7. Derivatives of combinations

So far we have defined five types of function combination, namely, sum (or difference), product, quotient, composition and join. Moreover, we already have a general result for the derivative of one of these types, namely, equation (17) of Lecture 6:

$$
\begin{equation*}
\frac{d}{d t}\{f(t)+g(t)\}=f^{\prime}(t)+g^{\prime}(t) \tag{1}
\end{equation*}
$$

In this lecture we obtain analogous results for the other four types.
Before beginning this task, we briefly digress to note that we also already have a general result for the derivative of a multiple, namely, equation (15) of Lecture 6:

$$
\begin{equation*}
\frac{d}{d t}\{\alpha f(t)\}=\alpha f^{\prime}(t) \tag{2}
\end{equation*}
$$

Because (2) implies $\frac{d}{d t}\{\beta f(t)\}=\beta g^{\prime}(t)$ as well, (1)-(2) are easily combined to yield a single result for the derivative of an arbitrary linear combination of two functions, namely,

$$
\begin{equation*}
\frac{d}{d t}\{\alpha f(t)+\beta g(t)\}=\alpha f^{\prime}(t)+\beta g^{\prime}(t) \tag{3}
\end{equation*}
$$

This equation yields the derivative of both a sum (with $\alpha=\beta=1$) and a difference (with $\alpha=1, \beta=-1$). Now back to the task at hand.

We begin by obtaining a general result for the derivative of a product. Suppose that $u=F(t), v=G(t)$ and

$$
\begin{equation*}
y=u v=F(t) G(t) \tag{4}
\end{equation*}
$$

Then, as t changes infinitesimally to $t+\delta t, u$ changes infinitesimally to $u+\delta u, v$ changes infinitesimally to $v+\delta v$ and y changes infinitesimally to $y+\delta y$ in such a way that

$$
\begin{equation*}
y+\delta y=(u+\delta u)(v+\delta v)=u v+u \delta v+\delta u v+\delta u \delta v \tag{5}
\end{equation*}
$$

Subtracting (4) from (5) yields

$$
\begin{equation*}
\delta y=\delta u v+u \delta v+\delta u \delta v \tag{6}
\end{equation*}
$$

Dividing by δt yields

$$
\begin{equation*}
\frac{\delta y}{\delta t}=\frac{\delta u}{\delta t} v+u \frac{\delta v}{\delta t}+\delta u \frac{\delta v}{\delta t} \tag{7}
\end{equation*}
$$

Applying the combination rule yields

$$
\begin{equation*}
\lim _{\delta t \rightarrow 0} \frac{\delta y}{\delta t}=\lim _{\delta t \rightarrow 0} \frac{\delta u}{\delta t} \lim _{\delta t \rightarrow 0} v+\lim _{\delta t \rightarrow 0} u \lim _{\delta t \rightarrow 0} \frac{\delta v}{\delta t}+\lim _{\delta t \rightarrow 0} \delta u \lim _{\delta t \rightarrow 0} \frac{\delta v}{\delta t} . \tag{8}
\end{equation*}
$$

But $\delta u \rightarrow 0$ as $\delta t \rightarrow 0$, while u and v do not change. Hence (8) reduces to

$$
\begin{equation*}
\frac{d y}{d t}=\frac{d u}{d t} v+u \frac{d v}{d t}+0 \cdot \frac{d v}{d t}=\frac{d u}{d t} v+u \frac{d v}{d t} \tag{9a}
\end{equation*}
$$

In other words, on using (4), our general result is

$$
\begin{equation*}
\frac{d}{d t}\{F(t) G(t)\}=F^{\prime}(t) G(t)+F(t) G^{\prime}(t) \tag{9b}
\end{equation*}
$$

though we usually apply this product rule without explicitly defining F or G. For example:

$$
\frac{d}{d t}\left\{t^{2} \sin (t)\right\}=\frac{d}{d t}\left\{t^{2}\right\} \sin (t)+t^{2} \frac{d}{d t}\{\sin (t)\}=2 t \sin (t)+t^{2} \cos (t)=t\{2 \sin (t)+t \cdot \cos (t)\}
$$

on using our special results. Note that (9a) is readily extended to deal with a product of any number of functions; for example, with three functions, we have

$$
\begin{align*}
\frac{d}{d t}\{u v w\}=\frac{d}{d t}\{u v \cdot w\} & =\frac{d}{d t}\{u v\} w+u v \frac{d w}{d t}=\left\{\frac{d u}{d t} v+u \frac{d v}{d t}\right\} w+u v \frac{d w}{d t} \tag{10a}\\
& =\frac{d u}{d t} v w+u \frac{d v}{d t} w+u v \frac{d w}{d t}
\end{align*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{d}{d t}\{F(t) G(t) H(t)\}=F^{\prime}(t) G(t) H(t)+F(t) G^{\prime}(t) H(t)+F(t) G(t) H^{\prime}(t) \tag{10b}
\end{equation*}
$$

