TRANSVERSALITY IN GENERALIZED MANIFOLDS

J. L. BRYANT AND W. MIO

ABSTRACT. Suppose that X is a generalized n-manifold, $n \geq 5$, satisfying the disjoint disks property, and M and Q are topological m- and q-manifolds, respectively, 1-LCC embedded in X, with $n-m \geq 3$ and $n-q \geq 3$. We define what it means for M to be stably transverse to Q in X. In the metastable range, $3m \leq 2(n-1)$ and 3(m+q) < 4(n-1), we show that there is an arbitrarily small homotopy of M to a 1-LCC embedding that is stably transverse to Q.

1. Introduction

In this paper we introduce a notion of transversality for submanifolds of a generalized n-manifold. One of the major difficulties in arriving at suitable criteria for transversality is that a (generalized) submanifold M of a generalized manifold Xmay not have a stable euclidean normal (micro) bundle neighborhood in X. This situation occurs, for example, when M is a topological manifold, which has Quinn index [22] $\iota(M) = 1$, and X is a generalized manifold with $\iota(X) \neq 1$. Examples of generalized manifolds X with $\iota(X) \neq 1$ were constructed in [4]. An embryonic form of transversality was established in [5] for codimension three topological submanifolds M and Q of a generalized manifold X having complementary dimensions in X. Specifically, it was shown that if $m \le q \le n-3$, $m+q=n \ge 6$, and M and Q are orientable topological manifolds of dimensions m and q, respectively, tamely embedded in an orientable generalized n-manifold X with the disjoint disks property, then there is an arbitrarily small homotopy of M to a tame embedding $f: M \to X$ such that $f(M) \cap Q$ is a finite set and the intersection number of $f(M) \cap Q$ at each point of intersection is ± 1 . Assuming the metastable codimension restriction 3m < 2(n-1), 3(m+q) < 4(n-1), we find a small homotopy of M to a tame embedding $f: M \to X$ such that f(M) and Q are stably transverse, in an sense to be described. In fact, we need only assume that Q is a generalized q-manifold with the disjoint disks property. In particular, $f(M) \cap Q$ will be a tame topological submanifold of f(M) and Q of the expected dimension, m+q-n. The proof makes use of the transversality theorems of Kirby-Siebenmann [15] and Marin [16], the Main Construction of [5], and a splitting theorem of [7]. Map transversality, which can be obtained from submanifold transversality, has been studied by Johnston [14] in the special case where the homology submanifold has a bundle neighborhood.

2. Definitions

A generalized n-manifold (n-gm) without boundary is a locally compact euclidean neighborhood retract (ENR) X such that for each $x \in X$,

¹⁹⁹¹ Mathematics Subject Classification. Primary: 57N35; Secondary: 57P99.

 $Key\ words\ and\ phrases.$ generalized manifolds, embeddings, transversality.

Partially supported by NSF grant DMS-9626624.

$$H_k(X, X \setminus \{x\}; \mathbb{Z}) \cong \begin{cases} \mathbb{Z}, & \text{if } k = n, \\ 0, & \text{otherwise.} \end{cases}$$

Following Mitchell [19] we say that an ENR X is an n-gm with boundary if the condition $H_n(X, X \setminus \{x\}; \mathbb{Z}) \cong \mathbb{Z}$ is replaced by $H_n(X, X \setminus \{x\}; \mathbb{Z}) \cong \mathbb{Z}$ or 0, and if $\mathrm{bd}X = \{x \in X : H_n(X, X \setminus \{x\}; \mathbb{Z}) \cong 0\}$ is an (n-1)-gm embedded in X as a Z-set. (In [19] Mitchell shows that $\mathrm{bd}X$ is a homology (n-1)-manifold.) Recall that Y is a Z-set in X if, for each open set U in X, the inclusion $U \setminus Y \to U$ is a homotopy equivalence. A n-gm X, $n \geq 5$, has the disjoint disks property (DDP) if every pair of maps of the 2-cell B^2 into X can be approximated arbitrarily closely by maps that have disjoint images. A subset A of X is 1-LCC in X if for each $x \in A$ and neighborhood U of x in X, there is a neighborhood V of x in X lying in U such that the inclusion induced homomorphism $\pi_1(V \setminus A) \to \pi_1(U \setminus A)$ is trivial. An ENR A in X of codimension at least three will be called tame in X if it is 1-LCC in X.

