrics; we also introduce energy density
functions that encode the local contributions to the global
shape distance; in Section 3, we extend curve registration
techniques implemented via dynamic programming to ob-
tain balanced parametrizations that optimally match the ge-
ometric features of the arrangements for shape comparison
and apply the methodology to the classification and labeling
of arrangements of sulcal curves associated with the right
and left hemispheres of the brain; in Section 4, we investi-
gate techniques to parameterize and register spherical sur-
faces to obtain compatible decompositions of surfaces into
space curves for shape comparison – the techniques are ap-
plied to representations of hemispheres of the brain to esti-
mate geodesic shape deformations; the last section presents
a summary of the paper and a discussion of context and fu-
ture work.

2. Arrangements of 3D Curves

We model brain anatomy and the shape of other 3D ob-
jects employing a collection of n parametric curves in 3-
dimensional Euclidean space R3. Such configurations of
curves may range from fairly sparse to very dense represen-
tations of 3D shapes. Each curve in the family may be an
open arc or a closed curve. To simplify the presentation, in
this section, we assume that all components are open arcs;
however, any combination of these can be treated in an iden-
tical manner.

Let I = [0, 1] and αj : I → R3, 1 6 j 6 n, a collection
of n parametric curves. Write the x, y and z coordinates
of the curve αj as αij , i = 1, 2, 3, respectively. Then, the
arrangement of curves can be represented by the 3× n ma-
trix A = (αij). Note that each entry of A is a function
αij : I → R. The jth column of A simply records the coor-
dinate functions of the curve αj .

Given functions f, g : I → R, consider the Sobolev inner

product

〈f, g〉1 = a

∫ 1

0

f(s)g(s) ds + b

∫ 1

0

f ′(s)g′(s) ds, (1)

where a, b > 0 are arbitrary weights. This induces an inner
product on the vector space of arrangements of curves, as
follows:

〈A,B〉 =
3∑

i=1

n∑
j=1

〈αij , βij〉1 , (2)

which is simply the sum of the inner products of the cor-
responding entries. As usual, the norm of A is defined as
‖A‖ =

√
〈A,A〉.

In order to compare the shapes of such arrangements, in
analogy with Kendall’s theory of shapes [9], we first intro-
duce normalizations that will make the representation in-
dependent of translations and scale. Translational invari-
ance can be obtained by requiring that the centroid of an
arrangement A be located at the origin; that is, for each i,
1 6 i 6 3,

n∑
j=1

∫ 1

0

αij(s) ds = 0. (3)

These three conditions simply constrain A to a linear sub-
space H of the space of matrices.

Scale invariance is also easily achieved by requiring that
A have unit norm. This further constrains A to the unit
sphere of H with respect to the norm ‖A‖. For A 6= 0,
the mapping A 7→ A/‖A‖ standardizes scale and places the
matrix A on the unit sphere. Heretofore, we assume that all
arrangements are centered at 0 and scaled to have norm 1.
We refer to such normalized arrangements as pre-shapes.

As in Kendall’s shape theory, the invariance of shape rep-
resentation under rotations – or, more generally, orthogonal
transformations – is more subtle and is not achieved via a
normalization of A. This reflects the fact that optimal align-
ment under rotations and reflections depends on the specific
pair of shapes being compared.

2.1. Orthogonal Alignment

Let A,B be pre-shapes associated with 3D arrangements
of n curves. A 3 × 3 orthogonal matrix U acts on B by
applying the transformation to each of the curves in the ar-
rangement; that is,

UB =
[
Uβ1 . . . Uβn

]
. (4)

For example, if U is a rotation matrix, UB is the matrix
that represents the rotated arrangement. For any U ∈ O(3),
the pre-shapes B and UB have the same shape. Thus,
the shape sB is defined as the orbit of B under the action
of the orthogonal group O(3). The geodesic shape dis-
tance d(sA, sB) is defined as the minimum of the geodesic



distances between pre-shapes on the orbits of A and B,
where the geodesic distance between pre-shapes is simply
the length of the shortest arc of great circle between them
on the unit sphere of H .