Next we obtain a general result for the derivative of a quotient. Again suppose that $u=F(t)$ and $v=G(t)$, but now with

$$
\begin{equation*}
y=\frac{u}{v}=\frac{F(t)}{G(t)} \tag{11}
\end{equation*}
$$

(and, needless to say, $v \neq 0$, so that any t for which $G(t)=0$ lies outside the domain of the quotient). Then

$$
\begin{equation*}
v y=u \tag{12}
\end{equation*}
$$

Applying the product rule:

$$
\begin{equation*}
\frac{d v}{d t} y+v \frac{d y}{d t}=\frac{d u}{d t} \tag{13}
\end{equation*}
$$

Rearranging and using (12):

$$
\begin{equation*}
v \frac{d y}{d t}=\frac{d u}{d t}-\frac{d v}{d t} y=\frac{d u}{d t}-\frac{d v}{d t} \frac{u}{v} \tag{14}
\end{equation*}
$$

Hence, dividing by v,

$$
\begin{equation*}
\frac{d y}{d t}=\frac{1}{v} \frac{d u}{d t}-\frac{d v}{d t} \frac{u}{v^{2}}=\frac{\frac{d u}{d t} v-u \frac{d v}{d t}}{v^{2}} \tag{15a}
\end{equation*}
$$

In other words, on using (11), our general result is

$$
\begin{equation*}
\frac{d}{d t}\left\{\frac{F(t)}{G(t)}\right\}=\frac{F^{\prime}(t) G(t)-F(t) G^{\prime}(t)}{\{G(t)\}^{2}} \tag{15b}
\end{equation*}
$$

Again, we usually apply this quotient rule without explicitly defining F or G. For example:

$$
\begin{aligned}
\frac{d}{d t} \frac{\sin (t)}{\cos (t)} & =\frac{\frac{d}{d t}\{\sin (t)\} \cos (t)-\sin (t) \frac{d}{d t}\{\cos (t)\}}{\{\cos (t)\}^{2}} \\
& =\frac{\cos (t) \cdot \cos (t)-\sin (t)\{-\sin (t)\}}{\cos ^{2}(t)} \\
& =\frac{\cos ^{2}(t)+\sin ^{2}(t)}{\cos ^{2}(t)}=\frac{1}{\cos ^{2}(t)}=\left(\frac{1}{\cos (t)}\right)^{2}
\end{aligned}
$$

on using our special results. A neater way to rewrite this result is

$$
\begin{equation*}
\frac{d}{d t}\{\tan (t)\}=\sec ^{2}(t) \tag{16}
\end{equation*}
$$

We can use the quotient rule to extend the result that

$$
\begin{equation*}
\frac{d}{d x}\left\{x^{r}\right\}=r x^{r-1} \tag{17}
\end{equation*}
$$

if r is a positive integer to negative-integer exponents. For $s>0$, we have

$$
\frac{d}{d x}\left\{x^{-s}\right\}=\frac{d}{d x} \frac{1}{x^{s}}=\frac{\frac{d}{d x}(1) \cdot x^{s}-1 \cdot \frac{d}{d x}\left(x^{s}\right)}{\left(x^{s}\right)^{2}}=\frac{0 \cdot x^{s}-1 \cdot s x^{s-1}}{x^{2 s}}=-s x^{-s-1}
$$

This result agrees with (17) for $r=-s$. Now we know that (17) holds for any integer, regardless of whether it is positive or negative.

A general result for the derivative of a composition is even simpler to derive than the product or the quotient rule.* Let x be the independent variable, let y depend upon x, and let z in turn depend on y. Then three derivatives are involved, because y is changing with x and z is changing with y, which in turn makes z change with x. The three derivatives are

$$
\frac{d y}{d x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}, \quad \frac{d z}{d y}=\lim _{\delta y \rightarrow 0} \frac{\delta z}{\delta y} \quad \text { and } \quad \frac{d z}{d x}=\lim _{\delta x \rightarrow 0} \frac{\delta z}{\delta x}
$$

respectively, and we assume that they all exist, which requires in particular that $\delta y \rightarrow 0$ as $\delta x \rightarrow 0$, and vice versa. Thus applying the combination rule to

$$
\begin{equation*}
\frac{\delta z}{\delta x}=\frac{\delta z}{\delta y} \frac{\delta y}{\delta x} \tag{18}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\lim _{\delta x \rightarrow 0} \frac{\delta z}{\delta x}=\lim _{\delta x \rightarrow 0} \frac{\delta z}{\delta y} \lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\lim _{\delta y \rightarrow 0} \frac{\delta z}{\delta y} \lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x} \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x} \tag{20a}
\end{equation*}
$$

[^0]Note that if $y=U(x), z=P(y)$ and the composition is called R, as in Lecture 2, so that $z=R(x)$, then (20a) becomes $R^{\prime}(x)=P^{\prime}(y) U^{\prime}(x)$; that is,

$$
\begin{equation*}
R(x)=P(U(x)) \Longrightarrow R^{\prime}(x)=P^{\prime}(U(x)) U^{\prime}(x) \tag{20b}
\end{equation*}
$$

This general result for the derivative of a composition should perhaps be called the composition rule-but it isn't, it's called the chain rule.

