
7. Derivatives of combinations

So far we have defined five types of function combination, namely, sum (or difference),
product, quotient, composition and join. Moreover, we already have a general result for
the derivative of one of these types, namely, equation (17) of Lecture 6:ddtff(t) + g(t)g = f 0(t) + g0(t): (1)

In this lecture we obtain analogous results for the other four types.
Before beginning this task, we briefly digress to note that we also already have a

general result for the derivative of a multiple, namely, equation (15) of Lecture 6:ddtf�f(t)g = �f 0(t): (2)

Because (2) implies ddtf�f(t)g = �g0(t) as well, (1)-(2) are easily combined to yield a single
result for the derivative of an arbitrary linear combination of two functions, namely,ddtf�f(t) + �g(t)g = �f 0(t) + �g0(t): (3)

This equation yields the derivative of both a sum (with � = � = 1) and a difference (with� = 1; � = �1). Now back to the task at hand.
We begin by obtaining a general result for the derivative of a product. Suppose thatu = F (t), v = G(t) and y = uv = F (t)G(t): (4)

Then, as t changes infinitesimally to t + Æt, u changes infinitesimally to u+ Æu, v changes
infinitesimally to v + Æv and y changes infinitesimally to y + Æy in such a way thaty + Æy = (u+ Æu)(v + Æv) = uv + u Æv + Æu v + Æu Æv: (5)

Subtracting (4) from (5) yields Æy = Æu v + u Æv + Æu Æv: (6)

Dividing by Æt yields ÆyÆt = ÆuÆt v + u ÆvÆt + Æu ÆvÆt : (7)

Applying the combination rule yields

limÆt!0 ÆyÆt = limÆt!0 ÆuÆt limÆt!0 v + limÆt!0u limÆt!0 ÆvÆt + limÆt!0 Æu limÆt!0 ÆvÆt : (8)

But Æu! 0 as Æt! 0, while u and v do not change. Hence (8) reduces todydt = dudt v + u dvdt + 0 � dvdt = dudt v + u dvdt : (9a)



In other words, on using (4), our general result isddtfF (t)G(t)g = F 0(t)G(t) + F (t)G0(t); (9b)

though we usually apply this product rule without explicitly defining F orG. For example:ddtft2 sin(t)g = ddtft2g sin(t) + t2 ddtfsin(t)g = 2t sin(t) + t2 
os(t) = tf2 sin(t) + t � 
os(t)g
on using our special results. Note that (9a) is readily extended to deal with a product of
any number of functions; for example, with three functions, we haveddtfuvwg = ddtfuv � wg = ddtfuvgw + uv dwdt = �dudt v + u dvdt�w + uv dwdt= dudt v w + u dvdt w + uv dwdt (10a)

or, equivalently,ddtfF (t)G(t)H(t)g = F 0(t)G(t)H(t) + F (t)G0(t)H(t) + F (t)G(t)H 0(t): (10b)

Next we obtain a general result for the derivative of a quotient. Again suppose thatu = F (t) and v = G(t), but now with

y = uv = F (t)G(t) (11)

(and, needless to say, v 6= 0, so that any t for which G(t) = 0 lies outside the domain of
the quotient). Then vy = u: (12)

Applying the product rule: dvdt y + v dydt = dudt : (13)

Rearranging and using (12):

v dydt = dudt � dvdt y = dudt � dvdt uv : (14)

Hence, dividing by v,

dydt = 1v dudt � dvdt uv2 = dudt v � udvdtv2 : (15a)

In other words, on using (11), our general result isddt �F (t)G(t)� = F 0(t)G(t)� F (t)G0(t)fG(t)g2 : (15b)
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Again, we usually apply this quotient rule without explicitly defining F orG. For example:ddt � sin(t)
os(t)� = ddtfsin(t)g 
os(t)� sin(t) ddtf
os(t)gf
os(t)g2= 
os(t) � 
os(t)� sin(t) f� sin(t)g
os2(t)= 
os2(t) + sin2(t)
os2(t) = 1
os2(t) = � 1
os(t)�2
on using our special results. A neater way to rewrite this result isddtftan(t)g = se
2(t): (16)

We can use the quotient rule to extend the result thatddx fxrg = r xr�1 (17)

if r is a positive integer to negative-integer exponents. For s > 0, we haveddx �x�s	 = ddx � 1xs� = ddx (1) � xs � 1 � ddx (xs)(xs)2 = 0 � xs � 1 � sxs�1x2s = �sx�s�1:
This result agrees with (17) for r = �s. Now we know that (17) holds for any integer,
regardless of whether it is positive or negative.

