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Abstract. Suppose that X is a generalized n-manifold, n � 5, satisfying the

disjoint disks property, and M and Q are topologicalm- and q-manifolds, re-

spectively, 1-LCC embedded in X, with n�m � 3 and n� q � 3. We de�ne

what it means for M to be stably transverse to Q in X. In the metastable

range, 3m � 2(n� 1) and 3(m+ q) < 4(n� 1), we show that there is an arbi-

trarily small homotopy of M to a 1-LCC embedding that is stably transverse

to Q.

1. Introduction

In this paper we introduce a notion of transversality for submanifolds of a gen-
eralized n-manifold. One of the major di�culties in arriving at suitable criteria for
transversality is that a (generalized) submanifold M of a generalized manifold X
may not have a stable euclidean normal (micro)bundle neighborhood in X. This
situation occurs, for example, when M is a topological manifold, which has Quinn
index [22] �(M ) = 1, and X is a generalized manifold with �(X) 6= 1. Examples of
generalized manifoldsX with �(X) 6= 1 were constructed in [4]. An embryonic form
of transversality was established in [5] for codimension three topological submani-
foldsM and Q of a generalized manifoldX having complementary dimensions inX.
Speci�cally, it was shown that if m � q � n� 3, m+ q = n � 6, and M and Q are
orientable topological manifolds of dimensions m and q, respectively, tamely em-
bedded in an orientable generalized n-manifold X with the disjoint disks property,
then there is an arbitrarily small homotopy ofM to a tame embedding f : M ! X

such that f(M ) \ Q is a �nite set and the intersection number of f(M ) \ Q at
each point of intersection is �1. Assuming the metastable codimension restriction
3m � 2(n � 1), 3(m + q) < 4(n � 1), we �nd a small homotopy of M to a tame
embedding f : M ! X such that f(M ) and Q are stably transverse, in an sense to
be described. In fact, we need only assume that Q is a generalized q-manifold with
the disjoint disks property. In particular, f(M )\Q will be a tame topological sub-
manifold of f(M ) and Q of the expected dimension,m+q�n. The proof makes use
of the transversality theorems of Kirby-Siebenmann [15] and Marin [16], the Main
Construction of [5], and a splitting theorem of [7]. Map transversality, which can
be obtained from submanifold transversality, has beeen studied by Johnston [14] in
the special case where the homology submanifold has a bundle neighborhood .

2. Definitions

A generalized n-manifold (n-gm) without boundary is a locally compact euclidean
neighborhood retract (ENR) X such that for each x 2 X,
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Hk(X;X r fxg;Z)�=

(
Z; if k = n,

0; otherwise.

Following Mitchell [19] we say that an ENR X is an n-gm with boundary if the
condition Hn(X;X r fxg;Z)�=Zis replaced by Hn(X;X r fxg;Z)�=Zor 0, and
if bdX = fx 2 X : Hn(X;X r fxg;Z) �= 0g is an (n � 1)-gm embedded in X as a
Z-set. (In [19] Mitchell shows that bdX is a homology (n � 1)-manifold.) Recall
that Y is a Z-set in X if, for each open set U in X, the inclusion U r Y ! U is a
homotopy equivalence. A n-gm X, n � 5, has the disjoint disks property (DDP ) if
every pair of maps of the 2-cell B2 into X can be approximated arbitrarily closely
by maps that have disjoint images. A subset A of X is 1-LCC in X if for each
x 2 A and neighborhood U of x in X, there is a neighborhood V of x in X lying
in U such that the inclusion induced homomorphism �1(V r A) ! �1(U r A) is
trivial. An ENR A in X of codimension at least three will be called tame in X if
it is 1-LCC in X.

Given an n-gm X, a manifold approximate �bration with �ber F (MAF ) over X
is an approximate �bration p : N ! X, where N is a topological manifold and the
homotopy �ber of p is homotopy equivalent to F . (Equivalently, each p�1(x) has
the shape of the space F .) (See [8], [13].) If Q is a (topological or generalized)
manifold in X and p : N ! X is a MAF , then p is said to be split over Q if
pjp�1(Q) : p�1(Q)! Q is also a MAF .

Suppose thatMp is the mapping cylinder of aMAF p : N ! X with �ber a sphere
and mapping cylinder projection � : Mp ! X. IfMp is a topological manifold, then
we will call � : Mp ! X (or, sometimes, just Mp) a manifold stabilization of X. As
the following proposition shows, this last condition is almost always satis�ed.

Proposition 2.1. Suppose that N is a topological n-manifold, X is a generalized

manifold, and Mp is the mapping cylinder of a MAF p : N ! X with �ber a k-

sphere and mapping cylinder projection � : Mp ! X. If n � 5, then Mp is a

topological manifold. If, in addition, k � 2, then X is 1-LCC embedded in Mp.

