EMBEDDINGS OF HOMOLOGY MANIFOLDS
IN CODIMENSION >3

J. L. BRYANT AND W. MIO

1. INTRODUCTION

Among the many problems attendant to the discovery of exotic generalized man-
ifolds [2, 3] is the “normal bundle” problem, that is, the classification of neighbor-
hoods of generalized manifolds tamely embedded in generalized manifolds (with
the disjoint disks property). In this paper we study the normal structure of tame
embeddings of a closed generalized manifold X™ into topological manifolds V7+¢
q > 3. If the local index #(X) # 1, then the codimension is necessarily > 3 (see, e.g.,
Proposition 5.4 below). The main result is an extension to ENR homology mani-
folds of the classification of neighborhoods of locally flat embeddings of topological
manifolds obtained by Rourke and Sanderson in [10]. We show that for ¢ > 3 and
n—+q > b, germs of tame manifold g-neighborhoods of X, or equivalently, controlled
homeomorphism classes of (¢ — 1)-spherical manifold approximate fibrations over X
are in one-to-one correspondence with [X, BTopq], where BT op, is the classifying
space for stable topological g-microbundle pairs [10]. Manifold approximate fibra-
tions over topological manifolds have been studied by Hughes, Taylor and Williams
in [5]. Our approach is to reduce the study of ¢g-neighborhoods of X to the clas-
sification of ¢-neighborhoods of a (stable) regular neighborhood of X in euclidean
space; this is done using the splitting theorem for manifold approximate fibrations
proved in section 4. As applications, we obtain an analogue of Browder’s theorem
on smoothings and triangulations of Poincaré embeddings (Theorem 5.1) and of the
Casson-Haefliger-Sullivan-Wall embedding theorem (Corollary 5.2) for generalized
manifolds. These were also obtained independently by Johnston in [6].

2. PRELIMINARIES

A generalized n-manifold is a locally compact euclidean neighborhood retract
(ENR) X such that for each z € X,

7, ifk =n,

0, otherwise.

bl

Hy(X, X ~ {2}, Z)= {

A compact generalized n-manifold X is orientable if there is a class £ € Hy(X;7Z)
such that the inclusion H,(X;7Z) — Hp(X, X ~ {x};7Z) sends £ to a generator of
Hiy(X, X ~{z};7Z) for every z € X. A choice of ¢ is an orientation for X.

A subset X CYis I-LOC in Y if, for every # € X and neighborhood U of 2 in Y,
there is a neighborhood V of € Y such that the inclusion induced homomorphism
7 (VN X) — m(U ~ X) is trivial. In codimension > 3, we also refer to 1-LCC
ENR subsets as tame subsets.

Partially supported by NSF grant DMS-9626624.
1



2 J. L. BRYANT AND W. MIO

Given a space X, a manifold approzimate fibration with fiber F over X is an
approximate fibration p: M — X, where M 1s a topological manifold and the
homotopy fiber of p is homotopy equivalent to F'. (Equivalently, each p~1(z) has
the shape of the space F'.) A group G (w1 (F) in our constructions) is K-flat if
Wh(G x Z*%) = 0, for every k > 0.

Let p;: M; — X, i € {0,1}, be continuous maps. A controlled map f¢ from
(My — X) to (M — X)) is a proper map f: My x [0,1) — My x [0,1) such that
the composition

My x [0, 1)—L> 0y x [0, 1)225 01 225 X

extends continuously to My x [0, 1] via pg on My x {1}. Similarly, controlled maps
fo, Ji My — My are controlled homotopic if there i1s a controlled map H® from
My x I — X to My — X such that H¢|My x {0} = f§ and H¢|M; x {1} = ff.
Controlled homeomorphisms and controlled homotopy equivalences are defined in
the obvious way.

Remark.

(i) This definition is similar to that given in [5], except that we do not require
controlled maps and homeomorphisms to be level preserving. However, con-
trolled maps f: My x [0,1) — M; x [0, 1) are controlled homotopic to level-
preserving mappings through linear homotopies. Similarly, level-preserving
controlled homotopic maps are controlled homotopic through level-preserving
homotopies.