A general result for the derivative of a composition is even simpler to derive than the
product or the quotient rule.� Let x be the independent variable, let y depend upon x, and
let z in turn depend on y. Then three derivatives are involved, because y is changing withx and z is changing with y, which in turn makes z change with x. The three derivatives
are dydx = limÆx!0 ÆyÆx; dzdy = limÆy!0 ÆzÆy and

dzdx = limÆx!0 ÆzÆx;
respectively, and we assume that they all exist, which requires in particular that Æy ! 0
as Æx! 0, and vice versa. Thus applying the combination rule toÆzÆx = ÆzÆy ÆyÆx (18)

we obtain limÆx!0 ÆzÆx = limÆx!0 ÆzÆy limÆx!0 ÆyÆx = limÆy!0 ÆzÆy limÆx!0 ÆyÆx (19)

or dzdx = dzdy dydx: (20a)�If we assume, as we are going to, that if the function called U in (20b) is a join, then it doesn’t have
subdomains on which it is constant. Then, on the one hand, we don’t need the result for that particular
subdomain to begin with; and on the other hand, the result is still true for the entire domain—but the
derivation is trickier, and we prefer to avoid unnecessary complications.
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Note that if y = U(x), z = P (y) and the composition is called R, as in Lecture 2, so thatz = R(x), then (20a) becomes R0(x) = P 0(y)U 0(x); that is,R(x) = P (U(x)) =) R0(x) = P 0(U(x))U 0(x): (20b)

This general result for the derivative of a composition should perhaps be called the com-
position rule—but it isn’t, it’s called the chain rule.

For example, suppose you wish to calculateddx �sin�1x�� : (21)

Then set y = 1x =) dydx = � 1x2 (22)

(from Lecture 5) and set

z = sin(y) =) dzdy = 
os(y) (23)

(again from Lecture 5) so that you can calculate (21) in terms of (20a) asddx �sin�1x�� = ddx fsin (y)g = dzdx = dzdy dydx = 
os(y) �� 1x2�= � 1x2 
os(y) = � 1x2 
os�1x� : (24)

In practice, the most useful expression of the chain rule is often neither (20a) nor
(20b), but rather a hybrid of the two: we set z = P (y) in (20a) to obtainddxfP (y)g = ddyfP (y)g dydx: (25)

Thus, for example, ddxfsin(y)g = ddyfsin(y)g dydx = 
os(y) dydx so thatddxfsin(y)g = 
os(y) dydx (26)

holds for an arbitrary relationship between x and y (regardless of whether we know it).
In the case where y = 1=x, (26) reduces to (24); in the case where y = x2, (26) yieldsddxfsin(x2)g = 
os(x2) ddxfx2g = 2x 
os(x2); (27)

in the case where y = x3, (26) yieldsddxfsin(x3)g = 
os(x3) ddxfx3g = 3x2 
os(x3); (28)

and so on.
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We can use the chain rule to extend our result for the derivative of a square root from
Lecture 3 to a result for the derivative of an arbitrary n-th root. Lety = npx = x 1n (29)

so that yn = x =) ddx fyng = ddxfxg=) ddy fyng dydx = 1
=) nyn�1 dydx = 1

(30)

by the chain rule. Hencedydx = 1nyn�1 = 1ny1�n = 1n�x 1n �1�n = 1nx 1n�1; (31)

which agrees with (17) for r = 1n . But any rational number r can be written as r = m=n,
where m is an integer and n is a positive integer. So we can apply the chain rule withy = x1=n and z = ym to obtainddx fxrg = ddx �xm=n	 = ddx n�x1=n�mo = ddx fymg = dzdx= dzdy dydx = mym�1 1n x�1+1=n = m �x1=n�m�1 1n x�1+1=n= mxfm�1g=n 1n x�1+1=n = mn xm=n�1=n�1+1=n = r xr�1

(32)

for any rational number.
Finally, the simplest case in many ways is that of a join: all you do is differentiate

separately on each contiguous subdomain. That is, if W is defined on [a; b℄ by either

W (t) = (F (t) if a � t < 
G(t) if 
 � t � b (33a)

or W (t) = (F (t) if a � t � 
G(t) if 
 < t � b (33b)

then its derivative W 0 is defined on at least (a; 
) [ (
; b) byy
W 0(t) = (F 0(t) if a < t < 
G0(t) if 
 < t < b: (34)

yIt is also defined on [a; 
) [ (
; b℄ if we have a right- and left-hand derivative at t = a and t = b,
respectively—see the remark at the end of Lecture 6, which also implies that F 0(
) and G0(
) in (37) must
be interpreted as left- and right-hand derivatives, respectively.
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On the other hand, there is a question that doesn’t arise in the other three cases, namely,
whether the resulting derivative (34) must have a hole in its domain at t = 
 (as in Figure
4 of Lecture 4), or whether it is removable (as described in Figure 3 of Lecture 4).