To calculate d(sA, sB) and the geodesic shape deforma-
tion, it suffices to fix A and find the point on the orbit of B
closest to A; that is,

d(sA, sB) = min
U∈O(k)

d(A,UB) ; (5)

this is due to the fact that the action of U is rigid; that is,
preserves distance between configurations. Hence, the task
is reduced to finding U ∈ O(3) that places UB closest to
A in the pre-shape sphere. Note that minimizing d(A,UB)
is equivalent to finding Û ∈ O(3) that minimizes the chord
distance ‖A − UB‖. This formulation allows us to extend
the classical arguments to the Sobolev metric setting and
derive the following calculation of Û . Define ABT to be
the 3× 3 matrix whose (i, j)-entry is the scalar

mij =
n∑

`=1

〈αi`, βj`〉1 . (6)

Let ABT = V1ΣV T
2 be a singular value decomposition

of ABT , with V1, V2 ∈ O(3) and Σ diagonal with non-
negative eigenvalues. Then, Û = V1V

T
2 and the shape dis-

tance is given by

d(sA, sB) = ω , (7)

where ω = arccos(tr Σ). Letting B̂ = ÛB, the geodesic
distance is realized by the following arc of great circle in
the pre-shape sphere:

Λ(t) = cos(ωt) A + sin(ωt)v(A,B) , (8)

where

v(A,B) =
B̂ − (tr Σ) A

‖B̂ − (tr Σ) A‖
, (9)

0 6 t 6 1, provided that B̂ 6= A. If B̂ = A, the shapes are
the same and the geodesic deformation is realized by a con-
stant path. Expression (8) represents expA (ωtv(A,B)), the
exponential map at A calculated on the vector ωtv(A,B).

2.2. Rotational Alignment

In some applications, one may wish to only consider
alignments under rotations; that is, optimize alignment only
over matrices U ∈ SO(3). The calculations in Section 2.1
can be easily modified, as follows. If det

(
V1V

T
2

)
> 0, then

U = V1V
T
2 ∈ SO(3) and no changes are needed. Other-

wise, let the least eigenvalue of Σ occur in the ith diagonal
position, 1 6 i 6 3. Then, change the signs of the entries in
the ith column of V1 to obtain Ṽ1 and the sign of the least di-
agonal entry of Σ to obtain Σ̃. The modified matrices allow
us to calculate both the geodesic distance and the geodesic
interpolation, as in Section 2.1.

2.3. Energy Density

The parametric geodesic path from A to B̂ given by (8)
has initial velocity Λ′(0) = ω v(A,B) and constant speed
ω. The energy of the path is given by

E(Λ) =
∫ 1

0

‖Λ′(t)‖2 dt = ‖Λ′(0)‖2 = ω2 (10)

If vj , 1 6 j 6 n, is the jth column of v(A,B), we have

‖Λ′(0)‖2 = ω2
n∑

j=1

∫ 1

0

(
a‖vj(s)‖2 + b‖v′j(s)‖2

)
ds .

(11)

Thus, we can interpret the integrand

ρj(s;A,B) = a‖vj(s)‖2 + b‖v′j(s)‖2 (12)

as the energy density along the jth curve of the ar-
rangement. Observe that ρj has been normalized so that∑n

j=1

∫ 1

0
ρj(s;A,B) ds = 1. Although the shape distance

is a measurement that depends on the entire arrangements
A and B, the density functions ρj , 1 6 j 6 n, describe
the local contributions to the total energy and allow us to
determine how different parts of the curves in the arrange-
ment contribute to the total shape distance. In particular, it
will allow us to trace back regions that exhibit the highest
anatomical resemblance or dissimilarity. Examples will be
given in Section 3.