Given an n-gm X, a manifold approximate fibration with fiber F(MAF) over X is an approximate fibration $p: N \to X$, where N is a topological manifold and the homotopy fiber of p is homotopy equivalent to F. (Equivalently, each $p^{-1}(x)$ has the shape of the space F.) (See [8], [13].) If Q is a (topological or generalized) manifold in X and $p: N \to X$ is a MAF, then p is said to be $split\ over\ Q$ if $p|p^{-1}(Q): p^{-1}(Q) \to Q$ is also a MAF.

Suppose that M_p is the mapping cylinder of a $MAF\ p: N \to X$ with fiber a sphere and mapping cylinder projection $\pi: M_p \to X$. If M_p is a topological manifold, then we will call $\pi: M_p \to X$ (or, sometimes, just M_p) a manifold stabilization of X. As the following proposition shows, this last condition is almost always satisfied.

Proposition 2.1. Suppose that N is a topological n-manifold, X is a generalized manifold, and M_p is the mapping cylinder of a MAF $p: N \to X$ with fiber a k-sphere and mapping cylinder projection $\pi: M_p \to X$. If $n \geq 5$, then M_p is a topological manifold. If, in addition, $k \geq 2$, then X is 1-LCC embedded in M_p .

Proof. That M_p is a homology manifold follows easily from results of Gottlieb [11] and Quinn [20]. Since M_p has manifold points, M_p has a resolution [22], and, hence, by a theorem of Edwards (see [9]), it suffices to observe that M_p has the DDP. We consider three cases.

Case 1. $k \geq 2$. In this case it enough to show that X is 1-LCC in M_p , since we can then use ordinary general position in $M_p \setminus X$. Suppose then that $f : B^2 \to M_p$ and T is a fine triangulation of B^2 . By Alexander duality, X is 0-LCC in M_p ; hence, we may assume that, if $T^{(1)}$ denotes the 1-skeleton of T, then $f(T^{(1)}) \cap X = \emptyset$. Let Δ be a 2-simplex of T with boundary Σ , such that $f(\Delta) \cap X \neq \emptyset$. By a small homotopy of $f|\Sigma$ in $M_p \setminus X$, we can assume that $f(\Sigma)$ lies in some t-level N_t of the mapping cylinder near X. Since $\pi|\Sigma$ is null-homotopic in X, we can use the approximate lifting property of p to assume that $f(\Sigma)$ lies near a fiber of p (in N_t). Since the fibers have the shape of S^k , $k \geq 2$, we can homotope $f|\Sigma$ to a constant in a neighborhood of a fiber in N_t . Thus there is a small homotopy of $f|\Delta$ to a map of Δ into $M_p \setminus X$.

Case 2. k=1. Since X is 0-LCC in M_p , we can begin as in Case 1. Given $f: B^2 \to M_p$, we can assume that $f(T^{(1)}) \cap X = \emptyset$, where T is a fine triangulation of B^2 . If $f(\Delta) \cap X \neq \emptyset$, for some 2-simplex Δ of T with boundary Σ , then we