To deal with this question, we find it convenient to have a more compact notation for
left- and right-handed limits. Accordingly, we definew(a+) = limx!a+ w(x); w(a�) = limx!a� w(x) (35)

for any function called w—including any derivative, so (35) automatically impliesW 0(a+) = limx!a+W 0(x); W 0(a�) = limx!a�W 0(x): (36)

It follows immediately from (34) that the left- and right-handed limits of W 0 at t = 
 areW 0(
�) = limt!
�W 0(t) = F 0(
�) and W 0(
+) = limx!
+W 0(t) = G0(
+); (37)

respectively. If these two limits are equal, that is, ifF 0(
�) = G0(
+); (38)

then—exactly as in Lecture 4—we can remove the hole by defining W 0(
) to be their com-
mon value. If F 0(
�) 6= G0(
+), on the other hand, then W 0(
) is undefined.

We illustrate these ideas with two familiar joins from Lecture 2, namely, photosyn-
thesis rate L(u) = (2�p22+p2 �2 +p2� 12u�u if 0 � u � 2 +p21 if 2 +p2 < u <1 (39)

and diastolic inflow

v(t) = (816001127 (30t� 23)(5t� 2)(4t� 3) if 0:4 � t < 0:751400033 (12t� 11)(4t� 3)(10t� 9) if 0:75 � t � 0:9: (40)

From (33)-(34), (3) and (9) with the obvious modifications, we obtain

L0(u) =
8>><>>:

ddu (2�p22 +p2 (2 +p2� 12u)u) if 0 � u < 2 +p2ddu f1g if 2 +p2 < u <1 (41a)

= 8<:2�p22 +p2 ddu ��2 +p2� 12u�u	 if 0 � u < 2 +p20 if 2 +p2 < u <1 (41b)

= (2�p22+p2 �2 +p2� u� if 0 � u < 2 +p20 if 2 +p2 < u <1 (41c)

6



in the first instance, with L0(2 +p2) undefined; see Exercise 1. From (41c), however, with
 = 2 + p2 we have L0(
�) = 2�p22+p2 �2 +p2� 
� = 0, which equals L0(
+). Hence (38) is

satisfied with W = L, and so we can re-define L0 as a continuous function without a hole:L0(u) = (2�p22+p2 �2 +p2� u� if 0 � u � 2 +p20 if 2 +p2 < u <1: (42)

On the other hand, when we differentiate v (Exercise 2), we obtain

v0(t) = (816001127 f1800t2 � 2300t+ 709g if 0:4 � t < 0:752800033 f720t2 � 1232t+ 525g if 0:75 < t � 0:9: (43)

after simplification, so that v0(0:75�) = 816001127 f1800(0:75)2�2300(0:75)+709g � �253 whilev0(0:75+) = 2800033 f720(0:75)2 � 1232(0:75) + 525g � 5091. Thus v0(0:75�) 6= v0(0:75+), and
the graph of v0 has a hole at t = 0:75; see Figure 1.
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Figure 1: (a) y = v(t) and (b) y = v0(t) defined by (40) and (43), respectively.

We conclude by noting that a function whose derivative is a continuous function—if
necessary, after a removable hole has been filled—is called a smooth function. Thus L de-
fined by (39) is smooth because L0 defined by (42) is continuous; whereas v defined by (40)
is not smooth, because v0 defined by (43) is discontinuous where t = 0:75. Alternatively,
given the geometrical interpretation of the differential coefficient (Lecture 5), a function is
smooth if its graph has no corners, and otherwise is not smooth (as illustrated by Figure
1). In practice, however, even non-smooth functions are usually piecewise-smooth, in the
sense that if a graph has n corners then the function’s domain can be decomposed inton + 1 subdomains with the corners always at endpoints, in such a way that the function
is smooth on every subdomain, despite not being smooth on its entire domain.

Exercises

1. Verify (42).
Hint: Use (33)-(34), (3) and (9) with the obvious modifications.
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2. Verify (43).
Hint: Apply (10) and (34) to (40).

3. Find
dydt for y = 1� t1 + t where t 6= �1.

4. (a) Find
dydt for y = tB + t , where B is a constant and t 6= �B.