(ii) If My and M, are closed manifolds, h is a controlled homeomorphism of
the manifold approximate fibrations p;: M; — X with fiber F, ¢ € {0,1},
and wy(F) is K-flat, then an infinite sequence of applications of the thin
h-cobordism theorem [8] allows us to assume that h preserves a sequence of
levels converging to 1, that is, A(My x {t}) = My x {t} for an infinite sequence
of t’s converging to 1.

(iii) When we speak of controlled equivalences f°: My — M; without specifying
the control map pg on the domain, it is assumed that pg = tli_rgm o f; and

that the limit exists, where f;(2) = f(x,1).

Although part of our discussion could be carried out in greater generality, unless
stated otherwise, we assume that manifold approximate fibrations p: M — X have
fiber S971, ¢ > 3, that the total space M is a closed manifold, and that the base
space X is a closed ENR homology manifold.

Let p: M — X be a manifold approximate fibration. A controlled structure on
p is a controlled homotopy equivalence f¢: N — M, where N — X is a manifold
approximate fibration. The controlled structure set of p, 8:(p), is the collection of
all controlled homeomorphism classes of controlled structures on p: M — X. For
computational purposes, we next identify 8.(p) with a certain bounded structure
set, in the sense of Ferry and Pedersen [4].

Given p: M — X, assume that X is tamely embedded in S, N large, and
that X is given the induced metric. Let O(X) denote the open cone on X, and let
p: M x[0,00) — O(X) be defined by

(p(m),t), ift > 0;
1) =
p(m, 1) {0, i1 =0,
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where 0 denotes the cone point. We wish to identify S.(p) and 87°(p), where
87%(p) is the bounded structure set of p: M x [0, 00) — O(X) away from zero (see
[4] for more details).

Let ¢: [0,1) — [0, 00) be a homeomorphism. A radial reparametrization (via ¢)
of a controlled structure f¢ on p: M — X may fail to yield a bounded structure
(away from 0) on g, if convergence near X is too slow. This can be corrected with
a suitable radial contraction of the given structure, as follows.

Let ¢:[0,1) — [0,1) be a homeomorphism such that ¢(x) < z, for every =z,
and let f¢ be a controlled structure on p: M — X represented, say, by the level-
preserving map f: Myx[0,1) — M x[0, 1). The ¢-contraction of f¢is the controlled
structure represented by the composition

R .
Mo x [0, D)2 My % [0, 1) ——= M x [0, )——L > 01 x [0, 1).

If the contraction is fine enough, then its radial reparametrization under @ gives a
bounded structure on p: M x[0,00) — O(X) away from 0. Appropriate restrictions
on admissible functions ¢ guarantee that controlled homeomorphic structures are
mapped to equivalent bounded structures, thus defining a map S.(p) — 83°(p).
Conversely, if fo: Ng — M x [0,00) represents a bounded structure away from
zero, then Ny has a simply-connected, tame end with respect to the control map
p: Ny — X given by the composition

No—L25 M % [0,00) 2% M2 o x.
By the end theorem [8] we can assume that, in a neighborhood of the end, Ny =
N x [0,1), and that the maps p;: N — X given by p;(2) = p(x,t) converge to
a spherical manifold approximate fibration p;: N — X, as ¢ — 1. Moreover,
p1: N — X is controlled homotopy equivalent to p: M — X, under the map
induced by fy. This establishes a one-to-one correspondence

M M x [0,00)
8. ! - Sio !
X 0(X)

between controlled and bounded structure sets.

3. LOCAL STRUCTURE

Let X™ be a closed oriented generalized n-manifold and V"*¢ a topological
manifold, ¢ > 3. If X is 1-LCC' in V and ¢ > 3, then X has a mapping cylinder
neighborhood £ = C),, where p: E — X is a manifold approximate fibration with
homotopy fiber S?=1 [8, 12]. Moreover, this spherical manifold approximate fibra-
tion structure is well defined up to controlled homeomorphisms over X. Conversely,
by Proposition 3.1 below, any such spherical manifold approximate fibration arises
as the normal structure of a tame embedding of X. This result is a consequence of
Edwards-Quinn’s characterization of manifolds, and is proven in [8] for polyhedral
homology manifolds.

