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Abstract

We develop a computational model of shape that extends existing Riemannian models of
shape of curves to multidimensional objects of general topological type. We construct shape
spaces equipped with geodesic metrics that measure how costly it is to interpolate two shapes
through elastic deformations. The model employs a representation of shape based on the discrete
exterior derivative of parametrizations over a finite simplicial complex. We develop algorithms to
calculate geodesics and geodesic distances, as well as tools to quantify local shape similarities and
contrasts, thus obtaining a local-global formulation that accounts for regional shape differences
and integrates them into a global measure of dissimilarity. The Riemannian shape spaces provide
a common framework to treat numerous problems such as the statistical modeling of shapes,
the comparison of shapes associated with different individuals and groups, and modeling and
simulation of dynamical shapes. We give multiple examples of geodesic interpolations and
illustrations of the use of the model in brain mapping, particularly, the analysis of anatomical
variation based on neuroimaging data.

1 Introduction

The development of computational models of shape is motivated by core problems in computer
vision, pattern analysis, and computational anatomy, spanning a breadth of applications such as
the statistical analysis of shapes, mapping the anatomy of the human brain and characterizing
normal anatomical variation and pathological changes, and morphing shapes to model dynamics
from observations. Riemannian models based on the construction of shape spaces are very appealing
because they provide a framework to treat many of these problems in a unified manner. Riemannian
models are of particular interest in problems involving analysis, estimation, and modeling of full
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geometries, as opposed to specific features that reflect shape properties, but do not let us to fully
recover shape. For example, to model variation of the shape of an organ within a population, it is
important to have models that allow us to analyze and infer full anatomies from which one may
extract local or global features for more specific purposes.

In this paper, we construct a computational model of multidimensional shape equipped with
geodesic metrics that allow quantification of shape similarity and difference. We develop algorithms
to calculate shape geodesics and geodesic distances, as well as a tool to analyze regional shape
similarity and difference between a pair or group of shapes. This type of tool allows us to address
an important problem: where do the most significant morphological contrasts occur? Our primary
goals are to develop a framework for algorithmic analysis of multidimensional shape and the basic
algorithms and tools needed in applications. We also demonstrate the computational tractability
of the model through many examples and carry out experiments to illustrate some potential uses of
the model. However, we emphasize the development of the model and tools, leaving more extensive
applications for future work. Our approach leads to several variants of the model: models that are
sensitive or invariant to scale, as well as to orientation or orthogonal transformations. All of these
variants are of potential interest and the most adequate choice for a problem will likely be guided by
the context and application. For example, to model variation of the anatomy of an organ within a
population using imaging techniques, one might want to employ a scale-invariant model in order to
minimize or eliminate the influence of image acquisition parameters, or to disregard global size. On
the other hand, to analyze atrophy of, say, the hippocampus using longitudinal magnetic resonance
data, one might prefer to scale the whole brain to a template and use a scale-dependent model
of the shape of the hippocampus to make it more sensitive to localized tissue loss. Figure 1 gives
a preliminary illustration of a shape geodesic interpolating the contour surfaces of two octopuses
constructed with one of the models of this paper.

Figure 1: Interpolating the contour surfaces of two octopuses with a shape geodesic. The colors
indicate point correspondences along the deformation.

The literature on shape is vast and comprises many different approaches. They include morpho-
metric analysis based on specific shape descriptors, deformable templates, as well as use of a variety
of metrics, not necessarily derived from Riemannian structures. The choice is largely determined
by the application and some of the non-Riemannian alternatives are well suited for problems such
as shape indexing, classification, or retrieval. However, as we target problems that can be treated
more effectively with the Riemannian approach, such as the development of statistical models of
shape, we focus our discussion on this class of models. Pioneering work on shape due to Kendall
and Bookstein led to the development of the first formal shape model using a representation by a
finite indexed set of landmark points and a metric based on Procrustes alignment [9, 10]. Kendall’s
model has been employed in a variety of applications and also triggered numerous developments
in statistics on manifolds [3, 13, 1, 4]. As it is natural to perceive the shape of the contour of an
object as a continuum, more recently, shape spaces of curves and surfaces are receiving a great
deal of attention. A shape space of plane elastic curves was first proposed by Younes [27, 28] and
a reformulation of the model by Younes et al. [29] yields a framework for efficient analysis and
registration of both open and closed planar curves. A model that uses arc-length parametrizations
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of plane curves was developed by Klassen et al. [12]; as the curves are traversed with constant
speed, the shape representation only uses directional information. This model can be computed
quite efficiently [22], however, the lack of elasticity sometimes forces the model to rely on somewhat
unnatural curve correspondences. Mio et al. [18, 17] constructed a shape space of elastic strings
equipped with a 1-parameter family of geodesic metrics; planar curves were studied in [18] and an
extension to curves in Euclidean space of any dimension in [17], where an alternative, more robust
computational approach is employed. These metrics are indexed by a parameter that controls how
much resistance a curve offers to stretching or compression relative to deformation by bending.
The elastic model of [27, 29] is isometric to a special case of the model of [18, 17], however, the
formulation of Younes et al. [29] for this special case has several computational advantages. The
shape space of [7] is also equivalent to a special case of the general model of [18, 17], but in this
case the computational costs for closed curves are comparable. In [17], the arc-length model of [12]
is also interpreted as a limit case of elastic curves, as the resistance to stretching and compression
becomes progressively larger. Other metrics in the space of curves have been investigated by Mi-
chor and Mumford [16], including their organization and hierarchy. A model of shape of curves
based on principles of linear elasticity that accounts for deformations interior to the curve has been
developed by Fuchs et al. [6]; however, in the current formulation, the computations appear to be
costly.

Progress on the study of shape of curves has been brisk, however, the development of Rieman-
nian models of multidimensional shape is still rather incipient. Kilian et al. [11] have proposed a
model for parametric surfaces in 3D space, but the emphasis is on morphing and animating shapes
in computer graphics. Liu et al. [14, 15] developed continuous analogues of the classical landmark
model for parametric surfaces replacing Procrustes alignment in Euclidean space with alignment
based on variants of the Sobolev metric. Thus far, the main applications of the model have been
to analysis of magnetic resonance images of the human brain. The linear elasticity model of Fuchs
et al. [6] also applies to surfaces in 3D space; some examples of surface geodesics are presented in
[6].