Proof. That Mp is a homology manifold follows easily from results of Gottlieb [11]
and Quinn [20]. SinceMp has manifold points,Mp has a resolution [22], and, hence,
by a theorem of Edwards (see [9]), it su�ces to observe that Mp has the DDP . We
consider three cases.
Case 1. k � 2. In this case it enough to show that X is 1-LCC inMp, since we can
then use ordinary general position inMprX. Suppose then that f : B2 !Mp and
T is a �ne triangulation of B2. By Alexander duality, X is 0-LCC in Mp; hence,

we may assume that, if T (1) denotes the 1-skeleton of T , then f(T (1)) \ X = �.
Let � be a 2-simplex of T with boundary �, such that f(�) \X 6= �. By a small
homotopy of f j� in Mp r X, we can assume that f(�) lies in some t-level Nt of
the mapping cylinder near X. Since �j� is null-homotopic in X, we can use the
approximate lifting property of p to assume that f(�) lies near a �ber of p (in Nt).
Since the �bers have the shape of Sk, k � 2, we can homotope f j� to a constant in
a neighborhood of a �ber in Nt. Thus there is a small homotopy of f j� to a map
of � into Mp rX.
Case 2. k = 1. Since X is 0-LCC in Mp, we can begin as in Case 1. Given

f : B2 !Mp, we can assume that f(T (1))\X = �, where T is a �ne triangulation
of B2. If f(�) \ X 6= �, for some 2-simplex � of T with boundary �, then we
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may assume that f(�) lies near a �ber of p in some t-level Nt of Mp, as above.
Thus, there is a small homotopy of f j� to f 0 : � ! Mp such that f 0(�) \X is a
single point. This process gives a small homotopy of f to f 0 : B2 !Mp such that
f 0(B2) \X is a �nite set. Given another mapping g : B2 ! X, we can get a small
homotopy of g to g0 such that g(B2) \X is a �nite set disjoint from f 0(B2) \X.
We can then use general position in Mp rX to get f 0(B2) and g0(B2) disjoint.
Case 3. k = 0. In this case X locally separates Mp, and the approximate lifting
property of p implies that X is 1-LCC in Mp. If f : B2 ! Mp, and T is a �ne
triangulation of B2, then it is easy to get a small homotopy of f to f 0 such that
dimf 0(B2) \ X � 1. Since dimX � 4, f 0(B2) \ X is 0-LCC in X. Thus, if
g : B2 ! Mp is another mapping, then there is a small homotopy of g to g0 such
that g0(B2) \ (f 0(B2) \X) = �. We can then use general position in Mp r X to
get f 0(B2) and g0(B2) disjoint as before.

Suppose M;Q � N are topological manifolds without boundary of dimensions
m, q, and n, respectively. Let p = m+ q�n. Then M and Q are locally transverse

if, for each x 2 M \ Q, there is a neighborhood W of x in N , with W \M = U

and W \Q = V , such that

(W;U; V; U \ V ) �= (Rn;Rm�p�Rp� 0; 0�Rp�Rq�p; 0�Rp� 0):

This implies, in particular, that P =M \Q is a p-dimensional submanifold of both
M and Q. If M (or Q) has boundary, and x 2 bdM (or x 2 bdQ), then local
transversality at x can be described by replacing Rm by Rm�1 � R+, (or R

q by
R+�R

q�1), and Rp by the appropriate intersection. Following [15], we say thatM
is stably microbundle transverse to Q in N if M and Q are locally transverse and,
for some integer s � 0, there exists a normal microbundle � to Q � 0 in N � Rs

so that M � Rs is embedded microbundle transverse to � in N � Rs. That is,
M \Q has a normal microbundle � in M each of whose �bers lies in a �ber of �.
Marin shows that this relation is symmetric [16] and, with help from Scharlemann
[23] when p = 4, that local transversality implies stable microbundle transversality,
provided n�m � 3 and n�q � 3. With these ideas in mind, we make the following
de�nition.

De�nition 2.2. Given a topological manifoldM and generalized manifold Q in a
generalized manifold X, Q is stably locally transverse to M if there is a manifold
stabilization � : Mp ! X of X, split over Q, such that ��1(Q) and M are locally
transverse in Mp.

3. Transversality in the Metastable Range

Theorem 3.1. Suppose that X is an n-gm with the DDP , n � 5,M is a topological

m-manifold embedded in X (with or without boundary), and Q is either a topological

q-manifold or a q-gm with the DDP if q � 5, 1-LCC embedded in X, such that

n� q � 3, 3m � 2(n� 1), and 3(m+ q) < 4(n� 1). Then for every � > 0 there is

an �-homotopy of the inclusion of M in X to a 1-LCC embedding f : M ! X such

that Q is stably locally transverse to f(M ) in X.

The following corollary is a consequence of Theorem 3.1 and Corollary 1.3 of [5].