Proposition 3.1. If p: OF — X is a manifold approximate fibration with homo-
topy fiber ST71, q > 3, then the mapping cylinder E = C, of p is a topological
manifold, provided that n+q > 5. Furthermore, X is tamely embedded in E as the
zero section.
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Classifying manifold neighborhoods of X is, therefore, equivalent to classify-
ing spherical manifold approximate fibrations over X, up to controlled homeomor-
phisms. We first address this problem within a fixed controlled homotopy type over
X.

Let p: 0F — X be a manifold approximate fibration with homotopy fiber S4~1,
and let py: 0Fy — X be a manifold approximate fibration controlled equivalent to
p via a level-preserving controlled homotopy equivalence

OE; % [0,1) —= 8F x [0,1).

)l:

The map 1 induces a homotopy equivalence ¢ (F1,0E)) — (E,0F), where Ey
and F are the mapping cylinders of p; and p, respectively.

Let n(¢) € [£;G/Top] = [X;G/Top] = H,(X;G/Top) be the normal invariant
of ¥. Normal invariants of mapping cylinders induce a map

oF
p:8. | | | — Ha(X;G/Top)
X

given by p([¥°]) = n(¢), for any controlled structure ¢°.
Proposition 3.2. p is a bijection.

Proof. The result follows from a comparison of the controlled surgery exact se-
quence of p: F — X with the G/Top-homology Gysin sequence of p: 0F — X. It
is a consequence of the b-lemma applied to the commutative diagram

oF
Hopy(X;L) — =8, ( | ) o Hopge1(0E; G/ Top) —> Hypqe1(X;1L)

T

H,1,(E;G/Top) = H,(X;G/Top) = Hptq—1(0E; G/Top) = Hyqq—1(E; G/Top)

The first row is the bounded surgery sequence away from 0 of 0F x [0, 00) —
O(X), under the identification of structure sets described in section 2. The sec-
ond row is the G/Top-homology exact sequence of the pair (E,0F) with the term
H,1,(E,0F;G/Top) identified with [E,G/Top] = [X,G/Top] = H,(X;G/Top),
via Poincaré duality. For k > 1, the isomorphism H,44(X; L) = H,14:(X; G/Top)
follows from the Atiyah-Hirzebruch spectral sequence. O

We now consider the general classification problem. Let Ny(X) be the collection
of germs of tame codimension ¢ manifold neighborhoods of X. Two embeddings
tp: X" — an+q, k € {1,2}, represent the same element of N,(X), if there are
neighborhoods Np of X in Vi, and a homeomorphism h: N; — Ns such that
h oty = t5. Our previous discussion shows that N,(X) is in 1-1 correspondence
with controlled homeomorphism classes of (¢ — 1)-spherical manifold approximate
fibrations over X.

Let BTop,, j denote the classifying space for topological microbundle pairs
e® C ¢¥+4 where ¢; denotes the trivial microbundle of rank k. In [10], Rourke and
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Sanderson showed that if M is a topological manifold, there is a bijection
e :N‘(J(M) - [M’ BTOpq]a

where BT op, = limj—.cc BT 0p,y}, - To the embedding M C V|, they associate the
pair 7ar  vayr C v |ar @ var, which represents the “formal” normal bundle of M in
V. Here, vas 1s a stable inverse to 1.

A closed generalized manifold X has a canonical (up to controlled homeomor-
phisms) stable normal spherical manifold approximate fibration structure on the
Spivak normal fibration determined by neighborhoods of embeddings of X in large
euclidean spaces; we shall denote 1t vx. The uniqueness of this stable structure
follows from the relative end theorem and the thin h-cobordism theorem [8] applied
to a concordance between any two embeddings of X in RY, N large. On the other
hand, Ferry and Pedersen have shown that the Spivak normal fibration of an ENR
homology manifold has a canonical Top reduction Vg(p [4]. Notice that, if the local
index of X # 1, we cannot have a simultaneous geometric realization of both struc-
tures since the index is multiplicative. In other words, we cannot have a Top-bundle
over X whose total space is a manifold. Our approach is to use both vx and Vg(p
to reduce the study of g-neighborhoods of X to the study of g-neighborhoods of a
(stable) neighborhood of X in euclidean space. The fact that there is a bijective
correspondence between these is stated as Corollary 3.4.