The computational model developed in this paper employs a parametric representation of shape
over an abstract simplicial complex K. A simplicial complex is a combinatorial structure that
allows us to extend to more general topologies the familiar discretizations of curves as polygons
and surfaces as triangle meshes. Thus, built-in to the parametric representation is the assumption
that the connectivity of the meshes underlying the shapes to be compared are the same. Another
point to be explained is related to shape registration. If α, β : K → R

p are parametric shapes
in Euclidean space of dimension p, then for each vertex z of K, we think of the points α(z)
and β(z) as in correspondence. Shape models based on parametric representations may be used
in at least two different ways: (i) to quantify shape dissimilarity via the metric and also as a
shape registration tool by selecting parametrizations that minimize the shape distance; (ii) to
quantify shape dissimilarity using pre-computed parametrizations and correspondences. The latter
is of interest in many applications such as problems in neuroimaging where registration techniques
for specific anatomies that account for geometrical and/or biological features already have been
developed and the data is fundamentally discrete, with no clear underlying continuous structure,
for example, as in [20, 15]. More details on this are provided in the examples of Section 5.5. Our
computational model falls in this category, with shape registration and analysis treated as related,
but complementary problems.

We represent a parametric shape by its discrete exterior derivative because first-order represen-
tations tend to provide a good balance of robustness, computational tractability, and geometrical
accuracy. Representations and metrics beyond order zero also can be more effective in capturing
non-linear deformations such as bends, folds, regional expansions and contractions. The space of
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mappings K → R
p is equipped with a family of Riemannian metrics indexed by a parameter that

controls how much resistance an edge offers to deformation via stretching/compression relative to
directional deformations. The choice of a parameter value may be based on experimentation with
specific data, but an alternative is to consider “all” metrics. Philosophically, this viewpoint is anal-
ogous to a scale-space approach, which oftentimes encodes and reveals structure in more effective
ways.

The paper is organized as follows. In Section 2, we discuss the shape representation and examine
invariance under shape-preserving transformations. In Section 3, we define the shape metrics. The
algorithm to calculate geodesics via energy minimization is developed in Sections 4 and 5, with
numerous illustrations and applications to the computation of mean shapes. Methods to detect
and quantify regional morphological differences are discussed in Section 6. We thank Ying Wang
for helping with the illustrations.

2 Shape Spaces

An abstract finite simplicial complex K is a classical abstraction of a more geometric notion of
simplicial complex, which includes familiar objects such as polygonal representations of curves,
triangle meshes that represent surfaces, and their higher dimensional analogues that are built out
of vertices, edges, triangles, and higher simplexes, according to well established assembly rules.
Formally, K is a finite collection of finite nonempty sets with the property that if A is in K, so
is every nonempty subset of A. Intuitively, a vertex corresponds to an element of K containing a
single point, an edge to an element of K containing 2 points, and a triangle to an element with
3 points. In general, an element A of K with k + 1 points is referred to as a k-simplex, and any
nonempty subset of A is called a face of A. The requirement that every nonempty subset of a
simplex A also be in K simply means that all faces of A should be in K. This also implies that the
intersection of any two simplexes of K is either empty or a common face. The reader may consult
[21] for more details. The vertex set of K is the union of all elements of K with a single point. We
write the vertex set as V = {z1, . . . , zr}. It follows that any k-simplex is of the form {zi0 , . . . , zik},
with zij ∈ V . We often orient an edge {zi, zj} of K either as eij = (zi, zj) or eji = (zj , zi).

A parametric shape (modeled on K) in p-dimensional Euclidean space R
p is a mapping α : V →

R
p defined on the vertex set. Although α is only defined on V , if {zi0 , . . . , zik} is a k-simplex of K,

we think of the convex hull of {α(zi0), . . . , α(zik)} in R
p as a geometric realization of the k-simplex

under α. For example, if {zi, zj} is a 1-simplex (edge) of K, the line segment in R
p connecting

α(zi) and α(zj) is a geometric edge of α. Likewise, abstract 2-simplexes give rise to triangles in R
p.

2.1 Shape Representation

We employ a first-order representation of α : V → R
p so that the Riemannian model of shape will be

more sensitive to non-linear deformations such as bends, folds, local expansions and contractions.
This is done through the discrete exterior derivative also known as the coboundary operator in the
simplicial homology literature (cf. [21]). The usual derivative of a mapping measures its infinitesimal
variations. Since α is defined on the vertices of K, the natural discrete analogue is the variation
measured as we move from a vertex to an adjacent one. In other words, variations along the
(oriented) edges of K. Thus, the discrete derivative dα along an oriented edge e is defined as

(1) dα(e) = α(e+) − α(e−),

where e− and e+ are the initial and terminal vertices of e, respectively. If we reverse the orientation
of e, the variation of α gets multiplied by −1. Hence, it suffices to record the value of dα for one
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orientation of each edge. Therefore, we fix an orientation for each edge of K and let

(2) E = {e1, . . . , em}

be the resulting set of oriented edges. The discrete derivative may be viewed as a mapping dα : E →
R

p. We only consider mappings α such that dα(ei) 6= 0, for every ei ∈ E, and refer to them as
immersions. This just means that no edge gets crushed to a single point under α. For each i,
1 6 i 6 m, we write the modular and directional components of dα(ei) as

(3) ri = log ‖dα(ei)‖ and vi = dα(ei)/‖dα(ei)‖ ,

respectively, with the modular part expressed in logarithmic scale. Thus, the variation of α along
the (oriented) ith edge of K is given by the vector dα(ei) = erivi. Writing each vi as a row vector
vi = [vi1 . . . vip], we represent α by the pair (r, v) ∈ R

m × R
m×p, where

(4) r =



r1
...
rm


 and v =



v1
...
vm


 =



v11 . . . v1p
...

...
...

vm1 . . . vmp


 .

Since the Riemannian metrics on R
m × R

m×p to be used in the development of our shape model
differs from the standard Euclidean metric, we will use the notation L for this space to emphasize
this distinction. Thus far, the only constraints imposed on (r, v) are that the rows of v be unit
vectors, which we write as

(5) Ji(r, v) = ‖vi‖
2 = 1 ,

1 6 i 6 m. We denote by N the subspace of L formed by all pairs (r, v) satisfying these m
conditions.