Corollary 3.2. Suppose that M and Q are topological m- and q-manifolds, respec-

tively, in an n-gm X, n � 5, with the DDP , such that 3m � 2(n�1), 3q � 2(n�1),
3(m + q) < 4n � 4. Then there are arbitrarily small homotopies of the inclusions
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to 1-LCC embeddings f : M ! X and g : Q ! X such that f(M ) is stably locally

transverse to g(Q) in X.

The proof of Theorem 3.1 ultimately depends upon a transversality theorems of
Kirby-Siebenmann [15] and Marin [16]. One of the main ingredients of the proof is
the following splitting theorem proved in [7].

Theorem 3.3 ([7]). Suppose that X is an n-gm without boundary, n � 5, and

Q � X is an q-gm (with or without boundary), n� q � 3, 1-LCC in X. Assume Q

is a topological manifold if q � 4. Then there is a manifold stabilization � : Mp ! X

of X of dimension � n+ 3 that is split over Q.

The manifold stabilization X of Theorem 3.3 is obtained in [7] by �rst taking a
mapping cylinder neighborhood Mp0 of X is some euclidean space [18],[25], where
p0 : N ! X is a MAF with homotopy �ber a sphere, and then homotoping p0 to a
MAF p : N ! X such that p�1(M ) is a topological manifold. A similar argument
can be found in [6], wherein X is a topological manifold.

Another important ingredient is the Main Construction of [5]. It can be sum-
marized in the following theorem.

Theorem 3.4 ([5]). Suppose that M is a topological m-manifold and X is an n-gm

with the DDP , n � 5, 3m � 2(n� 1). Then for every � > 0 there is a � > 0 such

that if f : M ! X is a (�,2m � n + 1)-connected map, then f is �-homotopic to

a 1-LCC embedding. Moreover, the homotopy is supported in a neighborhood of a

1-LCC subset of X of dimension � 2m � n+ 2.

A map f : M ! X is (�; k)-connected if the pair (Mf ; X) is (�; i)-connected
for 0 � i � k. If M , in 3.3 or 3.4, is not compact, then f should be a proper
map and � and � should be interpreted as positive, continuous functions on M .
The \moreover" part of Theorem 3.4 has the following consequence, which will be
important for us here.

Addendum. If P is a (closed) ANR in M , with dimP < m, such that f jf�1f(P )
is a 1-LCC embedding, then we can arrange to have the homotopy ft, t 2 [0; 1], of

f to an embedding satisfy ftjP = f jP and f�1t ft(P ) = P for all t 2 [0; 1].

Proof of Theorem 3.1. Suppose that X, M , and Q are given as in the hypothesis
of Theorem 3.1. By Theorem 3.3, there is a manifold stabilization � : Mp ! X of
X of dimension n+ k, with k � 3, that is split over Q. Let W = ��1(Q). Choose
k large enough so that, by 2.1, W is a topological (q + k)-manifold. Since Q is
1-LCC in X, W is 1-LCC in Mp, hence, locally 
at [3]. Thus, by [15], [16], and
[23], there is an arbitrarily small ambient isotopy of the inclusion of M in Mp to a
locally 
at embedding h : M ! Mp such that h(M ) and W are locally transverse.
Let P = h(M ) \W . Then P is a manifold of dimension p = m + q � n, locally

atly embedded in h(M ) and in W . The next step is to push h(M ) down into X,
sending P into Q and h(M ) � P into X � Q, to a 1-LCC embedding close to M .
Observe that �jh(M ) has all but the last of these properties.

The �rst step is to observe that the inequalities 3m � 2(n � 1), 3(m + q) <
4(n � 1) imply 2p + 1 � q. General position then implies that �jP : P ! Q can
be approximated by a 1-LCC embedding. (If Q is a manifold, this is immediate.
If Q is a q-gm with the DDP , then the general position results of [2] and [24] may
be applied.) Since k � 3, there is a small ambient isotopy of W taking P to this
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embedding [1], which can be extended to Mp by [12]. After composing with �,
we get a map h0 : (M;M r h�1(P )) ! (X;X r Q) such that h0 approximates the
inclusion of M into X and h0jP is a 1-LCC embedding into Q. Finally, as long as
� � h0 is a su�ciently close approximation to the inclusion of M in X, it will have
the desired connectivity properties to apply Theorem 3.4. Thus we can get a small
homotopy of h0 rel P to a 1-LCC embedding in X. According to Theorem 3.4,
this homotopy is supported on a 1-LCC set of dimension 2m � n + 2, and our
dimension restrictions imply that (2m � n + 2) + q < n. By the general position
results of [2] and [24], we can assume that these supports can be made to miss Q.
Thus, the homotopy of h0 to a 1-LCC embedding can be constructed so as not to
introduce any new intersections of M with Q as guaranteed by the Addendum to
Theorem 3.4. This �nal adjustment provides the map f : M ! X promised in the
theorem.
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