For example, suppose you wish to calculate

$$
\begin{equation*}
\frac{d}{d x} \sin \frac{1}{x} \tag{21}
\end{equation*}
$$

Then set

$$
\begin{equation*}
y=\frac{1}{x} \Longrightarrow \frac{d y}{d x}=-\frac{1}{x^{2}} \tag{22}
\end{equation*}
$$

(from Lecture 5) and set

$$
\begin{equation*}
z=\sin (y) \quad \Longrightarrow \quad \frac{d z}{d y}=\cos (y) \tag{23}
\end{equation*}
$$

(again from Lecture 5) so that you can calculate (21) in terms of (20a) as

$$
\begin{align*}
\frac{d}{d x} \sin \frac{1}{x}=\frac{d}{d x}\{\sin (y)\} & =\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}=\cos (y)-\frac{1}{x^{2}} \\
& =-\frac{1}{x^{2}} \cos (y)=-\frac{1}{x^{2}} \cos \frac{1}{x} \tag{24}
\end{align*}
$$

In practice, the most useful expression of the chain rule is often neither (20a) nor (20b), but rather a hybrid of the two: we set $z=P(y)$ in (20a) to obtain

$$
\begin{equation*}
\frac{d}{d x}\{P(y)\}=\frac{d}{d y}\{P(y)\} \frac{d y}{d x} \tag{25}
\end{equation*}
$$

Thus, for example, $\frac{d}{d x}\{\sin (y)\}=\frac{d}{d y}\{\sin (y)\} \frac{d y}{d x}=\cos (y) \frac{d y}{d x}$ so that

$$
\begin{equation*}
\frac{d}{d x}\{\sin (y)\}=\cos (y) \frac{d y}{d x} \tag{26}
\end{equation*}
$$

holds for an arbitrary relationship between x and y (regardless of whether we know it). In the case where $y=1 / x$, (26) reduces to (24); in the case where $y=x^{2},(26)$ yields

$$
\begin{equation*}
\frac{d}{d x}\left\{\sin \left(x^{2}\right)\right\}=\cos \left(x^{2}\right) \frac{d}{d x}\left\{x^{2}\right\}=2 x \cos \left(x^{2}\right) \tag{27}
\end{equation*}
$$

in the case where $y=x^{3}$, (26) yields

$$
\begin{equation*}
\frac{d}{d x}\left\{\sin \left(x^{3}\right)\right\}=\cos \left(x^{3}\right) \frac{d}{d x}\left\{x^{3}\right\}=3 x^{2} \cos \left(x^{3}\right) \tag{28}
\end{equation*}
$$

and so on.

We can use the chain rule to extend our result for the derivative of a square root from Lecture 3 to a result for the derivative of an arbitrary n-th root. Let

$$
\begin{equation*}
y=\sqrt[n]{x}=x^{\frac{1}{n}} \tag{29}
\end{equation*}
$$

so that

$$
\begin{align*}
y^{n}=x & \Longrightarrow \frac{d}{d x}\left\{y^{n}\right\}=\frac{d}{d x}\{x\} \\
& \Longrightarrow \frac{d}{d y}\left\{y^{n}\right\} \frac{d y}{d x}=1 \tag{30}\\
& \Longrightarrow n y^{n-1} \frac{d y}{d x}=1
\end{align*}
$$

by the chain rule. Hence

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{n y^{n-1}}=\frac{1}{n} y^{1-n}=\frac{1}{n}\left(x^{\frac{1}{n}}\right)^{1-n}=\frac{1}{n} x^{\frac{1}{n}-1} \tag{31}
\end{equation*}
$$

which agrees with (17) for $r=\frac{1}{n}$. But any rational number r can be written as $r=m / n$, where m is an integer and n is a positive integer. So we can apply the chain rule with $y=x^{1 / n}$ and $z=y^{m}$ to obtain

$$
\begin{align*}
\frac{d}{d x}\left\{x^{r}\right\} & =\frac{d}{d x}\left\{x^{m / n}\right\}=\frac{d}{d x}\left\{\left(x^{1 / n}\right)^{m}\right\}=\frac{d}{d x}\left\{y^{m}\right\}=\frac{d z}{d x} \\
& =\frac{d z}{d y} \frac{d y}{d x}=m y^{m-1} \frac{1}{n} x^{-1+1 / n}=m\left(x^{1 / n}\right)^{m-1} \frac{1}{n} x^{-1+1 / n} \tag{32}\\
& =m x^{\{m-1\} / n} \frac{1}{n} x^{-1+1 / n}=\frac{m}{n} x^{m / n-1 / n-1+1 / n}=r x^{r-1}
\end{align*}
$$

for any rational number.
Finally, the simplest case in many ways is that of a join: all you do is differentiate separately on each contiguous subdomain. That is, if W is defined on $[a, b]$ by either

$$
W(t)=\left\{\begin{array}{lll}
F(t) & \text { if } & a \leq t<c \tag{33a}\\
G(t) & \text { if } & c \leq t \leq b
\end{array}\right.
$$

or

$$
W(t)=\left\{\begin{array}{lll}
F(t) & \text { if } & a \leq t \leq c \tag{33b}\\
G(t) & \text { if } & c<t \leq b
\end{array}\right.
$$

then its derivative W^{\prime} is defined on at least $(a, c) \cup(c, b)$ by †

$$
W^{\prime}(t)=\left\{\begin{array}{lll}
F^{\prime}(t) & \text { if } & a<t<c \tag{34}\\
G^{\prime}(t) & \text { if } & c<t<b
\end{array}\right.
$$