2.2 Normalization of Scale

The (r, v)-representation of an immersion α is clearly invariant under translations. As discussed in
the Introduction, both scale-invariant and scale-sensitive models of shape are of interest, the choice
depending on the particular application. A simple way of normalizing scale is to fix the total edge
length, say, to be unitary. In other words, to require that (r, v) satisfy

(6) F (r, v) =

m∑

i=1

eri = 1.

Remark. We adopt normalization based on total edge length because it is simplest and it applies
to arbitrary finite simplicial complexes. However, if K represents a manifold of dimension d, an
alternative is to normalize scale by fixing the total d-volume (length if d = 1, area if d = 2, etc.)
of the shape α. This normalization is more stable with respect to refinement of K to a simplicial
complex of “higher resolution”, say, via barycentric subdivision.

2.3 Integrability

An important step in our construction is the characterization of the pairs (r, v) that arise as the
exterior derivatives of immersions. The integrability conditions will reveal the further constraints
to be imposed on (r, v). If γ is an oriented path in K formed by a sequence of oriented edges,
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let the integer ni denote the net number of times that the oriented edge ei ∈ E is traversed by γ,
where a negative sign indicates reversal of orientation. The variation of a mapping α along γ may
be expressed as

(7)

m∑

i=1

nidα(ei) =

m∑

i=1

nie
rivi .

The variation along any (oriented) cycle c in K clearly must vanish. Conversely, given (r, v) and
an oriented path γ, define the integral of (r, v) along γ to be

(8) Iγ(r, v) =

m∑

i=1

nie
rivi .

If Ic(r, v) vanishes along every cycle c, then (r, v) represents the exterior derivative of an immersion,
unique up to translations. This can be seen as follows: fix a vertex zi of K and a point xi ∈ R

p,
and define α(zi) = xi. For any vertex zj , choose a path γ from zi to zj and let α(zj) = xi + Iγ(r, v).
The vanishing condition over cycles ensures that α(zj) is independent of the path chosen.

We need a computationally tractable way of checking whether Ic(r, v) = 0, for every cycle c.
Clearly, there is a high amount of redundancy built-in to these conditions because the integral over
many cycles can be calculated as a combination of integrals over more “primitive” ones. Our next
goal is to identify such primitives. We first consider the cycles of length 3 formed by the oriented
boundaries of the 2-simplexes (triangles) of K, where the orientation of each triangle is chosen
arbitrarily. Standard cohomology theory arguments, cf. [21], show that if |K| is simply connected
(or more generally, if the first Betti number of K is zero), then it is enough to check the vanishing
of the integral over these cycles. One should note, however, that there is some redundancy even
among the integrals along the boundaries of triangles. For example, consider the simple case where
K is equivalent to a tetrahedron. If the integrals along the boundaries of 3 faces are zero, then the
integral automatically vanishes on the boundary of the fourth face. Minimal families of triangles
can be determined explicitly, but we omit further discussion of this because it is rather intuitive
for the complexes K that arise most often in computer vision and neuroimaging. Several examples
are given below.

Besides a minimal set of boundaries of triangles, we need to consider β1 additional cycles,
γ1, . . . , γβ1

, where β1 is the first Betti number of K [21]. These cycles should be chosen to wrap
around all “essential 1-dimensional holes” of K. (More precisely, they should represent a basis
of the first simplicial homology group of K with real coefficients.) The integrability of (r, v) is
equivalent to the vanishing of the integral along the boundaries of a minimal set of triangles and a
collection of β1 essential cycles.

Examples.

(i) If the topology underlying K is that of a line segment, there are no triangles and β1 = 0. As
expected, in this case, there are no integrability conditions to be enforced because any (r, v)
can be integrated to an arc.

(ii) If K has the topology a circle, then there are no triangles and β1 = 1. Thus, we need a single
cycle γ, the simplest choice being a cycle that goes once around the circle. In this case, the
shape model of this paper coincides with the model of elastic strings studied in [17].

(iii) If K has the topology of a closed orientable surface of genus g and K has T triangles, then
we must consider the boundaries of (T − 1) triangles and 2g additional cycles because the
first Betti number is β1 = 2g. Figure 2(a) shows two essential cycles of a surface of genus 1.
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(iv) If K represents an orientable surface of genus g with h > 0 holes punctured, then all triangles
are needed and β1 = 2g + h − 1. Figure 2(b) shows an essential cycle on a surface of genus
zero with two holes punctured.

(v) To construct the “robocat” of Figure 2(c), we first punctured two holes on a surface of genus
zero and then glued the two feet creating a non-manifold point. This produces an additional
essential cycle in the leg area.

(a) (b) (c)

Figure 2: Examples of minimal sets of essential cycles for different topologies.

Let F = {T1, . . . , Tn} be a minimal set of triangles ofK needed to guarantee the vanishing of the
integral along the boundaries of all 2-simplexes. Fix an orientation for each Tℓ, 1 6 ℓ 6 n, so that F
becomes an oriented-face set. For each Tℓ ∈ F , let ǫ(ℓ, i) be the number of times that the oriented
edge ei ∈ E appears on the oriented boundary of Tℓ. Most coefficients vanish, except for three,
which correspond to the edges eℓ1 , eℓ2 , eℓ3 that form the boundary of Tℓ. Clearly, ε(ℓ, ℓi) = ±1,
1 6 i 6 3. We make the convention that ℓ1 < ℓ2 < ℓ3. With this notation, the integrability
condition associated with Tℓ may be expressed as

(9) I∂Tℓ
(r, v) =

m∑

i=1

ε(ℓ, i)erivi = 0 .

For each 1 6 ℓ 6 n, we rewrite this vector equation as a set of p scalar conditions

(10) Gℓ,j(r, v) =

m∑

i=1

ε(ℓ, i)erivij = 0 ,

1 6 j 6 p, obtaining pn independent integrability conditions that (r, v) should satisfy. Likewise,
fixing a family of essential cycles γ1, . . . , γβ1

, let ζ(k, i) be the net number of times that ei ∈ E is
traversed by γk. We obtain an additional set of pβ1 independent integrability conditions

(11) Hk,j(r, v) =
m∑

i=1

ζ(k, i)erivij = 0 ,

1 6 k 6 β1, 1 6 j 6 p. In conclusion, (r, v) represents the exterior derivative of an immersion α if
and only if it satisfies the p(n+ β1) integrability conditions described in (10) and (11).