We begin by defining y: Ny(X) — [X, BTop, ], for any closed generalized man-
ifold X. Let X" C V"%¢ be a tame embedding, ¢ > 3, and let E = C}, be a
mapping cylinder neighborhood of X with projection p: £ — X. Let W be the
total space of £ = p*(ug(p). Since vx has the same controlled homotopy type as
Vg(p, and ¢|x = I/g(p, the splitting theorem proved in the next section shows that ¢
is controlled homeomorphic to an approximate fibration that restricts to vx over
X. Moreover, the mapping cylinder N of the projection of vx is embedded in W
as a locally flat submanifold.

FIGURE 3.1

A relative version of this construction shows that any two such splittings are
concordant. Therefore, the assignment X C V — 7x|x @ vn|x € 7w|x ® vn|x in-
duces a classifying map y: Ny(X) — [X, BTop, ], which coincides with the Rourke-
Sanderson map when X is a topological manifold.

Theorem 3.3. Let X" be a closed generalized manifold. The map v: Ny(X) —
[X, BTop,] is a bijection, provided that ¢ > 3 and n+q > 5.

Using the same notation, define g: Ny (X) — Ny(N) by associating to X C V
the g-neighborhood N C W.

Corollary 3.4. p: Ny(X) — Ny(N) is a bijection.
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Proof. Neighborhoods of N are classified by v1: Ny(N) — [N, BTop,], where
1 ([X € V]) is represented by the microbundle pair v @ vy C mw |y @ vn [10].
Therefore, there is a commutative diagram

Nq(X) — Nq(N)

[X, BTop,] — [N, BTop,).

The result follows from Theorem 3.3. O

Proof of Theorem 3.3.

v is injective. Let p;: OF; — X, i € {0,1}, be (¢ — 1)-spherical manifold
approximate fibrations such that y(X C Ey) = (X C E1). Adding subscripts to
the notation introduced above (see figure 3.1), Theorem 3.2b of [10] implies that
Wy and Wi are equivalent neighborhoods of N i.e.; there is a homeomorphism
H: W, — Wy inducing the identity on N.

Analogous to BTop,, there is a classifying space BG, for pairs of spherical
fibrations [10]. Since such pairs split uniquely, BG, is homotopy equivalent to the
classifying space for spherical fibrations BG,. Since controlled homotopy classes
of approximate fibrations are in one-to-one correspondence with fiber homotopy
classes of spherical fibrations under the path fibration map [5], the fact that the
image of (X C Fo) and y(X C FEy) are the same under the forgetful map BT op, —
BG, implies that H induces a controlled homotopy equivalence f*: 0F; — JEq
over X, which gives a homotopy equivalence f: FEy — Ey of mapping cylinders. By
Proposition 3.2, to establish the injectivity of v, it suffices to show that the normal
invariant of f is trivial.

Since f restricts to the identity on X, and W; is the total space of the bundle
over IJ; obtained as the pull-back of Vg(p under the projection p;: F; — X, there is
a bundle map F': W7 — W,

Wi —F>W0

E1 — Eo.

covering f: By — Ey. Therefore, the normal invariants n(F) € Wy, G/Top] =

[X,G/Top] and n(f) € [Fo,G/Top] = [X,G/Top] are the same. Since F' can be

assumed to be homotopic to H as maps of pairs, it follows that n(f) = n(F) = 0.

~ is surjective. Let the microbundle pair ¢® C (9% represent a given element
o € [X, BTop,]. Let p: € — X be the (¢ — 1)-spherical fibration underlying a,
and let € be the mapping cylinder of p. Abusing notation, the natural projection
p: &€ — X gives (&, 0E) the structure of an arbitrarily fine Poincaré space over X.
Furthermore, as stable spherical fibrations

(3.1) Vil = viP|x & ¢,

where 3" is the Spivak normal fibration of €. Therefore, equation 3.1 determines
a Top reduction of vi’|x. Since & deformation retracts to X, we also obtain a Top
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reduction of Vgp. Let

(M,0M) 2 (&, 0¢)

)l:

be a surgery problem associated to this reduction. Crossing with R, we obtain a
bounded surgery problem

(M, 007) —2> (& x B, 0E x R)

B

O(X)

where X* = X 1T {a} is a disjoint union, and in “polar coordinates” in O(X™T),

x,t), ift>0;
P t) = (,8), i
(a,]t]), ift<0.

