
Suppose that �with domain �and range �is differentiable, and that �with domain �
and range �is differentiable. Then the composition �����defined by

��	
 �����	



has domain �and range �and is differentiable with
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In other words, whenever 	and 
are differentially related through an intermediate �
such that 
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, implying 
���	
with �����, then the three
derivatives ����, �
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For all practical purposes, the proof of this result—known as the chain rule—requires
us only to observe that
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and that
�	��implies

����(because�is continuous, otherwise it couldn’t be differen-
tiable). Strictly speaking, however, the existence of �� can be inferred from the existence
of �� and ��only if

����implies
�	��—which usually holds, but is not guaranteed to

hold, because it is possible to have
����when

�	���. Equivalently, the argument that
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is, strictly speaking, valid only if we can’t have ��	
��� 
when	�� .
Well, suppose that we did have ��	
��� 
for 	 �� . What would that imply?

Remember that we can make 	as close as we please to  , as long as 	is not actually
equal to  . So if there’s an 	( �� ) for which ��	
��� 
, just move a bit closer to 	.
And if there’s another 	( �� ) for which ��	
��� 
, just move a bit closer still. And
if there’s yet another 	( �� ) for which ��	
��� 
, just move even closer again. And
so on. Eventually, it must be possible to move close enough to  so that there are no
more 	( �� ) for which ��	
��� 
—unless � is constant near  . Then, because � is



continuous, we must have ��	
�constant ��� 
for all 	near  . Hence ��� 
��and
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for all 	near  , implying ��constant; hence ��� 
��.
Thus, because � ������ 

�

�
(given that �� exists), we must have
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regardless of whether �is ever constant on any subdomain.

Several successive applications of the chain rule are often necessary to calculate the
derivative of a composition, because several functions may be compounded, and some of
these functions may be joins. To illustrate: suppose that
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which is differentiable on �����'
: although the domain of �is actually (��'), for the
purposes of the chain rule we must restrict �to where it is differentiable. The range of �
is ��*��+,-—why? On this domain we can define
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The range of �is ��*�� 7+��

-
—why? An application of the chain rule8yields
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Another application of the chain rule:yields���	 ����	
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Yet another application of the chain rule;yields
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These results are illustrated overleaf.@
Work out the details for yourself.A
Again work out the details for yourself.B
Yet again work out the details for yourself.
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