2.4 Pre-shape and Shape Spaces

We refer to pairs (r, v) ∈ N satisfying conditions (6), (10) and (11) as pre-shapes and denote by P
the space of all pre-shapes. A pre-shape gives a representation of immersions that is invariant to
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scale and translations. For a scale-sensitive variant, we simply drop condition (6) in the definition
of pre-shapes. Thus, we have a nested sequence

(12) P ⊂ N ⊂ L

of spaces, where P is the space of primary interest. The others will be useful at various stages of
our computation of geodesics.

In some applications, we may want to consider mappings that differ by a rotation, or a more
general orthogonal transformation, as representing the same shape. In such cases, we consider the
action of the group O(p) of p × p orthogonal matrices on pairs (r, v). If U ∈ O(p) and α is an
immersion, the result of applying the rigid transformation U to α is the composition U ◦α : V → R

p.
The induced action on (r, v) is (r, v) 7→ (r, vUT ). The action on the modular component is trivial
because edge lengths do not change under U . Pre-shapes clearly get transformed into pre-shapes
and the orbit of (r, v) is the set

(13) [r, v] = {(r, vUT ) : U ∈ O(p)} .

We define the shape space S as the orbit space of P under the action of the orthogonal group. In
other words, as the quotient space S = P/O(p).

3 Riemannian Metrics

We introduce Riemannian structures on the space L of all pairs (r, v) that will induce a family of
pre-shape and shape metrics. The basic idea underlying the model is that the edges of a shape offer
resistance to two different types of deformations, namely: (i) stretching and compression, which
correspond to changes in edge length; (ii) bending, which is associated with directional changes.
The energy needed to perform such deformations will be determined by two parameters, which we
call the tension and rigidity coefficients. The geodesic distance is related to the minimum energy
required to morph a shape into another through immersions.

Recall that a Riemannian structure on a manifold consists of a collection of inner products, one
for each tangent space, that varies smoothly over the manifold. For each (r, v) ∈ L, we define

(14)
〈
(h,w), (h̃, w̃)

〉
(r,v)

= a

m∑

i=1

hih̃ie
ri + b

m∑

i=1

(wi · w̃i)e
ri ,

where a, b > 0 are the tension and rigidity coefficients. If we think of (h,w) as an infinitesimal
deformation of (r, v), the quantity

(15) ‖(h,w)‖2
(r,v) = 〈(h,w), (h,w)〉(r,v) = a

m∑

i=1

h2
i e

ri + b
m∑

i=1

‖wi‖
2eri

may be interpreted as the energy cost of the deformation. The first and second terms of (15) account
for the stretching/compression and bending energies, respectively. Henceforth, the submanifolds
P,N ⊂ L will have the Riemannian structure induced by (14). If (r, v) and (r̄, v̄) are pre-shapes, we
let δ((r, v), (r̄ , v̄)) be the geodesic distance between them on the pre-shape submanifold P . If s and
s̄ are the shapes represented by the O(p)-orbits of (r, v) and (r̄, v̄), the shape distance is defined as

(16) d(s, s̄) = inf
U,V ∈O(p)

δ((r, vV T ), (r̄, v̄UT )) = inf
U∈O(p)

δ((r, v), (r̄, v̄UT )) .
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The last equality follows from the fact that O(p) acts by isometries; that is, δ((r, v), (r̄, v̄)) =
δ((r, vUT ), (r̄, v̄UT )), for any U ∈ O(p). As already pointed out, the use of the pre-shape or shape
distance will depend on the particular application.

Much of the remaining work is devoted to the calculation of geodesics in P and the geodesic
distance δ. The minimization over O(p) appearing in (16) is a relatively simpler calculation. We
briefly indicate how this minimization problem can be treated. We may obtain an initial estimate
of

(17) Û = argmin
U∈O(k)

δ((r, v), (r̄, v̄UT )) ,

say, by minimizing ‖(r, v) − (r̄, v̄UT )‖2
(r,v). This is the same as minimizing

∑m
i=1 ‖vi − v̄iU

T ‖2eri ,

which is equivalent to maximizing
∑m

i=1(e
ri/2vi) ·(v̄iU

T ). This problem is analogous to the one that
arises in Procrustes alignment of shapes [9] and admits a closed form solution. Once this initial
estimate is obtained, a gradient search over the orthogonal group O(p) can be used to locally refine
the estimation. As in [17], the O(p)-gradient can be calculated numerically via finite differences in
the Lie algebra of O(p), which is formed by the p× p antisymmetric matrices.

4 Energy Minimization

We adopt an energy minimization approach to the estimation of minimal length geodesics in pre-
shape space. Although this interpretation of geodesics is classical, the algorithmic aspects of the
calculation pose numerous problems, both in terms of efficiency and robustness. We describe a
computational strategy in the setting of more general Riemannian manifolds, not only pre-shape
manifolds. This is done not just for the sake of generality, but because the method becomes more
transparent. The proposed strategy is an extension of the energy minimization techniques used in
the special case of shape of curves in [17].

Let M be a Riemannian manifold with each tangent space TpM , p ∈ M , equipped with the

inner product 〈 , 〉p. The associated norm is denoted ‖v‖p = 〈v, v〉1/2
p , for v ∈ TpM . Given a path

γ : I → M defined over the interval I = [0, 1], our goal is to develop an algorithm to deform γ to
a geodesic maintaing the endpoints γ(0) = p and γ(1) = q fixed throughout the deformation. The
energy of γ is defined as

(18) E(γ) =

∫ 1

0
〈∂tγ(t), ∂tγ(t)〉γ(t) dt =

∫ 1

0
‖∂tγ(t)‖

2
γ(t) dt .

We are interested in paths of minimal energy as they correspond to minimal length geodesics [2].

4.1 Path Variation

An infinitesimal deformation of a path γ : I →M can be described by a vector field x(t) ∈ Tγ(t)M ,
t ∈ I, along γ. We calculate the gradient of E with respect to the metric structure given by the
following inner product of vector fields:

(19) 〈x, y〉γ = 〈x(0), y(0)〉γ(0) +

∫ 1

0
〈Dtx(t),Dty(t)〉γ(t) dt ,

where Dt denotes covariant differentiation in M along γ (cf. [2]). Covariant differentiation is dif-
ferentiation of vector fields from a viewpoint intrinsic to the Riemannian manifold M . As we are
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interested in geodesics with prescribed endpoints, our goal is to minimize the energy on the sub-
space of paths satisfying the boundary conditions γ(0) = p and γ(1) = q. The use of (19) leads to a
computationally robust expression for the gradient of E and also let us easily enforce the boundary
conditions, as further explained below. In pattern analysis, this type of metric in path space has
been used in the construction of elastica [19], the evolution of Sobolev active contours [26], and the
study of shape of curves [7, 17].

