TRANSVERSALITY IN GENERALIZED MANIFOLDS

J. L. BRYANT AND W. MIO

ABSTRACT. Suppose that X is a generalized n-manifold, n > 5, satisfying the
disjoint disks property, and M and @ are topological m- and ¢g-manifolds, re-
spectively, 1-LCC' embedded in X, with n —m > 3 and n — ¢ > 3. We define
what it means for M to be stably transverse to @ in X. In the metastable
range, 3m < 2(n— 1) and 3(m + ¢) < 4(n — 1), we show that there is an arbi-
trarily small homotopy of M to a 1-LCC embedding that is stably transverse
to Q.

1. INTRODUCTION

In this paper we introduce a notion of transversality for submanifolds of a gen-
eralized n-manifold. One of the major difficulties in arriving at suitable criteria for
transversality is that a (generalized) submanifold M of a generalized manifold X
may not have a stable euclidean normal (micro)bundle neighborhood in X. This
situation occurs, for example, when M is a topological manifold, which has Quinn
index [22] «(M) = 1, and X is a generalized manifold with «(X) # 1. Examples of
generalized manifolds X with ¢«(X) # 1 were constructed in [4]. An embryonic form
of transversality was established in [5] for codimension three topological submani-
folds M and @ of a generalized manifold X having complementary dimensions in X.
Specifically, it was shown that if m < ¢ <n—3, m+¢=n>6, and M and @ are
orientable topological manifolds of dimensions m and ¢, respectively, tamely em-
bedded in an orientable generalized n-manifold X with the disjoint disks property,
then there 1s an arbitrarily small homotopy of M to a tame embedding f: M — X
such that f(M) N Q is a finite set and the intersection number of f(M) N Q at
each point of intersection is £1. Assuming the metastable codimension restriction
3m < 2(n—1), 3(m+q) < 4(n — 1), we find a small homotopy of M to a tame
embedding f: M — X such that f(M) and @ are stably transverse, in an sense to
be described. In fact, we need only assume that @) is a generalized g-manifold with
the disjoint disks property. In particular, f(M)N@Q will be a tame topological sub-
manifold of f(M) and @ of the expected dimension, m+¢—n. The proof makes use
of the transversality theorems of Kirby-Siebenmann [15] and Marin [16], the Main
Construction of [5], and a splitting theorem of [7]. Map transversality, which can
be obtained from submanifold transversality, has beeen studied by Johnston [14] in
the special case where the homology submanifold has a bundle neighborhood .

2. DEFINITIONS

A generalized n-manifold (n-gm) without boundary is a locally compact euclidean
neighborhood retract (ENR) X such that for each z € X,
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7, ifk =n,

0, otherwise.

bl

Hy(X, X ~ {2}, Z)= {

Following Mitchell [19] we say that an ENR X is an n-gm with boundary if the
condition H,(X, X ~{z};Z) = Z is replaced by Hp(X, X ~ {2};Z) = Z or 0, and
ifbdX ={r € X: Hy(X, X ~{2};Z)= 0} is an (n — 1)-gm embedded in X as a
Z-set. (In [19] Mitchell shows that bdX is a homology (n — 1)-manifold.) Recall
that Y is a Z-set in X if, for each open set U in X, the inclusion U \Y — U is a
homotopy equivalence. A n-gm X, n > 5, has the disjoint disks property (DDP) if
every pair of maps of the 2-cell B? into X can be approximated arbitrarily closely
by maps that have disjoint images. A subset A of X i1s 1-LCC in X if for each
z € A and neighborhood U of  in X, there is a neighborhood V of z in X lying
in U such that the inclusion induced homomorphism 71(V ~ A) — 7 (U ~ A) is
trivial. An ENR A in X of codimension at least three will be called tame in X if
it1s 1-LCC n X.

Given an n-gm X, a manifold approzimate fibration with fiber F (MAF) over X
is an approximate fibration p: N — X, where N is a topological manifold and the
homotopy fiber of p is homotopy equivalent to F'. (Equivalently, each p~1(z) has
the shape of the space F.) (See [8], [13].) If @ is a (topological or generalized)
manifold in X and p: N — X 1is a MAF, then p is said to be split over @) if
plpHQ): p~HQ) — Q is also a MAF.

Suppose that M, is the mapping cylinder of a MAF p: N — X with fiber a sphere
and mapping cylinder projection m: M, — X. If M, is a topological manifold, then
we will call #: M, — X (or, sometimes, just M,) a manifold stabilization of X. As
the following proposition shows, this last condition is almost always satisfied.

Proposition 2.1. Suppose that N is a topological n-manifold, X s a generalized
mamifold, and M, 1s the mapping cylinder of a MAF p: N — X with fiber a k-
sphere and mapping cylinder projection m: M, — X. Ifn > 5, then M, is a
topological manifold. If, in addition, k > 2, then X s 1-LCC embedded in M.