3. Arrangements of Sulcal Curves
An arrangement of sulcal curves is an example of a

sparse representation of the anatomy of a much more com-
plex structure. This type of representation can be useful
in quantifying and modeling large-scale variations in shape
across individuals. We employ configurations of sulcal
curves to analyze global properties of the shapes of the left
and right hemispheres of the brain.

High resolution 1.5T, T1-weighted MRI brain scans
(0.86mm x 0.86mm x 1.00mm) from 12 subjects (mean age:
26, 6 females, 6 males) were used. A typical MRI process-
ing pipeline performs intensity corrections in the MRI scan,
strips the skull, removes the cerebellum, bisects the cerebral
hemispheres, and creates a triangulated surface representing
the white matter or the gray matter. We used FreeSurfer [3],
a freeware software package available to the neuroscience
community to construct topologically correct GM surfaces
of each hemisphere for the 12 subjects. Surfaces produced
using FreeSurfer have been used to report results from a
number of sensory and cognitive tasks, as well as for com-
paring diseased and control populations. [11, 12, 13, 19].

Gyral ridges and sulcal fundus beds of the cortex
anatomically characterize the surface of the brain. A gyrus



is characterized by an area of high positive curvature and
a sulcus is characterized by an area of low negative curva-
ture. We computed the curvature at each vertex of S using
methods described in [5]. Sulcal paths were then calculated
using Dijkstra’s algorithm and the cost function

csulc
ij = |eij |

[
(κi + κmax)2

2
+

(κj + κmax)2

2

]
+ |eij |

(κi − κj)2

6
,

(13)

where κi and κj are the maximal of the principal curvature
for the vertices vi and vj ∈ V , and eij ∈ E is the edge
that connects vi to vj . Also, κmax is the maximum of the
absolute value of the principal curvature for the surface S.
This cost function will be minimal when traveling along a
sulcal crest line and will penalize traveling along a gyral
crestline.

Eight sulci (4 from the right hemisphere and 4 from the
left hemisphere) were modeled for each of the 12 gray mat-
ter surfaces. The four sulci that were traced on each hemi-
sphere were the central, calcarine, superior frontal and supe-
rior temporal. A user identified a start and end point of a sul-
cus and the fundus of the sulcus was automatically tracked
using the principal curvature between these two points. The
start and end points of each sulcus were verified by an inde-
pendent user to reduce variability.

We first illustrate the geodesic interpolation technique.
Figure 1 shows two examples of geodesics between the full
8-curve configuration associated with different subjects. In
each row, the first and last frames are configurations ex-
tracted from MR data and the intermediate frames show
several stages of the geodesic interpolation. Correspond-
ing sulcal curves were registered with a fully symmetric
variant of the elastic registration techniques of [21, 18],
which are based on alignment of velocity fields and im-
plemented via dynamic programming. Starting with a
constant-speed parametrization of both curves, one of them
was reparameterized using an orientation-preserving diffeo-
morphism γ : I → I that minimizes a cost function, which
measures how well the diffeomorphism aligns their tangent
fields and penalizes excessive stretching or compression of
the curve. This technique leads to undersampling and over-
sampling of regions of the curve that was reparameterized.
To correct for this and obtain more balanced parametriza-
tions of both curves, they were further reparameterized us-
ing the arc-length of the graph of γ as a reference. This
gives representations of both collections of sulcal curves as
arrangements of parametric curves to which we can apply
the techniques of Section 2. The metric parameters were set
to a = b = 1.