4.2 The Unconstrained Gradient

Given a path γ, we first calculate the unconstrained gradient of E at γ, that is, without enforcing
the boundary conditions. Consider a variation γ(t;µ) of γ along a direction x(t), where µ ∈ (−ǫ, ǫ)
is the variation parameter. This means that γ(t; 0) = γ(t) and

(20) x(t) =
∂

∂µ
γ(t;µ)

∣∣
µ=0

.

Differentiating (18) at µ = 0, the directional derivative of E at γ in the direction xmay be expressed
as

(21) dEγ(x) = 2

∫ 1

0
〈Dtx(t), (∂tγ(t)〉γ(t) dt .

To rewrite this expression in terms of the inner product (19), let F be a vector field along γ such
that DtF (t) = 2∂tγ(t) and F (0) = 0. In other words, a covariant integral of the field f(t) = 2∂tγ(t)
that vanishes at t = 0. Then, (21) becomes dEγ(x) = 〈x, F 〉γ , which means that the gradient of E
at γ is

(22) ∇E(γ) = F .

Numerically, the fact that ∇E(γ) is obtained via integration (not differentiation) of the tangent
field ∂tγ is one of the key advantages of using the proposed metric structure on the space of paths.
This leads to a more stable calculation and robust algorithm as integration may be viewed as a
smoothing operation.

4.3 The Boundary Conditions

To calculate the constrained gradient ∇∗E(γ), we need to understand which vector fields along γ
represent variations of the curve that are orthogonal to those that respect the boundary conditions.
Then, ∇∗E(γ) can be calculated from ∇E(γ) by subtracting the component orthogonal to the
subspace of variations that are compatible with the boundary conditions.

Clearly, vector fields that represent variations that keep the endpoints of γ fixed are those that
vanish at t = 0 and t = 1. A simple (covariant) integration-by-parts argument, which is presented
in Appendix B for completeness, shows that the vector fields that are orthogonal to those that
vanish at the endpoints are precisely the covariantly linear fields. In other words, the smooth fields
with trivial second covariant derivative along γ.

By construction, the field F = ∇E(γ) is zero at t = 0. Thus, to obtain ∇∗E(γ), we just need
to subtract from F the covariantly linear field that vanishes at t = 0 and coincides with F at t = 1.
To construct such a field, again, we use covariant integration, this time applied to the reverse of
γ. First, construct a parallel field by integrating the everywhere zero field with initial condition
F (1) along the reverse of the path γ. (Parallel fields are those with zero covariant derivative so
the construction of parallel fields is a special case of covariant integration.) Reversing the path
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again, after integration, we obtain a parallel field G along γ whose value at t = 1 is F (1). The field
t 7→ tG(t), t ∈ I, is covariantly linear with the desired properties implying that

(23) ∇∗E(γ) = ∇E(γ) − tG .

4.4 Algorithm

The arguments of Sections 4.2 and 4.3 show that, in practice, it is possible to calculate ∇∗E(γ)
provided that we can perform covariant integration of vector fields, as this is needed for: (i) the
calculation of ∇E(γ); (ii) the construction of the parallel field used for the orthogonal projection
of ∇E(γ) onto ∇∗E(γ). To implement gradient descent, we also need an ǫ-update rule for paths
in M along directions prescribed by a vector field. These issues will be discussed in detail below
for the pre-shape space P . For a general Riemannian manifold M for which these ingredients are
available, we obtain the following algorithm to deform a path γ : I →M to a geodesic.

Let ǫ, δ > 0 be (small) real numbers:

(i) Integrate the field f(t) = 2∂tγ(t) covariantly along the path γ with zero initial condition.
The integral field F gives the gradient ∇E(γ).

(ii) Construct a parallel field G along γ that coincides with F (1) ∈ Tγ(1)M at t = 1. By (23),
∇∗E(γ) = ∇E(γ) − tG.

(iii) ǫ-update the path γ in the direction of the vector field −∇∗E(γ) to obtain a path γnew.

(iv) Iterate the process until ‖γnew − γ‖γ < δ, where ‖ · ‖γ denotes the norm associated with the
inner product defined in (19).

5 Pre-Shape Geodesics

The calculation of covariant integrals in the pre-shape manifold P can become costly as the com-
plexity of the reference simplicial complex K increases. This happens in many important instances,
for example, high resolution meshes often used in medical imaging and computer vision. To be more
specific, if a path γ in P is discretized by subdividing it into T parts and the number of indepen-
dent constraints that characterize pre-shapes is c, then each covariant integration along γ requires
setting up and solving T linear systems with coefficient matrices of size c × c. Even though the
matrices of these systems are symmetric and sparse, this could limit the applicability of the algo-
rithm of Section 4.4 in a significant way. The number c of independent constraints that characterize
pre-shapes was discussed in Section 2.1 and is typically large. For example, for surface meshes, c
is of the order of the number of vertices of K. To overcome this obstacle, we propose a variant
of the algorithm that replaces gradient descent for the energy of paths in P with its counterpart
for paths in N followed by a projection of the path onto P . Recall that, in the space N , we only
require that each row of v be a unit vector (see (5)). Since we will use first-order integration of the
differential equations that govern covariant integration, to justify this approach, we would need the
two operations to be interchangeable to first order. However, the cost of computing a projection
map with this property is comparable to the cost of covariant integration in P , so we employ a
greedy strategy by relaxing the condition on the projection map. In the special case of curves in
the plane or 3D space, where both procedures can be implemented efficiently, in previous work we
experimented with both approaches obtaining nearly identical results [17]. Experimentation with
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low resolution surface meshes also leads to much the same results. For high-resolution or multi-
dimensional shapes, however, the computational gains are substantial. We begin the “greedy”
calculation of pre-shape geodesics with a description of the projection map.