Proof. That M, is a homology manifold follows easily from results of Gottlieb [11]
and Quinn [20]. Since M, has manifold points, M, has a resolution [22], and, hence,
by a theorem of Edwards (see [9]), it suffices to observe that M, has the DDP. We
consider three cases.

Case 1. k > 2. In this case it enough to show that X is 1-LCC' in My, since we can
then use ordinary general position in M, \ X. Suppose then that f: B> — M, and
T is a fine triangulation of B%. By Alexander duality, X is 0-LCC in M,; hence,
we may assume that, if 71 denotes the 1-skeleton of 7', then f(T(l)) NnNX =0.
Let A be a 2-simplex of 7" with boundary X, such that f(A)N X # @. By a small
homotopy of f|X in M, ~ X, we can assume that f(X) lies in some ¢-level N; of
the mapping cylinder near X. Since 7|X is null-homotopic in X, we can use the
approximate lifting property of p to assume that f(X) lies near a fiber of p (in Ny).
Since the fibers have the shape of S* k> 2, we can homotope f|X to a constant in
a neighborhood of a fiber in N;. Thus there is a small homotopy of f|A to a map
of A into M, \ X.

Case 2. k = 1. Since X is 0-LCC' in M,, we can begin as in Case 1. Given
[: B? — M,, we can assume that ATW)YNX = @, where T is a fine triangulation
of B2 If f(A)N X # @, for some 2-simplex A of T" with boundary ¥, then we
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may assume that f(X) lies near a fiber of p in some t-level N; of M,, as above.
Thus, there is a small homotopy of f|A to f': A — M, such that f(A)NX isa
single point. This process gives a small homotopy of f to f': B*> — M, such that
F/(B?)N X is a finite set. Given another mapping ¢g: B> — X, we can get a small
homotopy of ¢ to ¢’ such that g(B?)N X is a finite set disjoint from f/(B?)N X.
We can then use general position in M, \ X to get f/(B?) and ¢'(B?) disjoint.

Case 3. k = 0. In this case X locally separates M,, and the approximate lifting
property of p implies that X is 1-LCC in M,. If f: B> — M,, and T is a fine
triangulation of B?, then it is easy to get a small homotopy of f to f’ such that
dimf'(B*) N X < 1. Since dimX > 4, f/(B?) N X is 0-LCC in X. Thus, if
g: B> — M, is another mapping, then there is a small homotopy of g to ¢’ such
that ¢'(B?) N (f/(B*)N X) = @. We can then use general position in M, ~ X to
get f'(B?) and ¢'(B?) disjoint as before. O

Suppose M, C N are topological manifolds without boundary of dimensions
m, ¢, and n, respectively. Let p = m+¢—n. Then M and @) are locally transverse
if, for each @ € M N @, there is a neighborhood W of z in N, with WNM =U
and W NQ =V, such that

(W, U,V,UNV)= (R R™P xR x 0,0 x RF x RI7P 0 x R? x 0).

This implies, in particular, that P = M NQ is a p-dimensional submanifold of both
M and Q. If M (or @) has boundary, and # € bdM (or # € bd@®), then local
transversality at z can be described by replacing R™ by R™~1 x R, (or R? by
R, x RI=H) and RP by the appropriate intersection. Following [15], we say that M
is stably microbundle transverse to @) in N if M and () are locally transverse and,
for some integer s > 0, there exists a normal microbundle £ to @ x 0 in N x R?
so that M x R® is embedded microbundle transverse to & in N x R*. That is,
M N @ has a normal microbundle v in M each of whose fibers lies in a fiber of &.
Marin shows that this relation is symmetric [16] and, with help from Scharlemann
[23] when p = 4, that local transversality implies stable microbundle transversality,
provided n—m < 3 and n—q < 3. With these ideas in mind, we make the following
definition.

Definition 2.2. Given a topological manifold M and generalized manifold @) in a
generalized manifold X, @ 1s stably locally transverse to M if there is a manifold
stabilization m: M, — X of X, split over @, such that 7=(Q) and M are locally
transverse in Mp,.

3. TRANSVERSALITY IN THE METASTABLE RANGE

Theorem 3.1. Suppose that X is an n-gm with the DDP, n > 5, M 1is a topological
m-manifold embedded in X (with or without boundary), and Q is either a topological
g-manifold or a qg-gm with the DDP «f ¢ > 5, I-LCC embedded i X, such that
n—q>3 3m<2n-1), and 3(m+q) <4(n—1). Then for every ¢ > 0 there is
an e-homotopy of the inclusion of M in X to a I-LCC embedding f: M — X such
that Q is stably locally transverse to f(M) in X.

The following corollary is a consequence of Theorem 3.1 and Corollary 1.3 of [5].

