
6. The derivative
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Figure 1: A growing patch of weeds.

An important idea in calculus is that of an instantaneous rate of change, which is exactly
what it claims to be, namely, the value at a given instant of some quantity’s rate of change.
Consider, for example, our patch of weeds from Lecture 2, whose growth is reproduced
above. The area of this patch of weeds at age t months isy = A(t) = �t2 (1)

square meters, where � = 4�81 � 0:155: (2)

From Figure 1, the area is clearly increasing with time—but how rapidly?
To answer this question, we use infinitesimals. Between time t and the slightly later

time t + Æt, the area of the weed patch increases from y = A(t) to y + Æy = A(t + Æt), and
so the average rate of increase during this short interval isÆyÆt = (y + Æy)� yÆt = A(t+ Æt)� A(t)Æt = �(t+ Æt)2 � �t2Æt = 2�t+ Æt (3)

after simplification. As Æt ! 0, the interval between time t and time t + Æt collapses onto
the instant t itself, and so the average rate of increase between time t and time t + Æt
collapses onto the rate of increase at the instant t itself. Thus the instantaneous rate of
increase at time t is just the differential coefficientdydt = limÆt!0 ÆyÆt = limÆt!0 2�t+ Æt = 2�t+ 0 = 2�t: (4)

For example, on using (2), at age 2 months the weed patch is increasing at the rate of2� � 2 = 4� = 16�81 � 0:62 square meters per month.
Observe from (4) that the instantaneous rate of change itself is changing with time.

It thus defines a brand new function, which needs a brand new name. Because the first
function is called A, we might be tempted to call the new function B; but this notation
would not be terribly evocative of the new function’s special relationship to A. So instead
we call the new rate-of-change function A0. That is, on using (4):A0(t) = 2�t: (5)
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Figure 2: The graphs of A and A0 defined by (1)-(2) and (5). These graphs supply both the area
and its differential coefficient at any instant. For example, the dotted lines show that A(4) � 2:48
with A0(4) � 1:24, while the dashed lines show that A(5) � 3:88 with A0(5) � 1:55.

The graphs of both functions are sketched in Figure 2.
Both this result and the new notation generalize in the following way to any functionf whose graph is both continuous (i.e., all in one piece) and smooth—i.e., without corners:

the relationship y = f(t) between the independent variable t and the dependent variabley implies a corresponding relationship between the infinitesimals Æt and Æy belonging to t
and y, respectively, and the differential coefficient for this relationship is the instantaneous
rate of change of f(t) at time t, denoted by f 0(t). That is,y = f(t) =) Æy = f 0(t)Æt+ o(Æt); (6)

and the instantaneous rate of change of f(t) isf 0(t) = dydt = limÆt!0 ÆyÆt = limÆt!0 y + Æy � yÆt = limÆt!0 f(t+ Æt)� f(t)Æt : (7)

Moreover, the brand new function thus defined, namely, f 0, is known as the derivative off ; and because of the close relationship between derivative and differential coefficient,
the process of finding a function’s derivative is usually called differentiating the function
(or simply differentiation). Note an important but subtle distinction: the derivative f 0 is a
function, whereas the differential coefficient f 0(t) is just a number—the label assigned tot by the derivative. Henceforward, we will drop the adjective instantaneous and assume
that “rate of change” implies it (in the absence of any indication to the contrary).

Here several remarks are in order. First, some rates of change are so frequently en-
countered that they have special names. For example, the rate of change of distance
(which is nonnegative, and never decreases) is called speed (which is likewise nonneg-
ative); the rate of change of displacement (which may be positive or negative, and may
increase or decrease) is called velocity (which likewise may be positive or negative); and
the rate of change of volume (which is nonnegative, but may decrease) is called inflow.
So, in particular, the functions V and v defined by the graphs in Figure 3 of Lecture 1 are
related according to v(t) = V 0(t).
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Second, in principle, we can use infinitesimals to calculate the derivative of any func-
tion.� Most of the functions we meet in practice, however, are combinations of simple
functions, such as linear or power functions; and as we saw in Lecture 2, such combina-
tions can be sums, products, quotients, joins or compositions. It is therefore more efficient
in the long run to have general results for the derivatives of combinations and to use them
in conjunction with special results for the derivatives of simple functions. And because
we believe in long-term efficiency, that is exactly how we shall proceed.