By the bounded 7 — 7 theorem [4], we can assume that q; is a bounded homotopy
equivalence. Now, we split this equivalence near co to obtain a manifold approxi-
mate fibration over X. Since M has a tame end (near +00) with respect to the
composition

proj P

OM 9E xR o€ X

bl

we can assume by the end theorem that in a neighborhood of the end, oM =
JF; x [0,1). For each 0 <t < 1, let p¢: IE; — X be the composition

2 proj

o€ e rox.

OF, x {t}
Then, p; = thn% pe: OF; — X is a manifold approximate fibration such that the

spherical fibrations underlying y(X C E;) and « are the same.
The stability theorem for G, /Top, [10], ¢ > 3, gives a pull-back diagram

BTop, —— BTop

L

BG, BG.

Hence, the difference between o and (X C FEy) is stable, and defines an element
B € [X,G/Top|l = Hy(X; G/Top). Proposition 3.2 applied to p1: F1 — X gives a
manifold approximate fibration ' — X and a controlled equivalence ¢°: 0F —

JFE; such that p([¢°]) = 5. Then, v(X C E) = «. This concludes the proof. O

Corollary 3.5. Let X™ be a closed generalized manifold. If ¢ > 3 and n+q > 5,
(¢ — 1)-spherical manifold approvimate fibrations over X are classified by BTop,,
1.e., there is a one-to-one correspondence between controlled homeomorphism classes
of (¢ — 1)-spherical manifold approzimate fibrations over X and [X, BTop,].
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Since BG, — BG, is a homotopy equivalence and Gq/Topq is stable when ¢ > 3,
the classification of spherical manifold approximate fibration structures obtained in
Proposition 3.2 can be rephrased in terms of reductions of structural groups, as
follows.

Corollary 3.6. Let X be a closed generalized n-manifold, and let & be a (¢ — 1)-
spherical fibration over X. If ¢ > 3 and n+ q¢ > b, then manifold approzimate
fibrations over X fiber homotopy equivalent to € are in 1-1 correspondence with
fiber homotopy classes of lifts to BT op, of the map X — BG that classifies €.

Remark. The classification of manifold approximate fibrations with spherical fibers
obtained in Corollary 3.5, the H-space structure on B7op induced by Whitney
sums of bundles, and the stability theorem for Gq/Topq, for ¢ > 3, suggest possi-
ble definitions of Whitney sums and pull-backs of spherical manifold approximate
fibrations over ENR homology manifolds. However, such definitions do not seem
to be entirely satisfactory. For example, one would not obtain product formulae
for characteristic classes, since 0-dimensional classes (like the local index of a ho-
mology manifold) are not visible to the operation in BTop arising from Whitney
sums of bundles. In order to account for these, it appears to be necessary to ad-
dress the more general classification problem of tame neighborhoods of generalized
manifolds in generalized manifolds with the disjoint disks property. We conjecture
that these g-neighborhoods are classified by BT op, x Z. From the viewpoint of the
techniques utilized in this paper, the main obstacles to completing such a study are
the validity of the s-cobordism theorem and of the simply-connected end theorem
for generalized manifolds with the disjoint disks property.

4. A SPLITTING THEOREM

Let £™ be a compact topological m-manifold, and p: M™*" — FE be a manifold
approximate fibration with homotopy fiber F', where F' i1s a closed r-manifold.
For the duration of this section we adopt the following notation: if A C £, then
A= p_l(A) C M.

Let X™ C E™ be a closed ENR homology manifold tamely embedded in F,
and let ¢: X — X denote the restriction of p to X. In this generality, X is not
necessarily an ANR, and ¢ may not be an approximate fibration.

Definition 4.1. p: M — E is split along X, if X is a closed (n 4+ r)-manifold
tamely embedded in M, and ¢ = p|4: X — X is an approximate fibration.