5.1 Projection Map

We introduce a projection that maps a pair (r, v) ∈ N near P onto P . For the present purposes, it
suffices to consider pairs (r, v) in the vicinity of P because we will start with a path γ in P , perturb it
infinitesimally in N , and project it back onto P . In (6), (10) and (11), we introduced the constraint
functions F , Gℓ,j, and Hk,j, 1 6 j 6 p, 1 6 ℓ 6 n, 1 6 k 6 bK , that define pre-shapes. Clearly, the
residual functions ρ(r, v) = 1−F (r, v), ρℓ,j(r, v) = −Gℓ,j(r, v), and σk,j(r, v) = −Hk,j(r, v) have the
property that their simultaneous vanishing is equivalent to (r, v) being a pre-shape. Given (r, v)
near P , we use Newton’s method to find a nearby zero of

(24) J(r, v) =
1

2
ρ2(r, v) +

1

2

∑

ℓ,j

ρ2
ℓ,j(r, v) +

1

2

∑

k,j

σ2
k,j(r, v)

and project (r, v) to the pre-shape represented by that zero.
A calculation shows that if we do not impose the condition that each row of v must be a unit

vector, then the negative (unconstrained) gradient of J is

(25) −∇J(r, v) = ρ(r, v)∇F (r, v) +
∑

ℓ,j

ρℓ,j(r, v)∇Gℓ,j(r, v) +
∑

k,j

σk,j(r, v)∇Hk,j(r, v) .

Explicit formulae for ∇F (r, v), ∇Gℓ,j, and ∇Hk,j(r, v) are given in Appendix A.
We write the modular and directional parts of the (negative) gradient as −∇J(r, v) = (h,w∗).

To enforce the constraint ‖vi‖
2 = 1, we need to make w∗

i tangential to the unit sphere in R
p at

vi. For this, we replace w∗ with w, where the ith row of w is wi = w∗
i − (w∗

i · vi)vi. Letting
ǫ(r, v) = J(r, v)/‖(h,w)‖2

(r,v) , we update (r, v) as follows:

(26)

{
r = r + ǫh ,

vi = cos(ǫ‖wi‖)vi + sin(ǫ‖wi‖)
wi

‖wi‖
, if wi 6= 0 ,

and vi stays unchanged, otherwise. This spherical update of vi ensures that vi remains a unit
vector. We iterate the process until J(r, v) becomes small.

5.2 Covariant Integration

A path γ in N will be denoted γ(t) = (r(t), v(t)). Similarly, we separate the modular and directional
components of a vector field along γ and write it as (f(t), x(t)). In Appendix B, we show that
covariant integrals of (f(t), x(t)) are vector fields (F (t),X(t)) along γ that satisfy the system of
differential equations

(27)

{
∂tFi(t) = fi(t) −

1
2 [∂tri(t)]Fi(t) + 1

2
b
a [Xi(t) · ∂tvi(t)]

∂tXi(t) = xi(t) −
1
2 [Xi(t)∂tri(t) + Fi(t)∂tvi(t)] − [Xi(t) · ∂tvi(t)] vi(t) ,

for 1 6 i 6 p. Given (f(t), x(t)) along γ and the initial condition (F (0),X(0)) = (F0,X0), we use
Euler’s method to estimate the covariant integral field (F (t),X(t)). Note that parallel transport,
which is needed in the computation of geodesics, corresponds to the special case of covariant
integration with (f(t), x(t)) everywhere zero.
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5.3 Pre-Shape Geodesic Algorithm

We now modify the algorithm of Section 4.4 to estimate a geodesic between given pre-shapes (r, v)
and (r∗, v∗). To initialize the process, let α,α∗ be immersions of K into R

p represented by (r, v)
and (r∗, v∗), respectively. We linearly interpolate α and α∗ to obtain a 1-parameter family of
mappings αt : K → R

p. If necessary, we gently deform αt to make dαt(e) 6= 0 for every oriented
edge e and 0 < t < 1. After normalizing scale (if considering the scale-invariant model), the path
γ(t) = (r(t), v(t)) obtained from the log-polar representation of dαt is a path in pre-shape space
and can be used to initialize the search.

Let ǫ, δ > 0 be (small) real numbers:

(i) Initialize the search with a path γ(t) = (r(t), v(t)) in pre-shape space constructed, for example,
as described above.

(ii) Let (f(t), x(t)) = 2(∂tr(t), ∂tv(t)). Using (27), integrate this field covariantly along the path
γ with zero initial condition. The integral field (F (t),X(t)) gives the gradient ∇E(γ) of the
energy as a functional on paths in N .

(iii) Using (27), construct a parallel field (G(t), Y (t)) along γ that agrees with (F (1),X(1)) at
t = 1. By (23), the constrained gradient of E is ∇∗E(γ) = (F (t),X(t)) − (tG(t), tY (t)).

(iv) Write the modular and the directional components of ∇E(γ) as (h(t), w(t)), 0 6 t 6 1.
Update γ(t) = (r(t), v(t)) as a path in N according to





r̃(t) = r(t) − ǫh(t);

ṽi(t) = vi(t) , if wi(t) = 0;

ṽi(t) = cos(ǫ‖wi(t)‖)vi(t) − sin(ǫ‖wi(t)‖)
wi(t)

‖wi(t)‖
, otherwise.

Note that the update of vi(t) takes place along great circles of the unit sphere in R
k ensuring

that each ṽi(t) is a unit vector.

(v) Project each (r̃(t), ṽ(t)) onto the pre-shape space P to obtain a path (rnew(t), vnew(t)) in P .

(vi) Iterate the process until ‖(rnew(t), vnew(t)) − (r(t), v(t))‖γ < δ, where ‖ · ‖γ denotes the norm
associated with (19).

5.4 Discretization

We are employing a discrete representation of pre-shapes derived from the exterior derivative of
a mapping α : V → R

p. Thus, the only parameter that remains to be discretized is the “time”
parameter of a path γ(t) = (r(t), v(t)). This is done in a standard way by sampling the unit
interval I = [0, 1] uniformly at points 0 = t0 < t1 < . . . < tk = 1. To simplify notation, we
write the various points γ(tj) on the discrete path as γ(j) = (r(j), v(j)). The partial derivatives
∂tγ(j) = (∂tr(j), ∂tv(j)) needed in the calculation of geodesics are computed via finite differences
and defined for 0 6 j 6 k − 1.