may assume that $f(\Sigma)$ lies near a fiber of p in some t-level N_t of M_p , as above. Thus, there is a small homotopy of $f|\Delta$ to $f':\Delta\to M_p$ such that $f'(\Delta)\cap X$ is a single point. This process gives a small homotopy of f to $f':B^2\to M_p$ such that $f'(B^2)\cap X$ is a finite set. Given another mapping $g\colon B^2\to X$, we can get a small homotopy of g to g' such that $g(B^2)\cap X$ is a finite set disjoint from $f'(B^2)\cap X$. We can then use general position in $M_p\smallsetminus X$ to get $f'(B^2)$ and $g'(B^2)$ disjoint. Case 3. k=0. In this case X locally separates M_p , and the approximate lifting property of p implies that X is 1-LCC in M_p . If $f\colon B^2\to M_p$, and T is a fine triangulation of B^2 , then it is easy to get a small homotopy of f to f' such that $\dim f'(B^2)\cap X\leq 1$. Since $\dim X\geq 4$, $f'(B^2)\cap X$ is 0-LCC in X. Thus, if $g\colon B^2\to M_p$ is another mapping, then there is a small homotopy of g to g' such that $g'(B^2)\cap (f'(B^2)\cap X)=\emptyset$. We can then use general position in $M_p\smallsetminus X$ to get $f'(B^2)$ and $g'(B^2)$ disjoint as before.

Suppose $M,Q\subseteq N$ are topological manifolds without boundary of dimensions m,q, and n, respectively. Let p=m+q-n. Then M and Q are locally transverse if, for each $x\in M\cap Q$, there is a neighborhood W of x in N, with $W\cap M=U$ and $W\cap Q=V$, such that

$$(W, U, V, U \cap V) \cong (\mathbb{R}^n, \mathbb{R}^{m-p} \times \mathbb{R}^p \times 0, 0 \times \mathbb{R}^p \times \mathbb{R}^{q-p}, 0 \times \mathbb{R}^p \times 0).$$

This implies, in particular, that $P=M\cap Q$ is a p-dimensional submanifold of both M and Q. If M (or Q) has boundary, and $x\in \mathrm{bd}M$ (or $x\in \mathrm{bd}Q$), then local transversality at x can be described by replacing \mathbb{R}^m by $\mathbb{R}^{m-1}\times\mathbb{R}_+$, (or \mathbb{R}^q by $\mathbb{R}_+\times\mathbb{R}^{q-1}$), and \mathbb{R}^p by the appropriate intersection. Following [15], we say that M is stably microbundle transverse to Q in N if M and Q are locally transverse and, for some integer $s\geq 0$, there exists a normal microbundle ξ to $Q\times 0$ in $N\times\mathbb{R}^s$ so that $M\times\mathbb{R}^s$ is embedded microbundle transverse to ξ in $N\times\mathbb{R}^s$. That is, $M\cap Q$ has a normal microbundle ν in M each of whose fibers lies in a fiber of ξ . Marin shows that this relation is symmetric [16] and, with help from Scharlemann [23] when p=4, that local transversality implies stable microbundle transversality, provided $n-m\leq 3$ and $n-q\leq 3$. With these ideas in mind, we make the following definition.

Definition 2.2. Given a topological manifold M and generalized manifold Q in a generalized manifold X, Q is stably locally transverse to M if there is a manifold stabilization $\pi: M_p \to X$ of X, split over Q, such that $\pi^{-1}(Q)$ and M are locally transverse in M_p .

3. Transversality in the Metastable Range

Theorem 3.1. Suppose that X is an n-gm with the DDP, $n \geq 5$, M is a topological m-manifold embedded in X (with or without boundary), and Q is either a topological q-manifold or a q-gm with the DDP if $q \geq 5$, 1-LCC embedded in X, such that $n-q \geq 3$, $3m \leq 2(n-1)$, and 3(m+q) < 4(n-1). Then for every $\epsilon > 0$ there is an ϵ -homotopy of the inclusion of M in X to a 1-LCC embedding $f: M \to X$ such that Q is stably locally transverse to f(M) in X.

The following corollary is a consequence of Theorem 3.1 and Corollary 1.3 of [5].

Corollary 3.2. Suppose that M and Q are topological m- and q-manifolds, respectively, in an n-gm X, $n \geq 5$, with the DDP, such that $3m \leq 2(n-1)$, $3q \leq 2(n-1)$, 3(m+q) < 4n-4. Then there are arbitrarily small homotopies of the inclusions

to 1-LCC embeddings $f: M \to X$ and $g: Q \to X$ such that f(M) is stably locally transverse to g(Q) in X.