[^1]On the other hand, there is a question that doesn't arise in the other three cases, namely, whether the resulting derivative (34) must have a hole in its domain at $t=c$ (as in Figure 4 of Lecture 4), or whether it is removable (as described in Figure 3 of Lecture 4).

To deal with this question, we find it convenient to have a more compact notation for left- and right-handed limits. Accordingly, we define

$$
\begin{equation*}
w\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} w(x), \quad w\left(a^{-}\right)=\lim _{x \rightarrow a^{-}} w(x) \tag{35}
\end{equation*}
$$

for any function called w-including any derivative, so (35) automatically implies

$$
\begin{equation*}
W^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} W^{\prime}(x), \quad W^{\prime}\left(a^{-}\right)=\lim _{x \rightarrow a^{-}} W^{\prime}(x) . \tag{36}
\end{equation*}
$$

It follows immediately from (34) that the left- and right-handed limits of W^{\prime} at $t=c$ are

$$
\begin{equation*}
W^{\prime}\left(c^{-}\right)=\lim _{t \rightarrow c^{-}} W^{\prime}(t)=F^{\prime}\left(c^{-}\right) \quad \text { and } \quad W^{\prime}\left(c^{+}\right)=\quad \lim _{x \rightarrow c^{+}} W^{\prime}(t)=G^{\prime}\left(c^{+}\right) \tag{37}
\end{equation*}
$$

respectively. If these two limits are equal, that is, if

$$
\begin{equation*}
F^{\prime}\left(c^{-}\right)=G^{\prime}\left(c^{+}\right) \tag{38}
\end{equation*}
$$

then-exactly as in Lecture 4-we can remove the hole by defining $W^{\prime}(c)$ to be their common value. If $F^{\prime}\left(c^{-}\right) \neq G^{\prime}\left(c^{+}\right)$, on the other hand, then $W^{\prime}(c)$ is undefined.

We illustrate these ideas with two familiar joins from Lecture 2, namely, photosynthesis rate

$$
L(u)=\begin{array}{cll}
\frac{2-\sqrt{2}}{2+\sqrt{2}}\left(2+\sqrt{2}-\frac{1}{2} u\right) u & \text { if } \quad 0 \leq u \leq 2+\sqrt{2} \tag{39}\\
1 & \text { if } & 2+\sqrt{2}<u<\infty
\end{array}
$$

and diastolic inflow

$$
v(t)=\begin{array}{lll}
\frac{81600}{1127}(30 t-23)(5 t-2)(4 t-3) & \text { if } & 0.4 \leq t<0.75 \tag{40}\\
\frac{14000}{33}(12 t-11)(4 t-3)(10 t-9) & \text { if } & 0.75 \leq t \leq 0.9
\end{array}
$$

From (33)-(34), (3) and (9) with the obvious modifications, we obtain

$$
\begin{align*}
L^{\prime}(u) & =\left\{\begin{array}{ccc}
\frac{d}{d u} & \frac{2-\sqrt{2}}{2+\sqrt{2}}\left(2+\sqrt{2}-\frac{1}{2} u\right) u \\
\frac{d}{d u}\{1\} & \text { if } & 0 \leq u<2+\sqrt{2} \\
& \text { if } & 2+\sqrt{2}<u<\infty
\end{array}\right. \tag{41a}\\
& =\left\{\begin{array}{cl}
\frac{2-\sqrt{2}}{2+\sqrt{2}} \frac{d}{d u}\left\{\left(2+\sqrt{2}-\frac{1}{2} u\right) u\right\} & \text { if } \\
0 & \text { if } \\
0 & 2+\sqrt{2}<u<\infty
\end{array}\right. \tag{41b}\\
& =\begin{array}{ccc}
\frac{2-\sqrt{2}}{2+\sqrt{2}}(2+\sqrt{2}-u) & \text { if } 0 \leq u<2+\sqrt{2} \\
0 & \text { if } 2+\sqrt{2}<u<\infty
\end{array} \tag{41c}
\end{align*}
$$

in the first instance, with $L^{\prime}(2+\sqrt{2})$ undefined; see Exercise 1. From (41c), however, with $c=2+\sqrt{2}$ we have $L^{\prime}\left(c^{-}\right)=\frac{2-\sqrt{2}}{2+\sqrt{2}}(2+\sqrt{2}-c)=0$, which equals $L^{\prime}\left(c^{+}\right)$. Hence (38) is satisfied with $W=L$, and so we can re-define L^{\prime} as a continuous function without a hole:

$$
L^{\prime}(u)=\begin{array}{cll}
\frac{2-\sqrt{2}}{2+\sqrt{2}}(2+\sqrt{2}-u) & \text { if } & 0 \leq u \leq 2+\sqrt{2} \tag{42}\\
0 & \text { if } & 2+\sqrt{2}<u<\infty
\end{array}
$$