The covariant integral of a discrete vector field (f(j), x(j)) along γ, 0 6 j 6 k − 1, with
prescribed initial condition (F0,X0) is calculated by integrating (27) with Euler’s method. The
integral field (F (j),X(j)) is defined for 0 6 j 6 k. All other steps in the algorithms only involve
fixed values of t so they are identical in the discrete version.
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5.5 Examples of Geodesics

Figure 3 shows two examples of shape geodesics calculated with coefficients a = b = 0.5. In both
cases, we started with a single spherical shape, punctured two holes, and for the “robocat” we
also attached the two feet at a point to make the topology more complex. Then, we “manually”
deformed the shape to obtain a second shape with the same underlying mesh structure. These
are shown as the first and last frames of each row. In each case, the reference complex K is the
abstract simplicial complex underlying the shapes, so that they admit a natural parametrization
over K. The topology of the modified robocat has two (classes of) essential cycles and the shark
only one, as shown in Figure 2.

Figure 4 shows a shape geodesic between cortical surfaces and a geodesic interpolating hip-
pocampal surfaces. The surface meshes were extracted from magnetic resonance images and cor-
respondences calculated with the direct mapping techniques of [23, 24]. In each case, one of the
surfaces was re-meshed by transferring the mesh structure of the other surface via the correspon-
dence so that they both have the same underlying simplicial structure. The mesh representing the
cortices have 122,880 edges and the hippocampal meshes have 30,720 edges. The geodesics were
calculated with parameter values a = 0.3, b = 0.7 for the cortices and a = 0.15, b = 0.85 for the
hippocampal surfaces.

Figure 3: Two shape geodesics calculated with a = b = 0.5 with a model sensitive to scale.

Figure 4: Scale-invariant geodesic interpolations of cortical surfaces with a = 0.3 and b = 0.7 and
hippocampal surfaces with a = 0.15 and b = 0.85.
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5.6 Mean Shape

To further illustrate the methods of this paper, we apply the shape model to the construction of
anatomical atlases of the cortex and hippocampus as sample mean shapes. We begin with a brief
review of the definition of sample Fréchet mean shape and a gradient descent strategy to compute
the mean of samples on Riemannian manifolds. Let s1, . . . , sn be parametric shapes represented by
the pairs (ri, vi), 1 6 i 6 n. For a shape s represented by (r, v), the total spread of the data with
respect to s is

(28) V (s) =
n∑

i=1

d2((r, v), (ri, vi)) .

A shape that minimizes V is called a sample Fréchet mean shape. Karcher showed that if (hi, wi)
represents the initial velocity of the geodesic that starts at (r, v) and reaches (ri, vi) in unit time,
then the gradient of V at (r, v) is

∑
(ri, vi) [8]. Thus, our algorithm to compute geodesics allows

us to estimate mean shapes via gradient descent. This approach has been used to calculate mean
shape in numerous different contexts, for example, [3, 25, 15]. We also should mention that the
method of [5] for estimating median shapes readily adapts to this context, as well.

Figure 5 shows the mean shape of 7 cortical surfaces of the left hemisphere extracted from
magnetic resonance images. One of the shapes was chosen as a reference and the remaining six
were registered with the method of [23]. As in the computation of geodesics discussed above, the
six surfaces were re-meshed via the correspondence, so that all shapes have the same underlying
spherical mesh structure with 122,880 edges. The mean was calculated with a = b = 0.5. Figure 6

Figure 5: The mean of 7 cortical surfaces of the left hemisphere calculated with a = b = 0.5. The
mean shape is highlighted on the last panel.

shows a hippocampal atlas computed in a similar manner as the mean shape of 50 samples, using
meshes with 30,720 edges. For registration of the hippocampal surfaces, we used the algorithm of
[24].

Figure 6: The last panel highlights the mean of 50 right hippocampal surfaces calculated with
a = b = 0.5. The other panels display 9 samples from the group of 50 shapes.
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6 Energy Profile and Energy Density

A (parametric) geodesic γ(t) = (r(t), v(t)), 0 6 t 6 1, has parallel velocity field. In particular, it is
traversed with constant speed ω, where ω is the length of γ. Thus, the energy of γ is

(29) E(γ) =

∫ 1

0
‖∂tγ(t)‖

2
γ(t) dt = ω2 .

On the other hand, we may write the energy as

(30) E(γ) =
m∑

i=1

∫ 1

0

(
a|∂tri(t)|

2eri(t) + b‖∂tvi(t)‖
2eri(t)

)
dt ,

which expresses E(γ) as a sum of the contributions of the individual edges. Thus, the energy profile
function (EPF) defined as

(31) ψ(ei) =

∫ 1

0

(
a|∂tri(t)|

2eri(t) + b‖∂tvi(t)‖
2eri(t)

)
dt

quantifies the contribution of each edge to the total geodesic deformation energy. Similarly, we
define the energy density function (EDF) by

(32) ρ(ei) =
1

ω2

∫ 1

0

(
a|∂tri(t)|

2eri(t) + b‖∂tvi(t)‖
2eri(t)

)
dt ,

which measures the fraction of the total deformation energy associated with the ith edge. Although
geodesic distance is a global quantifier of shape difference, the EPF and EDF provide a means to
measure local shape differences and identify the regions where shape similarity and divergence are
most pronounced. Despite the fact that, for a single shape geodesic, the EPF and EDF just differ
by a multiplicative constant, there is a qualitative difference between them. To explain this point,
suppose the EPF of a geodesic indicates that the main deformations of a shape are localized to a
region R. If this trend is present in the early stages of the deformation, although the difference
between the EPFs of the full geodesic and the geodesic that describe the initial deformation can
be significant, the EDFs will bear much higher similarity and better capture the early trends of a
deformation that takes place primarily over the region R. This characteristic of the EDF might
become useful, for example, in applications such as uncovering morphological signatures that can
help in early detection of tissue loss characteristic of neurodegenerative diseases. The EPF, in turn,
is likely to be more useful in applications where it is important to quantify regional morphological
changes in more absolute terms, for example, to compare observations of a population of shapes.
One may further decompose the local energy into its tension and rigidity components to separately
quantify the local shape differences due to stretching and bending. One may also modify ψ and ρ
to a function defined on the vertex set by letting the value on a vertex be the average value of ρ
on the edges incident with that vertex.

As a first illustration, Figure 7 displays the initial shapes of the geodesics in Figure 3 overlaid
with intensity maps of the respective energy profile functions. The plots are consistent with the
main localized differences observed in the data used in the calculation of the geodesics of Figure 3.
The main visible differences in the robocats are the position of the arms and length of the legs and
these are the areas where the EPF has highest intensity. A more localized difference in the nose
area that is not so apparent to the naked eye is also captured but the EPF. Similarly, the EPF
for the shark is strongest near the head and tail because in one the shapes these regions are bent
downward and bent upward on the other.
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Figure 7: Plots of the energy density functions for the geodesics in Figure 3.