Suppose ¢;: N — X is an approximate fibration with homotopy fiber F', where
N is a closed (n + r)-manifold

Theorem 4.2. If q1: N — X 1is fiberwise shape equivalent to q: X — X over X,
m—n>3,r>3 n+r>5, and m(F) is K-flat, then p: M — E is controlled
homeomorphic to an approrimate fibration p1: M — E, which is split along X and
restricts to q1 over X.

Proof. Let V be a mapping cylinder neighborhood of X in £ with mapping cylinder
projection 7: V' — X. Then int V has a tame end over 9V (the control map being
the composition of p with projection on a collar of 9V to dV). Since 71 (F') = 0,
V has a controlled collar at oo over AV [8]. Let U/ be a compact manifold in int V'
containing X obtained by removing a small open collar from the end of V. Then
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the inclusion X C U is a shape equivalence. The map yop: U ~ X — X also has
a tame end, hence a controlled collar at co. Thus U has a “mapping-cylinder-like”
structure over X, controlled over X, in the sense that small neighborhoods of X in
U can be isotopied arbitrarily close to X by 1sotopies that fix X and are controlled
over X. (That is, X is a tame FANR in U over X))

Since the manifold approximate fibration ¢;: N — X 1is fiberwise shape equiva-
lent to p: X — X, there is a controlled homotopy equivalence G¢: N — U over X.
Let G: Nx[0,1) — Ux[0, 1) represent G°. As in section 2, under an appropriate ra-
dial reparametrization, we may assume that G is a bounded homotopy equivalence
over O(X), the open cone on X. By the bounded analogue of the Casson-Haefliger-
Sullivan-Wall embedding theorem [11], after a bounded homotopy over O(X), we
can assume that G is an embedding.

Pushing the image of G toward X using the mapping-cylinder-like structure on
U, we may also assume that G(N x {t}) C Vi, where V; C V is the part of the
mapping cylinder having mapping cylinder parameter > ¢. Set 7 = G(N x [0,1) U
X x{1}) C Ux[0,1]. Then U x [0, 1]~ Z has a tame end over X, hence, a controlled
collar over X. The closed region between a boundary of the end and U x [0, 1] is a
thin h-cobordism of triples (over X), hence, a product. Thus, there is a controlled
homeomorphism A: dU x ([0,1],0,1) x [0,1) — U x ([0,1],0,1) . Z over X, with
AlOU % [0,1] x [0, 8] = id for some & > 0.

It is not difficult to show that A(OU x [0, 1] x {¢}) is an €(¢)-thin h-cobordism over
X, where €() — 0 as t — 1. Thus, an infinite sequence of applications of the thin
h-cobordism theorem yields a homeomorphism h: (U \X) x[0,1] = (U x[0,1]\ 7)),
controlled over X. The composition poprojoh=!: (U x [0,1]\ Z) — V \ X extends
to amap H: U x [0,1] — V. Since h is the identity in a neighborhood of 0U, H
can be used to deform p to an approximate fibration p; that agrees with p outside
U and with ¢; on N = G(N x {0}), and is controlled homeomorphic to p. O

5. TAMING POINCARE EMBEDDINGS

Let X" be a closed generalized manifold and V" +¢ a compact topological man-
ifold. Following [1] (see also [7, 11]), we define a Poincaré embedding of X in V' to
be a triple (&, (C,E), h) consisting of

(i) a (¢ — 1)-spherical fibration £ over X, with projection p: 9€ — X
(ii) a finite Poincaré pair (C, 9E);
(iii) a (simple) homotopy equivalence h: C'U & — V, where & is the mapping
cylinder of p, and C' N & = 9€.

Remark.

1. If X is tamely embedded in V', let the spherical manifold approximate fi-
bration p: 9F — X represent the normal structure to X. Under the path
fibration construction, this approximate fibration determines a spherical fibra-
tion over X which is controlled homotopy equivalent to p: 0F — X. Thus,
underlying any tame embedding, there is a Poincaré embedding of X in V.