On the other hand, when we differentiate v (Exercise 2), we obtain

$$
v^{\prime}(t)=\begin{array}{lll}
\frac{81600}{1127}\left\{1800 t^{2}-2300 t+709\right\} & \text { if } & 0.4 \leq t<0.75 \tag{43}\\
\frac{28000}{33}\left\{720 t^{2}-1232 t+525\right\} & \text { if } & 0.75<t \leq 0.9
\end{array}
$$

after simplification, so that $v^{\prime}\left(0.75^{-}\right)=\frac{81600}{1127}\left\{1800(0.75)^{2}-2300(0.75)+709\right\} \approx-253$ while $v^{\prime}\left(0.75^{+}\right)=\frac{28000}{33}\left\{720(0.75)^{2}-1232(0.75)+525\right\} \approx 5091$. Thus $v^{\prime}\left(0.75^{-}\right) \neq v^{\prime}\left(0.75^{+}\right)$, and the graph of v^{\prime} has a hole at $t=0.75$; see Figure 1 .
(a)

(b)

Figure 1: (a) $y=v(t)$ and (b) $y=v^{\prime}(t)$ defined by (40) and (43), respectively.

We conclude by noting that a function whose derivative is a continuous function-if necessary, after a removable hole has been filled-is called a smooth function. Thus L defined by (39) is smooth because L^{\prime} defined by (42) is continuous; whereas v defined by (40) is not smooth, because v^{\prime} defined by (43) is discontinuous where $t=0.75$. Alternatively, given the geometrical interpretation of the differential coefficient (Lecture 5), a function is smooth if its graph has no corners, and otherwise is not smooth (as illustrated by Figure 1). In practice, however, even non-smooth functions are usually piecewise-smooth, in the sense that if a graph has n corners then the function's domain can be decomposed into $n+1$ subdomains with the corners always at endpoints, in such a way that the function is smooth on every subdomain, despite not being smooth on its entire domain.

Exercises

1. Verify (42).

Hint: Use (33)-(34), (3) and (9) with the obvious modifications.
2. Verify (43).

Hint: Apply (10) and (34) to (40).
3. Find $\frac{d y}{d t}$ for $y=\frac{1-t}{1+t}$ where $t \neq-1$.
4. (a) Find $\frac{d y}{d t}$ for $y=\frac{t}{B+t}$, where B is a constant and $t \neq-B$.
(b) Find the equation of the tangent line to the curve $y=\frac{2 x}{1+2 x}$ at the point with coordinates $(0,0)$.
(c) Find the equation of the tangent line to the curve $y=\frac{2 x}{1+2 x}$ at the point with coordinates $\left(\frac{1}{2}, \frac{1}{2}\right)$.
(d) Where do these two tangent lines meet?
(e) Sketch the graph of $y=\frac{2 x}{1+2 x}$ on $\left(-\frac{1}{2}, 1\right)$ together with its vertical asymptote and both tangent lines, clearly indicating both their points of tangency and their point of intersection.
5. Find $\frac{d y}{d t}$ for $y=\frac{t^{2}}{B-t}$, where B is a constant and $t \neq B$.
6. Find $\frac{d y}{d t}$ for $y=\sqrt{t^{3}+2 t}$ where $t>0$.
7. Find $\frac{d y}{d t}$ for $y=t^{2} \sqrt{t^{3}+2 t}, t>0$.
8. For f defined by $f(t)=t \sin (\pi t) \sqrt{t^{3}+2 t}$, find $f^{\prime}(1)$.
9. Find $\frac{d y}{d t}$ for $y=\tan \left(\sqrt{t^{3}+2 t}\right)$ where $0<t<\frac{1}{2}$.
10. A smooth function W is defined on $[0, \infty)$ by

$$
W(t)=\left\{\begin{array}{cll}
A t+B t^{2} & \text { if } & 0 \leq t<2 \\
\frac{1}{t} & \text { if } & 2 \leq t<\infty
\end{array}\right.
$$

where A and B are constants. What must be their values?
11. A smooth function W is defined on $[0, \infty)$ by

$$
W(t)=\left\{\begin{array}{cll}
\frac{1}{4} t(A-t) & \text { if } & 0 \leq t<1 \\
\frac{t}{B+t} & \text { if } & 1 \leq t<\infty
\end{array}\right.
$$

where A and B are positive constants. What must be their values?
12. A smooth function W is defined on $[0, \infty)$ by

$$
W(t)=\left\{\begin{array}{cll}
A t+B t^{3} & \text { if } & 0 \leq t<1 \\
\frac{1-t}{1+t} & \text { if } & 1 \leq t<\infty
\end{array}\right.
$$