We used our shape metrics in experiments in which the
goal was to test whether or not it is possible to discrimi-
nate the left and right hemispheres of the brain based on

anatomical properties captured by arrangements of sulcal
curves. The configurations of 8 sulcal curves for the 12
subjects were split up into left and right hemispheres, each
containing 4 sulcal curves. Thus, the data consisted of a
total of 24 arrangements of curves. We employed two dif-
ferent sets of values for the parameters a and b that define
the geodesic metric, namely: (i) a = 1 and b = 0, which has
the effect of not taking the velocity field of the curves into
account; (ii) a = b = 1, which gives equal weight to posi-
tion and velocity. For each choice of a, b, we also calculated
shape distances allowing general orthogonal alignment and
only allowing rotations. Note that, turning off reflections,
it should be much easier to distinguish the left and right
hemispheres since we expect shape similarity between left
and right hemispheres to be much more pronounced if we
allow a reflection about the sagittal plane. Due to the lim-
ited amount of data, for each arrangement of 4 sulcal curves,
we calculated the geodesic distance to all other 23 arrange-
ments and classified the arrangement as representing the left
or right hemispheres using the k-nearest-neighbor classifier,
for k = 1, 3, 5. The results of the experiments are shown in
Table 1.

a b k Reflections Correct Classification
1 0 1 off 100 %
1 0 3 off 100 %
1 0 5 off 100 %
1 0 1 on 63 %
1 0 3 on 63 %
1 0 5 on 71 %
1 1 1 off 79 %
1 1 3 off 75 %
1 1 5 off 92 %
1 1 1 on 71 %
1 1 3 on 83 %
1 1 5 on 75 %

Table 1. Classification of arrangements of sulcal curves as repre-
senting the left or right hemispheres. The parameters a and b deter-
mine the metric. Decisions were based on the k-nearest-neighbor
classifier.

As expected, the classification performance is much
higher if reflections are not allowed during alignment. In
this case, the zeroth order metric (b = 0) discriminates the
two classes very accurately. However, the results seem to
also indicate that, even if we allow reflections, configura-
tions associated with the left and right hemispheres can still
be distinguished, so that significant shape characteristics in-
trinsic to the left and right hemispheres exist. In this case,
the first-order term in the metric (b 6= 0) seems to have an
important role. In particular, the experiments suggest that
the shapes do not tend to be fully symmetric with respect to
the sagittal plane, which may indicate morphological differ-



Figure 1. Two examples of geodesic interpolations between sets of eight sulcal curves. In each row, the leftmost and the rightmost
configurations were extracted from MR images and the intermediate frames show different stages of the interpolation.

ences associated with function. We illustrate the use of the
energy density functions introduced in Section 2.3 to iden-
tify the regions that contribute the most to shape differences
between the left and right hemispheres of two subjects. We
calculated the shape geodesics between the left and right
configurations of 4 sulcal curves of two subjects. For each
curve, we divided the interval I in ten equal bins and cal-
culated the average value of the energy density in each bin,
as shown in Figure 2. The plots are labeled as follows: (a)
calcarine; (b) central; (c) superior frontal; (d) superior tem-
poral. The plots indicate that, in both cases, a significant

(a) (b) (c) (d)

Figure 2. Energy density functions for the following sulci: (a) cal-
carine; (b) central; (c) superior frontal; (d) superior temporal.

contribution to the total shape distance can be attributed to
the middle section of the superior temporal sulcus. To a
lesser extent, the same occurs at the “tails” of the central
and superior frontal sulci. The most pronounced similari-
ties are observed in the shape of the calcarine and superior
frontal curves.

4. Spherical Surfaces
Unlike a curve that has a natural arc-length parametriza-

tion, no such special parametrization exists for a spherical
surface in 3D space. As a consequence, meshes represent-
ing such surfaces tend to exhibit many regions that are ei-
ther undersampled or oversampled and contain many trian-

gles with undesirable aspect ratios. This is often the case
for surfaces whose geometry exhibit intricate features such
as those encountered in brain anatomy. To address these
issues, parametrizations of spherical surfaces by mappings
that minimize the average geometric distortion have been
investigated in [15, 10].