We begin by finding a special result for the derivative of a linear function. Accord-
ingly, suppose that y = f(t) = �t+ �; (8)

where � and � are constants (and therefore, in particular, do not depend on t). Theny + Æy = f(t+ Æt) = �(t+ Æt) + � = �t+ �Æt + �: (9)

Subtracting (8) from (9), we obtain Æy = �Æt, implying

limÆt!0 ÆyÆt = limÆt!0 �ÆtÆt = limÆt!0� = �; (10)

and so f 0(t) = �, on using (7). Thus our special result is that

y = f(t) = �t+ � =) dydt = f 0(t) = �: (11)

It is often convenient to record this information without explicitly invoking the symbolsf and y, however, in which case we writeddtf�t+ �g = �: (12)

Note in particular (from setting � = 0) that the derivative of a constant is zero:d�dt = 0: (13)

Well honestly, what did you expect? If something is constant, it cannot change!
Next we obtain a general result for the derivative of a constant multiple. Accordingly,

suppose that u = f(t) and y = �u, where f is an arbitrary function and � is an arbitrary
constant. Then changing t to t+ Æt changes u to u+ Æu and y to y + Æy in such a way thaty + Æy = �(u+ Æu). So Æy = �(u+ Æu)� y = �(u+ Æu)� �u = �Æu, implyingdydt = limÆt!0 ÆyÆt = limÆt!0 �ÆuÆt = � limÆt!0 ÆuÆt = �dudt (14)

on using the limit combination rule. In other words,ddtf�f(t)g = �f 0(t): (15)�Whose derivative exists, i.e., a smooth one. We will return to the question of existence later, but for now
we will finesse the issue by selecting only functions whose derivatives exist.
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Next we obtain a general result for the derivative of a sum. Suppose that u = f(t),v = g(t) and y = u + v, where where f and g are arbitrary functions. Then changing t tot+Æt changes u to u+Æu, v to v+Æv and y to y+Æy in such a way that y+Æy = u+Æu+v+Æv.
Hence Æy = Æu+ Æv + u+ v � y = Æu + Æv, implyingdydt = limÆt!0 ÆyÆt = limÆt!0 Æu+ ÆvÆt = limÆt!0 ÆuÆt + ÆvÆt = limÆt!0 ÆuÆt + limÆt!0 ÆvÆt = dudt + dvdt (16)

on using the limit combination rule. In other words,ddtff(t) + g(t)g = f 0(t) + g0(t): (17)

The result is readily extended to a sum of three functions, say, p, q and r. For settingf = p+ q and g = r in (17) yieldsddtfp(t) + q(t) + r(t)g = ddtfp(t) + q(t)g + ddtfr(t)g = p0(t) + q0(t) + r0(t) (18)

on using (17) again, this time with f = p and g = q.
Next we find a special result for the derivative of a power function with integer ex-

ponent and coefficient 1. Suppose thaty = f(t) = tn: (19)

Then y + Æy = f(t+ Æt) = (t+ Æt)n: (20)

Now, from the binomial theorem, we have(1 + x)n = 1 + nx+ n(n�1)1:2 x2 + n(n�1)(n�2)1:2:3 x3 + n(n�1)(n�2)(n�3)1:2:3:4 x4 + : : : (21)

where the dots mean a lot more terms, in fact n� 4 of them; however, by settingx = Ætt (22)

we can reduce all the useful information that (21) containsy from�1 + Ætt �n = 1 + n Ætt + n(n�1)1:2 � Ætt �2 + n(n�1)(n�2)1:2:3 � Ætt �3 + n(n�1)(n�2)(n�3)1:2:3:4 � Ætt �4 + : : : (23)

to �1 + Ætt �n = 1 + nÆtt + o(Æt): (24)