where A and B are constants. What must be their values?
13. A smooth function W is defined on $[0,3]$ by

$$
W(t)=\left\{\begin{array}{lll}
A t^{3} & \text { if } & 0 \leq t<2 \\
\frac{t^{2}}{B-t} & \text { if } & 2 \leq t \leq 3
\end{array}\right.
$$

where A and B are positive constants. What must be their values?
14. A smooth function W is defined on $[0, \infty)$ by

$$
W(t)=\left\{\begin{array}{cll}
A t-B t^{2} & \text { if } & 0 \leq t<3 \\
\frac{16 t}{t+1} & \text { if } & 3 \leq t<\infty
\end{array}\right.
$$

where A and B are positive constants. What must be their values?
15. A smooth function W is defined on $[0, \infty)$ by

$$
W(t)=\left\{\begin{array}{cll}
A t-B t^{2} & \text { if } & 0 \leq t<1 \\
\frac{9 t}{t+2} & \text { if } & 1 \leq t<\infty
\end{array}\right.
$$

where A and B are positive constants. What must be their values?
16. Calculate $\frac{d}{d x} \sqrt[4]{1+\sqrt[3]{2+\sqrt{x^{2}+3}}}$.

Suitable problems from standard calculus texts

Stewart (2003): p. 191, \#\# 15-16 and 19-27; p. 197, \#\# 7-11, 19-24, 27, 28, 31, 32 and 34-38; p. 216, \#\# 1-7 and 9-19; and p. 224, \#\# 1-4, 7-14, 17-20, 25-27, 29, 30, 32-35, 37-41, 43-45, 48 and 51-54.

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.

Solutions to selected exercises

3. From the quotient rule we have

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{\frac{d}{d t}\{1-t\} \cdot(1+t)-(1-t) \cdot \frac{d}{d t}\{1+t\}}{(1+t)^{2}} \\
& =\frac{(0-1) \cdot(1+t)-(1-t)(0+1)}{(1+t)^{2}}=\frac{-2}{(1+t)^{2}}
\end{aligned}
$$

because $\frac{d}{d t}\{1 \pm t\}=\frac{d}{d t}\{1\} \pm \frac{d}{d t}\{t\}=0 \pm 1$. Alternatively

$$
y=\frac{1-t}{1+t}=\frac{2-1-t}{1+t}=\frac{2-(1+t)}{1+t}=\frac{2}{1+t}-1=2(1+t)^{-1}-1
$$

implies

$$
\frac{d y}{d t}=2 \frac{d}{d t}\left\{(1+t)^{-1}\right\}-\frac{d}{d t}\{1\}=2 \frac{d}{d t}\left\{(1+t)^{-1}\right\}-0=2 \frac{d}{d t}\left\{(1+t)^{-1}\right\} .
$$

But from the chain rule we have

$$
\frac{d}{d t}\left\{x^{-1}\right\}=\frac{d}{d x}\left\{x^{-1}\right\} \cdot \frac{d x}{d t}=-\frac{1}{x^{2}} \frac{d x}{d t}
$$

on using a special result from Lecture 5 . Hence with $x=1+t$ we obtain $\frac{d y}{d t}=2 \frac{d}{d t}\left\{x^{-1}\right\}=-\frac{2}{x^{2}} \frac{d x}{d t}=-\frac{2}{(1+t)^{2}} \frac{d}{d t}\{1+t\}=-\frac{2}{(1+t)^{2}}\{0+1\}=\frac{-2}{(1+t)^{2}}$ as before.
4. (a) From the quotient rule we have

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{\frac{d}{d t}\{t\} \cdot(B+t)-t \cdot \frac{d}{d t}\{B+t\}}{(B+t)^{2}} \\
& =\frac{1 \cdot(B+t)-t \cdot(0+1)}{(B+t)^{2}}=\frac{B}{(B+t)^{2}} .
\end{aligned}
$$

(b) Note that

$$
y=\frac{2 x}{1+2 x}=\frac{x}{\frac{1}{2}+x} .
$$

But from (a) with $B=\frac{1}{2}$ we have

$$
\frac{d}{d t} \quad \frac{t}{\frac{1}{2}+t}=\frac{\frac{1}{2}}{\left(\frac{1}{2}+t\right)^{2}}
$$

It follows immediately that

$$
\frac{d}{d x} \frac{x}{\frac{1}{2}+x}=\frac{\frac{1}{2}}{\left(\frac{1}{2}+x\right)^{2}}=\frac{2}{(1+2 x)^{2}} .
$$