4.1. Parametrizations

Let S2 denote the unit sphere centered at the origin in
R3 and let φ : S2 → M ⊂ R3 be a parametrization of a
surface M . In [15], the infinitesimal distortion at x ∈ S2

due to the mapping φ was quantified by the sum of the
squares of the singular values of the derivative dφ(x), the
linearization of φ at x. However, this measure of distortion
is heavily biased towards the larger singular value; that is, it
emphasizes stretching and only mildly penalizes compres-
sion. This has the practical effect of controlling undersam-
pling of the parametrizations, but not oversampling. An ad
hoc solution to this problem was proposed in [15], but the
cost function utilized is highly asymmetric with respect to
stretching and compression. In this paper, we adopt a fully
symmetric variant, investigated in [10], that quantifies the
local distortion at p = φ(x) ∈ M , by the quantity

δ(p) = log2 γ(x) + log2 Γ(x), (14)

where γ(x) and Γ(x) are the singular values of dφ(x).
The total distortion of φ is the average value of δ over
M . The details of the construction of minimal distortion
parametrizations are similar to those described in [15, 10]
and uses a coarse-to-fine approach using the mesh decima-
tion procedure of [7, 17].

Given a triangulated spherical surface M , we remesh it
to obtain a more regular triangulation of M , as follows. We
first construct a minimal-distortion parametrization φ of M .
Then, we take a “regular” mesh of the sphere and trans-
fer the triangulation of S2 to M , which leads to a better
mesh of M . This construction also allows us to parameter-
ize different spherical surfaces over a fixed spherical mesh



of S2, which gives a common domain for shape compari-
son. Figure 3(a) shows a triangular mesh representing the
surface of a cerebellum extracted from an MR image with
28,340 vertices. The mesh obtained via a minimal distor-
tion parametrization is shown in Figure 3(b) and has much
more regular triangles. Close-up views are shown in panels
(c) and (d). A similar example for the gray matter surface
of the entire left hemisphere of a brain is shown in Figure 4.
The original mesh has 191,724 vertices and was remeshed
at two different resolutions: 163,842 and 40,962 vertices,
respectively.

(a) (b)

(c) (d)

Figure 3. Remeshing the surface of a cerebellum: (a) the original
mesh with 28,340 vertices; (b) remeshing with a minimal distor-
tion parametrization; (c) close-up view of the original mesh; (d)
close-up view of the remeshed surface.

(a) (b)

(c) (d)

Figure 4. Remeshing the GM surface of the left hemisphere of
a brain: (a) the original mesh with 191,724 vertices; (b) close-
up view of the original mesh; (c) close-up view of the remeshed
surface with 163,842 vertices; (d) close-up view of the surface
remeshed at a lower resolution with 40,962 vertices.

Once a global parametrization φ : S2 → M is available,
we can easily decompose the surface M into spatial curves

at any desired resolution. For example, if we decompose S2

into a family of disjoint parallels, we can transfer the de-
composition to M via the mapping φ, as illustrated with a
cerebellum on the first row of Figure 5. A similar decom-
position of the left hemisphere of a brain is shown on the
second row.

Figure 5. Decomposition into space curves.

4.2. Shape Alignment

In order to compare the shapes of two surfaces presented
by minimal-distortion parametrizations φi : S2 → Mi, i =
1, 2, we first need to align their geometric features. As in
[10], we consider alignments obtained via reparametriza-
tions by rotations. Given a rotation matrix R ∈ SO(3), we
consider reparametrizations of a parametric φ : S2 → M of
the form

p 7→ φ(RT p), (15)

which simply rotates the sphere S2 before mapping it to M
via φ. We denote this new parametrization of M by φR.
Note that the singular values of J−1

φ (x) and Jφ−1
R

(x) are
the same, for any x ∈ M . Thus, if φ is a minimal-distortion
parametrization, so is φR.