2. Lemma 11.1 of [11] shows that (ii) follows from (iii), when ¢ > 3.

As in smoothing theory, we first consider reductions of the structural group of
p: &€ — X to Top,. Given a Poincaré embedding h: C’(%Jo & — V, let f° be the
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composition
y_t ., EC CaLi 8_h>v_i>v x R¥,

k large. By general position, we can assume that f° is a tame embedding. Since
any other embedding homotopic to f* i1s concordant to f°, the stable controlled
homeomorphism type of the normal spherical manifold approximate fibration is
well-defined. Thus, associated to a Poincaré embedding h: C’(%Jo € — V), there is a

natural stable Top-reduction of 9€ — X. The stability theorem [10] for Gy /Top,,
g > 3, implies the same unstably, that is, associated to a Poincaré embedding, there
is a canonical Top,-reduction of 9€ — X.

We now state the extension of Browder’s “Top-Hat” theorem to embeddings of
ENR homology manifolds into topological manifolds (see also [6]). For smooth or
PL manifolds, a proof of this result is given in [11].

Theorem 5.1. Let (£,(C,E),h) be a Poincaré embedding of a closed generalized
manifold X™ into a compact topological manifold V"4, with ¢ > 3 and n +q > 5.
Then, there is a tame embedding of X in V wnducing the given Poincaré embedding.

Proof. The proof follows much the same line as the proof of Theorem 11.3 of [11].
Let ¢°: OF — O represent the canonical Top,-reduction of & — X, where 0E —
X is a (¢ — 1)-spherical manifold approximate fibration. Since ¢¢ induces a simple
homotopy equivalence ¢: E — &, we may assume that & = E and h: CUsg E — V.

Let g: V — C Usg E be a homotopy inverse to h. After removing a small
open collar of JF from F, we can assume that ¢ is transverse to JF. Let A =
g Y(E). Then g|A: (A,0A) — (E,0F) is a degree 1 normal with normal in-
variant n € [E,G/Top] = [X,G/Top] = H,(X;G/Top). Proposition 3.2 im-
plies that there is a manifold approximate fibration p;: F; — X and a con-
trolled homotopy equivalence #°¢: JF; — OF such that 77(1/:) = 7. Hence, there
is a normal bordism Fy: (U,Uy) — (E,J0F) between g: (A,0A) — (E,JdF) and
O (E1,0E)) — (E,0F). Identify A C U with Ax {1} C V x {1} C V x I to ob-
tain W = (V x I)U4 U. There is a degree-one normal map F: (W, V x {0}, 0. W) —
(CUEXI,CUE x{0},CUE x{1})inducing h on V x {0} and 4 on £, C 0, W. By
the m—x theorem we can do surgery on W rel V x{0}UF; to get an s-cobordism W'
between V' x {0} and V', with 5 C V'. By the s-cobordism theorem W' =V x I;
hence, we get an embedding f: X C Ey — V realizing the given Poincaré embed-
ding. Notice that since 0F; — X arises as the normal structure to X under the
embedding f, JF; — X is controlled homeomorphic to 0E — X. O

Corollary 5.2. Suppose X" is a closed generalized n-manifold, V**¢ is a compact
topological (n + q)-manifold, (n+q) > 5, ¢ > 3, and f: X — V is a homotopy
equivalence. Then f is homotopic to a tame embedding.

Proof. Identical to the proof of Corollary 11.3.4 of [11]. O

Corollary 5.3. Suppose that X is a closed generalized n-manifold, n > 5. Then
there 1s a tame embedding of X into a topological manifold of dimension n + 3.

Proof. By [4], the Spivak normal fibration of X admits a Top-reduction, which gives
a degree-one normal map f: M — X, where M 1s a topological n-manifold. By the
7 — 7 theorem, we can do surgery on f x id: M x B3 — X x B3 to get a (simple)
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homotopy equivalence F': (V,0V) — (X x B3 X x S?). Apply 5.2 to a homotopy
inverse of F' restricted to X. O

In contrast to 5.3 we have the following well-known fact.

Proposition 5.4. If X is a closed generalized n-manifold and «(X) # 1, then
there is no compact topological manifold (V,0V') controlled homotopy equivalent to
(X x B?, X x S1) over X.

Proof. If there were, the infinite cyclic cover U of 9V corresponding to the Z-factor
of 71(0V) would have a tame end over X. The end theorem would then produce
a completion U of the end over X, hence, a cell-like map U — X, that is, a
resolution of X. But this would imply that «(X) =1 [9]. O
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