You are now somewhat familiar with the idea that a function can be defined in terms of a
limit; for example, it would be possible to define
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We wouldn’t ordinarily want to do that. However, it can also be shown (though we won't
do so here) that the exponential function e” can be defined in terms of a limit as

e = lim (1+7)
where n is an integer, and this is something we might very well ordinarily want to do. In
fact, we want to do it now right now. So let’s—instant gratification! Then, in particular,
we have
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A table of values illustrates how (1 + 1)" approaches e as n — oo:

n [(Q+)"] n [(+3)"
1 | 200 | 10000 | 271815
10 | 2.59374 | 100000 | 2.71827
100 | 270481 | 1000000 | 2.71828
1000 | 271692 | 1000001 | 2.71828

(It’s terribly slow convergence, but it gets there in the end.)
Now, from the binomial theorem, we have
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(plus a lot more terms, in fact, n — 5 of them).

If we set a = z/n we get
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so that, on using lim 1 =0, we have
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In particular, we have
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Now there are two ways in which we can show that e” is its own derivative. We can

either proceed as follows:
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Or else we can proceed as follows, exploiting linearity*'
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Finally, the product rule:
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*And making various other assumptions whose validity we have no choice but to take for granted at

this stage in our study of the calculus