The surface alignment criterion adopted is based on the
average discrepancy of the outer normal unit fields. For a
rotation matrix R, think of φ1(x) ∈ M1 and φ2

R(x) ∈ M2

as corresponding points. We wish to measure the average
discrepancy of the normal fields N1(p) and N2(p;R), for
p ∈ S2. Normal fields are insensitive to translations and
scale, but they do change under rotations and reflections of
a surface. Thus, before comparing the normal fields of φ1

and φ2
R, we find the orthogonal matrix UR ∈ O(3) that

minimizes∫∫
S2
‖N1(p)− UR (N2(p;R)) ‖2 dS(p). (16)



Figure 6. Each row shows a geodesic between arrangements of curves representing the left hemispheres of two aligned brains. Three
different decompositions into space curves of the same pair of brains have been used.

This problem is similar to rotational alignment in Procrustes
shape analysis and the solution can be obtained in closed
form [9]. Thus, the alignment problem is reduced to finding
R ∈ SO(3) that minimizes (16). To solve this minimiza-
tion problem, we first sample SO(3) “uniformly” over a
large set of rotations and evaluate the cost function. Subse-
quently, a local refinement near the top candidates is con-
ducted using a gradient search. The local search in SO(3)
can be implemented efficiently using its Lie group structure.

4.3. Experiments

We applied the parametrization and alignment tech-
niques to the surfaces of the left hemisphere of the brains of
two subjects S1 and S2. The original meshes had 146,992
vertices for S1 and 191,724 vertices for S2. Minimal-
distortion parametrizations were constructed for both sur-
faces, which were then remeshed with 40,962 vertices. The
parametric surfaces were aligned so that the decomposi-
tions of the surfaces into curves using parallels of S2 yield
arrangements of curves that can be used for shape com-
parison. The surfaces were decomposed compatibly into
space curves using three different sets of parallels (corre-
sponding to different choices of north and south poles) and
the geodesic interpolations between the corresponding ar-
rangements were calculated using the techniques of Section
2. The three geodesics (calculated with parameter values
a = b = 1) are shown in Figure 6.

5. Discussion
We employed arrangements of space curves to repre-

sent the anatomy of the brain and its substructures at var-
ious different resolutions. A shape theory of arrangements
of curves was developed as well as computational tools to
calculate shape distances and geodesics. Used in conjunc-

tion with curve and surface alignment methods, the metric
allows us to quantify morphological similarity and differ-
ence. Techniques were also devised to identify particular
regions where shape similarity and divergence are most pro-
nounced. The algorithms were applied to the analysis of the
shape of configurations of sulcal curves and to the geodesic
interpolation of cortical surfaces. Registration techniques
were also used to decompose spherical surfaces into space
curves in a compatible manner.

The human cortex is a highly complex structure, both in
terms of its functions and its shape. Detecting or identifying
anatomical variations can ultimately aid our understanding
of how the brain may change with aging or with disease. In
this study, we have successfully been able to use the geom-
etry of sulcal curves to discriminate between left and right
cortical hemispheres and identify areas where some of the
main anatomical differences occur. Being able to detect,
quantify and model left-right differences in cortical shape
has implications for tracking changes in the cortex that may
occur with functional deficits (such as language or hearing
impairment) or in disease. Another application of these re-
sults is the verification or confirmation of which hemisphere
of the cortex is the left and right hemisphere. Although this
may seem a trivial application, there currently is no stan-
dard as to whether MRI data is stored in radiological format
or neurological format. As data becomes publicly available
through databases, inevitably errors will occur as to how
data is stored and represented. The results presented here
can serve as an approach to verifying the reliablity of the
data. However, the real promise of these preliminary re-
sults lies in understanding the shape of the cortex, which
has implications for the study of healthy and diseased pop-
ulations. The shape metrics and interpolation techniques
developed will be useful in defining and calculating mean



shapes, variance and other shape statistics, in the develop-
ment of full statistical models of normal shape variations
observed across multiple subjects, as well as shape varia-
tions due to disease. These topics will be investigated in
future work.
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