Corollary 3.2. Suppose that M and Q) are topological m- and q-manifolds, respec-
tively, in an n-gm X, n > 5, with the DDP, such that 3m < 2(n—1), 3¢ < 2(n—1),
3(m+q) < 4n —4. Then there are arbitrarily small homotopies of the inclusions
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to 1-LCC embeddings f: M — X and g: Q@ — X such that f(M) is stably locally
transverse to g(@Q) in X.

The proof of Theorem 3.1 ultimately depends upon a transversality theorems of
Kirby-Siebenmann [15] and Marin [16]. One of the main ingredients of the proof is
the following splitting theorem proved in [7].

Theorem 3.3 ([7]). Suppose that X is an n-gm without boundary, n > 5, and
Q C X is an q-gm (with or without boundary), n —q >3, 1-LCC in X. Assume @
15 a topological manifold if ¢ < 4. Then there is a manafold stabilization m: M, — X
of X of dimension > n+ 3 that is split over ().

The manifold stabilization X of Theorem 3.3 is obtained in [7] by first taking a
mapping cylinder neighborhood M, of X is some euclidean space [18],[25], where
P N — X is a MAF with homotopy fiber a sphere, and then homotoping p’ to a
MAF p: N — X such that p=!(M) is a topological manifold. A similar argument
can be found in [6], wherein X is a topological manifold.

Another important ingredient is the Main Construction of [5]. Tt can be sum-
marized in the following theorem.

Theorem 3.4 ([5]). Suppose that M is a topological m-manifold and X is an n-gm
with the DDP, n > 5, 3m < 2(n —1). Then for every ¢ > 0 there is a & > 0 such
that if f: M — X is a (6,2m — n + 1)-connected map, then f is e-homotopic to
a I-LCC embedding. Moreover, the homotopy is supported in a neighborhood of a
1-LCC subset of X of dimension <2m —n+ 2.

A map f: M — X is (6, k)-connected if the pair (M;, X) is (4, {)-connected
for 0 <7< k. If M, in 3.3 or 3.4, is not compact, then f should be a proper
map and ¢ and é should be interpreted as positive, continuous functions on M.
The “moreover” part of Theorem 3.4 has the following consequence, which will be
important for us here.

Addendum. If P is a (closed) ANR in M, with dimP < m, such that f|f~1 f(P)
is a 1-LCC embedding, then we can arrange to have the homotopy fi, t € [0,1], of
f to an embedding satisfy fi|P = f|P and f; ' f;(P) =P for allt €[0,1].

Proof of Theorem 3.1. Suppose that X, M, and @) are given as in the hypothesis
of Theorem 3.1. By Theorem 3.3, there is a manifold stabilization 7: M, — X of
X of dimension n + k, with k& > 3, that is split over Q. Let W = 7=1(@Q). Choose
k large enough so that, by 2.1, W is a topological (¢ + k)-manifold. Since @ is
1-LCC in X, W is 1-LCC in M,, hence, locally flat [3]. Thus, by [15], [16], and
[23], there is an arbitrarily small ambient isotopy of the inclusion of M in M, to a
locally flat embedding h: M — M, such that h(M) and W are locally transverse.
Let P = h(M)NW. Then P is a manifold of dimension p = m + ¢ — n, locally
flatly embedded in A(M) and in W. The next step is to push A(M) down into X,
sending P into @) and A(M) — P into X — @, to a 1-LCC embedding close to M.
Observe that w|A(M) has all but the last of these properties.

The first step is to observe that the inequalities 3m < 2(n — 1), 3(m 4+ q) <
4(n — 1) imply 2p + 1 < ¢. General position then implies that 7|P: P — @ can
be approximated by a 1-LCC embedding. (If @ is a manifold, this is immediate.
If @ is a ¢-gm with the DDP| then the general position results of [2] and [24] may
be applied.) Since k > 3, there is a small ambient isotopy of W taking P to this
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embedding [1], which can be extended to M, by [12]. After composing with =,
we get a map h': (M, M ~ h™'(P)) — (X, X \ @) such that h’ approximates the
inclusion of M into X and A’|P is a 1-LCC embedding into (). Finally, as long as
7w o h' is a sufficiently close approximation to the inclusion of M in X, it will have
the desired connectivity properties to apply Theorem 3.4. Thus we can get a small
homotopy of A’ rel P to a 1-LCC' embedding in X. According to Theorem 3.4,
this homotopy is supported on a 1-LCC set of dimension 2m — n + 2, and our
dimension restrictions imply that (2m —n + 2) + ¢ < n. By the general position
results of [2] and [24], we can assume that these supports can be made to miss ).
Thus, the homotopy of 1’ to a 1-LCC embedding can be constructed so as not to
introduce any new intersections of M with ) as guaranteed by the Addendum to
Theorem 3.4. This final adjustment provides the map f: M — X promised in the
theorem.

O
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