So the first tangent line has slope

$$
m_{1}=\left.\frac{d}{d x} \frac{x}{\frac{1}{2}+x}\right|_{x=0}=\frac{2}{(1+2 \cdot 0)^{2}}=2
$$

and hence equation $y-0=m_{1}(x-0)$ or $y=2 x$.
(c) Likewise, the second tangent line has slope

$$
m_{2}=\left.\frac{d}{d x} \frac{x}{\frac{1}{2}+x}\right|_{x=\frac{1}{2}}=\frac{2}{\left(1+2 \cdot \frac{1}{2}\right)^{2}}=\frac{1}{2}
$$

and hence equation $y-\frac{1}{2}=m_{2}\left(x-\frac{1}{2}\right)$ or $y=\frac{1}{2} x+\frac{1}{4}$.
(d) These lines meet where $2 x=\frac{1}{2} x+\frac{1}{4}$ or $x=\frac{1}{6}$, and hence $y=\frac{1}{3}$; in other words, at the point with coordinates $\left(\frac{1}{6}, \frac{1}{3}\right)$.
(e)

6. Squaring, we have

$$
y^{2}=t^{3}+2 t \Longrightarrow \frac{d}{d t}\left\{y^{2}\right\}=\frac{d}{d t}\left\{t^{3}+2 t\right\} \Longrightarrow 2 y \frac{d y}{d t}=3 t^{2}+2
$$

Hence

$$
\frac{d y}{d t}=\frac{3 t^{2}+2}{2 y}=\frac{3 t^{2}+2}{2 \sqrt{t^{3}+2 t}}
$$

Alternatively, set $x=t^{3}+2 t$. Then, on using the chain rule, the linear-combination rule and special results, we have

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d}{d t}\{\sqrt{x}\}=\frac{d}{d x}\{\sqrt{x}\} \frac{d x}{d t}=\frac{1}{2 \sqrt{x}} \frac{d x}{d t}=\frac{1}{2 \sqrt{x}} \frac{d}{d t}\left\{t^{3}+2 t\right\} \\
& =\frac{1}{2 \sqrt{x}} \frac{d}{d t}\left\{t^{3}\right\}+2 \frac{d}{d t}\{t\}=\frac{1}{2 \sqrt{x}}\left(3 t^{2}+2 \cdot 1\right)=\frac{3 t^{2}+2}{2 \sqrt{t^{3}+2 t}}
\end{aligned}
$$

as before.
10. Using our general results for the derivative of a join or sum together with a special result from Lecture 5, we find that

$$
W^{\prime}(t)=\left\{\begin{array}{cll}
A+2 B t & \text { if } & 0 \leq t<2 \\
-\frac{1}{t^{2}} & \text { if } & 2<t<\infty
\end{array}\right.
$$

So the left-handed derivative as $t \rightarrow 2^{-}$is $W^{\prime}\left(2^{-}\right)=A+2 B \cdot 2=A+4 B$, and the right-handed derivative as $t \rightarrow 2^{+}$is $W^{\prime}\left(2^{+}\right)=-\frac{1}{2^{2}}=-\frac{1}{4}$. For W to be smooth, its derivative must be continuous everywhere, and hence in particular at $t=2$; so we require $W^{\prime}\left(2^{-}\right)=W^{\prime}(2+)$, or $A+4 B=-\frac{1}{4}$. But W can't have a continuous derivative unless it is continuous itself, so we also require $W\left(2^{-}\right)=W\left(2^{+}\right)$, i.e., $A \cdot 2+B \cdot 2^{2}=\frac{1}{2}$ or $2 A+4 B=\frac{1}{2}$. Subtracting $A+4 B=-\frac{1}{4}$ from $2 A+4 B=\frac{1}{2}$ yields $A=\frac{3}{4}$, and substituting back into one of these equations yields $B=-\frac{1}{4}$. Now we have ensured that W defined on $[0, \infty)$ by

$$
W(t)=\left\{\begin{array}{ccc}
\frac{1}{4} t(3-t) & \text { if } & 0 \leq t<2 \\
\frac{1}{t} & \text { if } & 2 \leq t<\infty
\end{array}\right.
$$

is smooth, with derivative W^{\prime} defined on $[0, \infty)$ by

$$
W^{\prime}(t)=\left\{\begin{array}{cll}
\frac{1}{4}(3-2 t) & \text { if } & 0 \leq t<2 \\
-\frac{1}{t^{2}} & \text { if } & 2 \leq t<\infty
\end{array}\right.
$$

The figure below shows the corresponding graphs, (a) $y=W(t)$ and (b) $y=W^{\prime}(t)$. Note the smoothness of the join between different curves.
(a)

(b)

11. Similarly, we have

$$
W^{\prime}(t)=\left\{\begin{array}{lll}
\frac{1}{4} A-\frac{1}{2} t & \text { if } & 0 \leq t<1 \\
\frac{B}{(B+t)^{2}} & \text { if } & 1<t<\infty
\end{array}\right.
$$

So the left-handed derivative as $t \rightarrow 1^{-}$is $W^{\prime}\left(1^{-}\right)=\frac{1}{4} A-\frac{1}{2}$, and the right-handed derivative as $t \rightarrow 1^{+}$is $W^{\prime}\left(1^{+}\right)=\frac{B}{(B+1)^{2}}$. Also, the left-handed limit of W itself as $t \rightarrow 1^{-}$is $W\left(1^{-}\right)=\frac{1}{4}(A-1)$, and the right-handed limit of W itself is $W\left(1^{+}\right)=\frac{1}{B+1}$. For W to be smooth, we require both $W\left(1^{-}\right)=W\left(1^{+}\right)$and $W^{\prime}\left(1^{-}\right)=W^{\prime}(1+)$, hence

$$
\begin{aligned}
& \frac{1}{4} A-\frac{1}{4}=\frac{1}{B+1} \\
& \frac{1}{4} A-\frac{1}{2}=\frac{B}{(B+1)^{2}}
\end{aligned}
$$