The proof of Theorem 3.1 ultimately depends upon a transversality theorems of Kirby-Siebenmann [15] and Marin [16]. One of the main ingredients of the proof is the following splitting theorem proved in [7].

Theorem 3.3 ([7]). Suppose that X is an n-gm without boundary, $n \geq 5$, and $Q \subseteq X$ is an q-gm (with or without boundary), $n-q \geq 3$, 1-LCC in X. Assume Q is a topological manifold if $q \leq 4$. Then there is a manifold stabilization $\pi: M_p \to X$ of X of dimension $\geq n+3$ that is split over Q.

The manifold stabilization X of Theorem 3.3 is obtained in [7] by first taking a mapping cylinder neighborhood $M_{p'}$ of X is some euclidean space [18],[25], where $p': N \to X$ is a MAF with homotopy fiber a sphere, and then homotoping p' to a MAF $p: N \to X$ such that $p^{-1}(M)$ is a topological manifold. A similar argument can be found in [6], wherein X is a topological manifold.

Another important ingredient is the Main Construction of [5]. It can be summarized in the following theorem.

Theorem 3.4 ([5]). Suppose that M is a topological m-manifold and X is an n-gm with the DDP, $n \geq 5$, $3m \leq 2(n-1)$. Then for every $\epsilon > 0$ there is a $\delta > 0$ such that if $f: M \to X$ is a $(\delta, 2m - n + 1)$ -connected map, then f is ϵ -homotopic to a 1-LCC embedding. Moreover, the homotopy is supported in a neighborhood of a 1-LCC subset of X of dimension $\leq 2m - n + 2$.

A map $f: M \to X$ is (δ, k) -connected if the pair (M_f, X) is (δ, i) -connected for $0 \le i \le k$. If M, in 3.3 or 3.4, is not compact, then f should be a proper map and ϵ and δ should be interpreted as positive, continuous functions on M. The "moreover" part of Theorem 3.4 has the following consequence, which will be important for us here.

Addendum. If P is a (closed) ANR in M, with dimP < m, such that $f|f^{-1}f(P)$ is a 1-LCC embedding, then we can arrange to have the homotopy f_t , $t \in [0, 1]$, of f to an embedding satisfy $f_t|P = f|P$ and $f_t^{-1}f_t(P) = P$ for all $t \in [0, 1]$.

Proof of Theorem 3.1. Suppose that X, M, and Q are given as in the hypothesis of Theorem 3.1. By Theorem 3.3, there is a manifold stabilization $\pi \colon M_p \to X$ of X of dimension n+k, with $k \geq 3$, that is split over Q. Let $W = \pi^{-1}(Q)$. Choose k large enough so that, by 2.1, W is a topological (q+k)-manifold. Since Q is 1-LCC in X, W is 1-LCC in M_p , hence, locally flat [3]. Thus, by [15], [16], and [23], there is an arbitrarily small ambient isotopy of the inclusion of M in M_p to a locally flat embedding $h \colon M \to M_p$ such that h(M) and W are locally transverse. Let $P = h(M) \cap W$. Then P is a manifold of dimension p = m + q - n, locally flatly embedded in h(M) and in W. The next step is to push h(M) down into X, sending P into Q and h(M) - P into X - Q, to a 1-LCC embedding close to M. Observe that $\pi|h(M)$ has all but the last of these properties.