(b) Find the equation of the tangent line to the curve y = 2x1+2x at the point with
coordinates (0; 0).

(c) Find the equation of the tangent line to the curve y = 2x1+2x at the point with

coordinates
�12 ; 12�.

(d) Where do these two tangent lines meet?

(e) Sketch the graph of y = 2x1+2x on
��12 ; 1� together with its vertical asymptote

and both tangent lines, clearly indicating both their points of tangency and
their point of intersection.

5. Find
dydt for y = t2B � t , where B is a constant and t 6= B.

6. Find
dydt for y = pt3 + 2t where t > 0.

7. Find
dydt for y = t2pt3 + 2t, t > 0.

8. For f defined by f(t) = t sin(�t)pt3 + 2t, find f 0(1).
9. Find

dydt for y = tan �pt3 + 2t� where 0 < t < 12 .

10. A smooth function W is defined on [0;1) by

W (t) = 8<:At+Bt2 if 0 � t < 21t if 2 � t <1
where A and B are constants. What must be their values?

11. A smooth function W is defined on [0;1) by

W (t) = 8<:14t(A� t) if 0 � t < 1tB + t if 1 � t <1
where A and B are positive constants. What must be their values?
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12. A smooth function W is defined on [0;1) by

W (t) = 8<:At+Bt3 if 0 � t < 11� t1 + t if 1 � t <1
where A and B are constants. What must be their values?

13. A smooth function W is defined on [0; 3℄ by

W (t) = 8<:At3 if 0 � t < 2t2B � t if 2 � t � 3
where A and B are positive constants. What must be their values?

14. A smooth function W is defined on [0;1) by

W (t) = 8<:At�Bt2 if 0 � t < 316tt+ 1 if 3 � t <1
where A and B are positive constants. What must be their values?

15. A smooth function W is defined on [0;1) by

W (t) = 8<:At�Bt2 if 0 � t < 19tt+ 2 if 1 � t <1
where A and B are positive constants. What must be their values?

16. Calculate
ddx � 4q1 + 3p2 +px2 + 3�.

Suitable problems from standard calculus texts

Stewart (2003): p. 191, ## 15-16 and 19-27; p. 197, ## 7-11, 19-24, 27, 28, 31, 32 and 34-38;
p. 216, ## 1-7 and 9-19; and p. 224, ## 1-4, 7-14, 17-20, 25-27, 29, 30, 32-35, 37-41, 43-45, 48
and 51-54.

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.
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Solutions to selected exercises

3. From the quotient rule we havedydt = ddtf1� tg � (1 + t)� (1� t) � ddtf1 + tg(1 + t)2= (0� 1) � (1 + t)� (1� t)(0 + 1)(1 + t)2 = �2(1 + t)2
because ddtf1� tg = ddtf1g � ddtftg = 0� 1. Alternatively

y = 1� t1 + t = 2� 1� t1 + t = 2� (1 + t)1 + t = 21 + t � 1 = 2(1 + t)�1 � 1
impliesdydt = 2 ddtf(1 + t)�1g � ddtf1g = 2 ddtf(1 + t)�1g � 0 = 2 ddtf(1 + t)�1g:
But from the chain rule we haveddtfx�1g = ddxfx�1g � dxdt = � 1x2 dxdt
on using a special result from Lecture 5. Hence with x = 1 + t we obtaindydt = 2 ddtfx�1g = � 2x2 dxdt = � 2(1 + t)2 ddtf1+tg = � 2(1 + t)2f0+1g = �2(1 + t)2
as before.

4. (a) From the quotient rule we havedydt = ddtftg � (B + t)� t � ddtfB + tg(B + t)2= 1 � (B + t)� t � (0 + 1)(B + t)2 = B(B + t)2 :
(b) Note that y = 2x1 + 2x = x12 + x:
But from (a) with B = 12 we haveddt � t12 + t� = 12(12 + t)2 :
It follows immediately thatddx � x12 + x� = 12(12 + x)2 = 2(1 + 2x)2 :
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So the first tangent line has slope

m1 = ddx � x12 + x�����x=0 = 2(1 + 2 � 0)2 = 2
and hence equation y � 0 = m1(x� 0) or y = 2x.

(c) Likewise, the second tangent line has slope

m2 = ddx � x12 + x�����x= 12 = 2�1 + 2 � 12�2 = 12
and hence equation y � 12 = m2(x� 12) or y = 12x+ 14 .