Subtraction yields $\frac{1}{4}=\frac{1}{B+1}-\frac{B}{(B+1)^{2}}$, or $B^{2}+2 B-3=(B+3)(B-1)=0$, after simplification. So either $B=-3$ or $B=1$. But W would be discontinuous at $t=3$ for $B=-3$; therefore, we must take $B=1$, with $A=1+\frac{4}{B+1}=3$. Now we have ensured that W defined on $[0, \infty)$ by

$$
W(t)=\begin{array}{ccc}
\frac{1}{4} t(3-t) & \text { if } & 0 \leq t<1 \\
\frac{t}{1+t} & \text { if } & 1 \leq t<\infty
\end{array}
$$

is smooth, with derivative W^{\prime} defined on $[0, \infty)$ by

$$
W^{\prime}(t)=\begin{array}{cll}
\frac{1}{4}(3-2 t) & \text { if } & 0 \leq t<1 \\
\frac{1}{(1+t)^{2}} & \text { if } & 1 \leq t<\infty
\end{array}
$$

12. $A=\frac{1}{4}, B=-\frac{1}{4}$.
13. $A=\frac{1}{4}, B=4$.
14. $A=7, B=1$.
15. $A=4, B=1$.
16. Making multiple use of our special results from Lecture 6 , set:

$$
\begin{array}{lll}
y=x^{2}+3 & \Longrightarrow \frac{d y}{d x}=2 x+0=2 x & v=w^{1 / 3} \quad \Longrightarrow \frac{d v}{d w}=\frac{1}{3} w^{-2 / 3} \\
z=\sqrt{y} & \Longrightarrow \frac{d z}{d y}=\frac{1}{2} y^{-1 / 2} & u=1+v \quad \Longrightarrow \quad \frac{d u}{d v}=0+1=1 \\
w=2+z & \Longrightarrow \frac{d w}{d z}=0+1=1 \quad s=u^{1 / 4} \quad \Longrightarrow \quad \frac{d s}{d u}=\frac{1}{4} u^{-3 / 4}
\end{array}
$$

Now, from repeated application of (20a):

$$
\begin{aligned}
& \frac{d}{d x} \sqrt[4]{1+{ }^{3} \overline{2+\sqrt{x^{2}+3}}}=\frac{d}{d x} \sqrt[4]{1+{ }^{3} \overline{2+\sqrt{y}}}=\frac{d}{d x}{ }^{4} \overline{1+\sqrt[3]{2+z}} \\
& =\frac{d}{d x}\left\{{ }^{4} \overline{1+w^{1 / 3}}\right\}=\frac{d}{d x}\{\sqrt[4]{1+v}\}=\frac{d}{d x}\left\{u^{1 / 4}\right\}=\frac{d s}{d x} \\
& =\frac{d s}{d z} \frac{d z}{d x}=\frac{d s}{d v} \frac{d v}{d z} \frac{d z}{d x}=\frac{d s}{d v} \frac{d v}{d z} \frac{d z}{d x} \\
& =\frac{d s}{d u} \frac{d u}{d v} \quad \frac{d v}{d w} \frac{d w}{d z} \quad \frac{d z}{d y} \frac{d y}{d x} \\
& =\frac{d s}{d u} \frac{d u}{d v} \frac{d v}{d w} \frac{d w}{d z} \frac{d z}{d y} \frac{d y}{d x} \\
& =\frac{1}{4} u^{-3 / 4} \cdot 1 \cdot \frac{1}{3} w^{-2 / 3} \cdot 1 \cdot \frac{1}{2} y^{-1 / 2} \cdot 2 x \\
& =\frac{x}{12\left\{1+\left(2+\sqrt{x^{2}+3}\right)^{1 / 3}\right\}^{3 / 4}\left(2+\sqrt{x^{2}+3}\right)^{2 / 3} \sqrt{x^{2}+3}}
\end{aligned}
$$

after simplification-absolutely gruesome, but perfectly straightforward.

[^0]: *If we assume, as we are going to, that if the function called U in (20b) is a join, then it doesn't have subdomains on which it is constant. Then, on the one hand, we don't need the result for that particular subdomain to begin with; and on the other hand, the result is still true for the entire domain-but the derivation is trickier, and we prefer to avoid unnecessary complications.

[^1]: ${ }^{\dagger}$ It is also defined on $[a, c) \cup(c, b]$ if we have a right- and left-hand derivative at $t=a$ and $t=b$, respectively-see the remark at the end of Lecture 6, which also implies that $F^{\prime}(c)$ and $G^{\prime}(c)$ in (37) must be interpreted as left- and right-hand derivatives, respectively.