The first step is to observe that the inequalities $3m \leq 2(n-1)$, 3(m+q) < 4(n-1) imply $2p+1 \leq q$. General position then implies that $\pi|P:P\to Q$ can be approximated by a 1-LCC embedding. (If Q is a manifold, this is immediate. If Q is a q-gm with the DDP, then the general position results of [2] and [24] may be applied.) Since $k \geq 3$, there is a small ambient isotopy of W taking P to this

embedding [1], which can be extended to M_p by [12]. After composing with π , we get a map $h' \colon (M, M \smallsetminus h^{-1}(P)) \to (X, X \smallsetminus Q)$ such that h' approximates the inclusion of M into X and h'|P is a 1-LCC embedding into Q. Finally, as long as $\pi \circ h'$ is a sufficiently close approximation to the inclusion of M in X, it will have the desired connectivity properties to apply Theorem 3.4. Thus we can get a small homotopy of h' rel P to a 1-LCC embedding in X. According to Theorem 3.4, this homotopy is supported on a 1-LCC set of dimension 2m-n+2, and our dimension restrictions imply that (2m-n+2)+q < n. By the general position results of [2] and [24], we can assume that these supports can be made to miss Q. Thus, the homotopy of h' to a 1-LCC embedding can be constructed so as not to introduce any new intersections of M with Q as guaranteed by the Addendum to Theorem 3.4. This final adjustment provides the map $f: M \to X$ promised in the theorem.

References

- R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31(1964), 491-511.
- [2] J. Bryant, General position theorems for generalized manifolds, Proc. Amer. Math. Soc. 98 (1986), 667-670.
- [3] J. Bryant and C. Seebeck, Locally nice embeddings in codimension three, Quart. J. of Math. Oxford 21 (1970), 265-272.
- [4] J. Bryant, S. Ferry, W. Mio, and S. Weinberger, Topology of homology manifolds, Ann. of Math.(2) 143 (1996), 435-467.
- [5] J. Bryant and W. Mio, Embeddings in generalized manifolds, preprint.
- [6] _____, Embeddings of homology manifolds in codimensions ≥ 3 , preprint.
- [7] J. Bryant and P. Kirby, Splitting approximate fibrations over generalized manifolds, in preparation.
- [8] D. Coram and P. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7(1977), 275-288.
- [9] R. J. Daverman, Decompositions of Manifolds, Academic Press, Orlando, FL, 1986.
- [10] M. Freedman and F. Quinn, Topology of 4-Manifolds, Princeton University Press, Princeton, NJ, 1990.
- [11] D. H. Gottlieb, Poincaré duality and fibrations, Proc. A. M. S. 76 (1979), 148-149.
- [12] J. F. P. Hudson and E. C. Zeeman, On combinatorial isotopy, Publ. I. H. E. S. (Paris) 19 (1964), 69-94.
- [13] C. B. Hughes, L. R. Taylor, and E. B. Williams, Bundle theories for topological manifolds, Trans. Amer. Math. Soc. 319 (1990), 1-65.
- [14] H. Johnston, Transversality for homology manifolds, preprint.
- [15] R. Kirby and L. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Princeton University Press, Princeton, N. J., 1977.
- [16] A. Marin, La transversalité topologique, Ann. of Math. (2) 106(1977), 269-293.
- [17] R. Miller, Close isotopies on piecewise-linear manifolds, Trans. Amer. Math. Soc. 151(1970), 597-628.
- [18] R. Miller, Mapping cylinder neighborhoods of some ANR's, Ann. of Math. (2) 103(1976), 417-427.
- [19] W.J.R. Mitchell, Defining the boundary of a homology manifold, Proc. Amer. Math. Soc. 110(1990), no. 2, 509-513.
- [20] F. Quinn, Ends of maps I, Ann. of Math. 110(1979), 275-331.
- [21] _____, The topological characterization of manifolds, Invent. Math. 72 (1983), 267-284.
- [22] _____, An obstruction to the resolution of homology manifolds, Mich. Math. J. 34 (1987), 285-292.
- [23] M. Scharlemann, Transversality theories at dimension 4, Inventiones Math. 33(1976), 1-14.
- [24] J. Walsh, General position properties of generalized manifolds: a primer, Proc. Idaho State Topology Conf., 1985.

[25] J. E. West, Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk, Ann. of Math. 106 (1977), 1-18.

Department of Mathematics, Florida State University, Tallahassee, FL 32306 $E\text{-}mail\ address$, J. L. Bryant: bryant@math.fsu.edu $E\text{-}mail\ address$, W. Mio: mio@math.fsu.edu