All but the first two terms are junk. Now, subtracting (19) from (20) and using (24), we
obtainÆy = (t+ Æt)n � tn = tn�1 + Ætt �n � tn = tn��1 + Ætt �n � 1�

= tn�1 + nÆtt + o(Æt)� 1� = tn�nÆtt + o(Æt)� = tn � nÆtt + tno(Æt)= ntn�1 Æt + o(Æt)
(25)

yAt least for our purposes.
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because anythingz times o(Æt) is still o(Æt). We immediately deduce that the differential
coefficient is ntn�1. In other words, our special result is thatddt(tn) = ntn�1: (26)

A differential coefficient defines a derivative even when time is not the independent
variable, and this derivative is still a rate-of-change function: the only difference is that
the change is with respect to a variable other than time. What this means in practice is
that we already know other special results for derivatives from Lecture 5 (including the
exercises at the end). For example, we already know from Lecture 5 thatddx �1x� = � 1x2 (27)

and ddxfsin(x)g = 
os(x): (28)

Furthermore, any of our special results can be used in conjunction with any of our general
results to extend the list of functions whose derivatives we regard as known. For example,ddx �7x6 + 5x + 10 sin(x)� = ddx �7x6	+ ddx �5x�+ ddx f10 sin(x)g= 7 ddx �x6	+ 5 ddx �1x�+ 10 ddx fsin(x)g= 7 � 6x5 + 5 �� 1x2�+ 10 � 
os(x)

= 42x5 � 5x2 + 10 
os(x)
(29)

from (18), followed by three applications of (15), followed by use of both (26) with n = 6
(and t = x) and (27)-(28). With a little practice, the intermediate steps are readily done in
one’s head.

It cannot be too strongly emphasized that the limit in (7) exists only because Æt andÆy both approach zero: you cannot have Æt! 0 without simultaneously having Æy ! 0 as
well (or there would be no finite limit).x We can exploit this observation to find a special
result for the derivative of a square root. Suppose thaty = f(t) = pt (30)

so that y2 = t (31)zThat is, anything independent of ÆtxSo in one sense, there are two kinds of junk—o(Æt) junk and o(Æy) junk—and in a more important
sense, there is only one kind of junk, because o(Æy) and o(Æt) both approach zero as Æt ! 0 in such a way

that o(Æy) = o(Æt), because limÆt!0 o(Æy)Æt = limÆt!0 o(Æy)Æy � ÆyÆt = limÆt!0 o(Æy)Æy limÆt!0 ÆyÆt = limÆy!0 o(Æy)Æy limÆt!0 ÆyÆt = 0 � dydt = 0.
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by definition. Then also (y + Æy)2 = t+ Æt (32)

so that y2 + 2y Æy + Æy2 = t+ Æt: (33)

Subtracting (31) from(33), we obtain2y Æy + Æy2 = Æt (34)

and hence, dividing by Æt, 2yÆyÆt + Æy ÆyÆt = 1: (35)

Taking the limit as Æt! 0, we obtain

limÆt!0�2yÆyÆt + Æy ÆyÆt� = limÆt!0 1 = 1; (36)

because 1 doesn’t change as Æt ! 0. Furthermore, 2y doesn’t change as Æt ! 0 either: it
just stays 2y. Hence, applying the limit combination rule to (36), we obtain

2y limÆt!0 ÆyÆt + limÆt!0 Æy limÆt!0 ÆyÆt = 1: (37)

But Æy ! 0 as Æt! 0, i.e., limÆt!0 Æy = 0. So (37) implies 2y dydt + 0 � dydt = 1 or

2ydydt = 1; (38)

from which dydt = 12y = 12pt (39)

by (30). In other words, our special result is thatddt npto = 12pt = 12 t�1=2: (40)