Now, we use energy profile functions to quantify regional shape variation observed in the 50
hippocampal surfaces of Section 5.6. For each of the 50 samples, we calculated the EPF associated
with the geodesic from the group atlas (mean shape) to the sample. These energy profile functions
may be viewed as functions defined on the surface of the atlas. This functional data can be
analyzed with standard techniques such as principal component analysis. Figure 8 shows the first
three principal modes of variation plotted over the atlas, which allow us to visualize the regions
where shape variation about the mean is most pronounced as measured by the model.

Figure 8: Plots of the 3 dominant principal components of the energy profile functions.

7 Summary and Discussion

We developed a computational model of multidimensional shape, within the framework of Rieman-
nian geometry, using a parametric representation of shape over a finite simplicial complex. We
constructed a shape space equipped with a 1-parameter family of geodesic metrics derived from
Riemannian structures that decouple the energy cost of an infinitesimal deformation of an edge of
a mesh by changes in magnitude and direction. The parameter in the model controls how much
change in direction is penalized relative to change in magnitude. The choice of parameter value in
the model can be based on experimentation with specific data, but we also suggested the possibility
of working with a summary of “all” parameter values, as this may help to elucidate and reveal finer
aspects of shape differences. We proposed the use of energy profile and energy density functions of
a geodesic as tools to identify regions where shape difference and similarity are most salient, and
developed algorithms to calculate geodesic paths, geodesic distances, and the associated energy
profile and density functions.

We illustrated the applicability of the methods with the calculation of geodesics between contour
surfaces of multiple objects, as well as between pairs of cortical and hippocampal surfaces repre-
sented by high resolution meshes segmented from magnetic resonance images of the brain. Geodesic
distances, geodesic interpolations, and models of shape variation developed in shape space enable
us to quantify and visualize anatomical resemblance and divergence between individuals and across
populations. We applied the methods developed to the construction of a cortical atlas, as well as
an atlas of the right hippocampus as sample Fréchet mean shapes.

The characterization and quantification of global and regional morphological differences are
important problems in many contexts, for example, in the study of anatomical changes in brain
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structures due to neurodegenerative diseases. In forthcoming work, the methodology developed will
be applied to large comparative studies of morphological changes in the brain associated with normal
aging and progression of neurodegenerative disease, as well as other problems in neuroimaging.

The model of this paper employs a parametric representation of shape over a finite simplicial
complex. However, the method also applies to other combinatorial structures such as parametriza-
tions over cubical meshes. Such discrete representations may be more natural, for example, in the
study of shape of solids in 3D space such as the entire volume of the hippocampus.
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A Pre-Shape Constraints

Differentiating (6), (10) and (11), one can show that the gradients with respect to the inner product
(19) of the functions F , Gℓ,j, and Hk,j that define pre-shapes are as follows:
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(i) The modular component of ∇F (r, v) is the constant vector [1/a . . . 1/a]T and the directional
component is the zero matrix.

(ii) The modular part of ∇Gℓ,j(r, v) is 1
a

[
ε(ℓ, 1)v1,j . . . ε(ℓ,m)vm,j

]T
and the jth column of

the directional component is 1
b

[
ε(ℓ, 1) . . . ε(ℓ,m)

]T
. The other columns of the directional

component are zero. These two vectors may have nonzero entries only in rows ℓ1, ℓ2 and ℓ3.

(iii) The modular part of ∇Hk,j(r, v) is 1
a

[
ζ(k, 1)v1,j . . . ζ(k,m)vm,j

]T
and the jth column of

the directional component is 1
b

[
ζ(k, 1) . . . ζ(k,m)

]T
. The other columns of the directional

component are zero.

B Covariant Integration

For (z, y) = (z, y1, . . . , yp) ∈ R × R
p, we use the subscript 0 to identify the z-coordinate and the

subscript j, 1 6 j 6 p, for the coordinate yj. Given a, b > 0, define a Riemannian metric on
R × R

p whose metric tensor at (z, y) is g00(z, y) = aez, gjj(z, y) = bez, and 0, otherwise. Then,
the Riemannian structure on L, defined in Section 3, is isometric to the Cartesian product of these
(p + 1)-dimensional models over 1 6 i 6 m. Thus, to derive the differential equation that governs
covariant integration along a path in N , it suffices to derive the corresponding differential equation
for covariant integration in R × S

p−1 with respect to the induced metric. The Christoffel symbols
of the Levi-Civita connection on R × R

p are Γ0
00 = Γj

0j = Γj
j0 = 1/2, Γ0

jj = −b/2a, 1 6 j 6 p, and

zero otherwise. Therefore (cf. [2]), the covariant derivative of a vector field (F t,Xt) along a path
(zt, yt) in R × R

k is given by

(33)

{
DtF (t) = ∂tF (t) + 1

2(∂tz(t))F (t) − 1
2

b
a [X(t) · ∂ty(t)]

DtX(t) = ∂tX(t) + 1
2 (X(t)∂tz(t) + F (t)∂ty(t)) .

If (z(t), y(t)) is a path in R×S
p−1, then fields that are tangential to R×S

p−1 are those that satisfy
the additional orthogonality condition F (t) ·y(t) = 0. Thus, if (f(t), x(t)) and (F (t),X(t)) are both
tangential to R × S

p−1, the fact that the covariant derivative of (F (t),X(t)) in the submanifold
R × S

p−1 is (f(t), x(t)) may be rephrased as DtF (t) = f(t) and DtX(t) = x(t) + τ(t)y(t), where
τ(t) is a scalar field to be determined. Substituting in (33), we obtain

(34)

{
∂tF (t) = f(t) − 1

2∂tz(t)F (t) + 1
2

b
a [X(t) · ∂ty(t)]

∂tX(t) = x(t) − 1
2 (X(t)∂tz(t) + F (t)∂ty(t)) + τ(t)y(t) .

Differentiating X(t) · y(t) = 0, we get ∂tX(t) · y(t) = −X(t) · ∂ty(t). From (34), it follows that
τ(t) = −X(t) ·∂ty(t), where we used the facts that X(t) ·y(t) = 0 and ∂ty(t) ·y(t) = 0. Substituting
this value of τ(t) in (34), we obtain (27).

20