(d) These lines meet where 2x = 12x + 14 or x = 16 , and hence y = 13 ; in other words,
at the point with coordinates

�16 ; 13�.
(e)

1
�����

2
1

x
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-1

1

2

3
y

6. Squaring, we have

y2 = t3 + 2t =) ddtfy2g = ddtft3 + 2tg =) 2ydydt = 3t2 + 2:
Hence dydt = 3t2 + 22y = 3t2 + 22pt3 + 2t :
Alternatively, set x = t3 + 2t. Then, on using the chain rule, the linear-combination
rule and special results, we havedydt = ddtfpxg = ddxfpxgdxdt = 12px dxdt = 12px ddtft3 + 2tg

= 12px � ddtft3g+ 2 ddtftg� = 12px �3t2 + 2 � 1� = 3t2 + 22pt3 + 2t
as before.
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10. Using our general results for the derivative of a join or sum together with a special
result from Lecture 5, we find that

W 0(t) = 8<:A+ 2Bt if 0 � t < 2� 1t2 if 2 < t <1:
So the left-handed derivative as t ! 2� is W 0(2�) = A + 2B � 2 = A + 4B, and the
right-handed derivative as t ! 2+ is W 0(2+) = � 122 = �14 . For W to be smooth,
its derivative must be continuous everywhere, and hence in particular at t = 2; so
we require W 0(2�) = W 0(2+), or A + 4B = �14 . But W can’t have a continuous
derivative unless it is continuous itself, so we also require W (2�) = W (2+), i.e.,A � 2+B � 22 = 12 or 2A+4B = 12 . Subtracting A+4B = �14 from 2A+4B = 12 yieldsA = 34 , and substituting back into one of these equations yields B = �14 . Now we
have ensured that W defined on [0;1) by

W (t) = 8<:14t(3� t) if 0 � t < 21t if 2 � t <1
is smooth, with derivative W 0 defined on [0;1) by

W 0(t) = 8<:14(3� 2t) if 0 � t < 2� 1t2 if 2 � t <1:
The figure below shows the corresponding graphs, (a) y = W (t) and (b) y = W 0(t).
Note the smoothness of the join between different curves.
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11. Similarly, we have

W 0(t) = 8<:14A� 12t if 0 � t < 1B(B + t)2 if 1 < t <1:
So the left-handed derivative as t ! 1� is W 0(1�) = 14A � 12 , and the right-handed
derivative as t ! 1+ is W 0(1+) = B(B+1)2 . Also, the left-handed limit of W itself ast! 1� is W (1�) = 14(A� 1), and the right-handed limit of W itself is W (1+) = 1B+1 .
For W to be smooth, we require both W (1�) = W (1+) and W 0(1�) = W 0(1+), hence14A� 14 = 1B+114A� 12 = B(B+1)2
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Subtraction yields 14 = 1B+1 � B(B+1)2 , or B2 + 2B � 3 = (B + 3)(B � 1) = 0, after

simplification. So either B = �3 or B = 1. But W would be discontinuous at t = 3
for B = �3; therefore, we must take B = 1, with A = 1 + 4B+1 = 3. Now we have
ensured that W defined on [0;1) by

W (t) = (14t(3� t) if 0 � t < 1t1+t if 1 � t <1
is smooth, with derivative W 0 defined on [0;1) by

W 0(t) = (14(3� 2t) if 0 � t < 11(1+t)2 if 1 � t <1:
12. A = 14 ; B = �14 .

13. A = 14 ; B = 4.

14. A = 7; B = 1.

15. A = 4; B = 1.

16. Making multiple use of our special results from Lecture 6, set:y = x2 + 3 =) dydx = 2x+ 0 = 2x v = w1=3 =) dvdw = 13w�2=3
z = py =) dzdy = 12y�1=2 u = 1 + v =) dudv = 0 + 1 = 1
w = 2 + z =) dwdz = 0 + 1 = 1 s = u1=4 =) dsdu = 14u�3=4

Now, from repeated application of (20a):ddx� 4r1 + 3q2 +px2 + 3� = ddx ( 4r1 + 3q2 +py) = ddx � 4q1 + 3p2 + z�
= ddx n 4p1 + w1=3o = ddx n 4p1 + vo = ddx �u1=4	 = dsdx= dsdz dzdx = �dsdv dvdz� dzdx = dsdv dvdz dzdx= �dsdu dudv�� dvdw dwdz ��dzdy dydx�= dsdu dudv dvdw dwdz dzdy dydx= 14u�3=4 � 1 � 13w�2=3 � 1 � 12y�1=2 � 2x= x12�1 + �2 +px2 + 3�1=3	3=4 �2 +px2 + 3�2=3px2 + 3

after simplification—absolutely gruesome, but perfectly straightforward.
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