We conclude by discussing the subtle question of what the domain of f 0 should be,
given that the domain of f itself is [a; b℄. The question arises because

f 0(t) = limÆt!0 f(t+ Æt)� f(t)Æt (41)

makes sense in (7) only if f(t + Æt) is well defined, and hence only if t + Æt belongs to
the domain of f . No difficulty arises at interior points of the domain, i.e., for t satisfyinga < t < b, because for such values of t we always also have a < t + Æt < b in the limit asÆt! 0. But for t = b we have t+Æt 2 [a; b℄ only if Æt < 0, and for t = a we have t+Æt 2 [a; b℄
only if Æt > 0. There are two ways to deal with this matter. The first solution is to say that
the domain of f 0 is the open interval (a; b), as opposed to the closed interval [a; b℄; then
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f and f 0 have different domains, although they differ by only two points. The second
solution is to say that the domain of f 0 is still [a; b℄, but only a left-handed derivative
exists at t = b and only a right-handed derivative exists at t = a; then, strictly speaking,
the definition of f 0 is the following:

f 0(t) =
8>>><>>>:

limÆt!0+ f(t+Æt)�f(t)Æt if t = alimÆt!0 f(t+Æt)�f(t)Æt if a < t < blimÆt!0� f(t+Æt)�f(t)Æt if t = b: (42)

We will have occasion to return to this point in Lecture 7.

Exercises

In each case, find the derivative.

1. y = f(x) = 3x+ 4 
os(x) + 5 sin(x).
2. y = f(x) = px(x+ 1).
3. y = f(x) = r xx+ 1 .

Suitable problems from standard calculus texts

Stewart (2003): p. 174, ## 21-31; p. 191, ## 3-10; p. 216, ## 1, 3, 4, 6 and 12.

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.

Solutions or hints for selected exercises

1. By analogy with (29) and using the special result obtained in Exercise 1 of Lecture 5,dydx = f 0(x) = 3 ddx fxg+ 4 ddx f
os(x)g+ 5 ddx fsin(x)g= 3 � 1 + 4 � (� sin(x) + 5 � 
os(x) = 3� 4 sin(x) + 5 
os(x):
2. Squaring, we have both y2 = x(x+ 1) = x2 + x

and (y + Æy)2 = (x+ Æx)2 + (x+ Æx)
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or, expanding both sides,y2 + 2yÆy + Æy2 = x2 + 2xÆx+ Æx2 + x+ Æx = x2 + x+ (2x+ 1)Æx+ Æx2:
Subtracting, we obtain 2yÆy + Æy2 = (2x+ 1)Æx+ Æx2:
Dividing by Æx, we obtain

2y ÆyÆx + Æy ÆyÆx = 2x+ 1 + Æx:
Now, taking the limit as Æx! 0 and using the limit combination rule, we obtain

2y limÆx!0 ÆyÆx + limÆx!0 Æy � limÆx!0 ÆyÆx = limÆx!0(2x+ 1) + limÆx!0 Æx
or 2y dydx + 0 � dydx = 2x+ 1 + 0:
Hence dydx = 2x+ 12y = 2x+ 12px(x+ 1) :

3. Squaring, we have both y2 = xx+ 1
and (y + Æy)2 = x+ Æx(x+ Æx) + 1 = x+ Æxx+ 1 + Æx
or, expanding the left-hand side,

y2 + 2yÆy + Æy2 = x+ Æxx+ 1 + Æx:
Subtracting, we obtain

2yÆy + Æy2 = x+ Æxx+ 1 + Æx � xx+ 1 = (x+ Æx)(x+ 1)� (x+ 1 + Æx)x(x+ 1 + Æx)(x+ 1)
which simplifies to 2yÆy + Æy2 = Æx(x+ 1 + Æx)(x+ 1)
so that 2y ÆyÆx + Æy ÆyÆx = 1(x+ 1 + Æx)(x+ 1) :
Now, taking the limit as Æx! 0 and proceeding as above, we obtain

2y dydx + 0 = limÆx!0 1(x+ 1 + Æx)(x+ 1) = 1(x+ 1 + 0)(x+ 1)
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or 2y dydx = 1(x+ 1)2 :
Hence dydx = 12(x+ 1)2y = 12y(x+ 1)2 = 12(x+ 1)2 1y= 12(x+ 1)2 rx+ 1x = 12x1=2(x+ 1)3=2 :
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