7. Derivatives of combinations

So far we have defined five types of function combination, namely, sum (or difference),
product, quotient, composition and join. Moreover, we already have a general result for
the derivative of one of these types, namely, equation (17) of Lecture 6:

SO +0) = F©)+40) )

In this lecture we obtain analogous results for the other four types.
Before beginning this task, we briefly digress to note that we also already have a
general result for the derivative of a multiple, namely, equation (15) of Lecture 6:

d ,
SHaf®) = ar'() @

Because (2) implies {3/ (t)} = B¢ (t) as well, (1)-(2) are easily combined to yield a single
result for the derivative of an arbitrary linear combination of two functions, namely,

CLor) + 90} = af'() +69'(1) ©)

This equation yields the derivative of both a sum (with a = 3 = 1) and a difference (with
a = 1,0 = —1). Now back to the task at hand.
We begin by obtaining a general result for the derivative of a product. Suppose that
u=F(t),v=G(t) and
y = uw = F(t)G(t). 4)

Then, as t changes infinitesimally to ¢ + ¢, u changes infinitesimally to u + du, v changes
infinitesimally to v + dv and y changes infinitesimally to y + dy in such a way that

y+9dy = (u+du)(v+dv) = uv+udv+ duv + dudv. 5)
Subtracting (4) from (5) yields
oy = duv+ udv+ dudv. (6)

Dividing by ét yields
oy ou ov v

Applying the combination rule yields

4} 4] J J
lim 27 = lim 2 lim v + lim w lim o + lim du lim o (8)
§t—0 Ot §t—0 Ot 6t—0  §t—0 6t—0 Ot  6t—0  6t—0 Ot

But u — 0 as t — 0, while u and v do not change. Hence (8) reduces to

dy_du+dv+ dv_d_u+d_v
= v+u = ZUtu_.

dt dt dt dt (%a)



In other words, on using (4), our general result is

;%{Fﬁﬂﬂﬂ} = F'(t)G(t) + F(t) G'(t), (9b)

though we usually apply this product rule without explicitly defining F' or GG. For example:

%{t2 sin(t)} = %{tQ} sin(t) + ¢* %{sin(t)} = 2tsin(t) + t* cos(t) = t{2sin(t) + ¢ - cos(t)}
on using our special results. Note that (9a) is readily extended to deal with a product of
any number of functions; for example, with three functions, we have

i{ }—i{}—i{}+d_w—d_u+d_v _|_d_w
GLUWE = S quUsw) = Ui wtuwr s = ) vt pw A —
(10a)
Ly dw
= Zuwtuwtu—
or, equivalently,
d
E{F(t)G(t)H(t)} = F'(t)G(t)H(t)+ F(t)G'(t) H(t) + F(t) G(t) H'(t). (10b)

Next we obtain a general result for the derivative of a quotient. Again suppose that
u = F(t) and v = G(t), but now with

u F()

T G ()
(and, needless to say, v # 0, so that any ¢ for which G(¢) = 0 lies outside the domain of
the quotient). Then

vy = u. (12)
Applying the product rule:
dv dy du
Rearranging and using (12):
dy du dv du dv u
Va T @V T @ v (4
Hence, dividing by v,
du dv
dy ldu dv u %v - u%
= = I = a  at 1
dt vdt  dt v? v? (152)

In other words, on using (11), our general result is

d{ﬂﬂ}_.P@G@F@Gﬁ)

dt | G(t) {G())?

(15b)



Again, we usually apply this quotient rule without explicitly defining F' or GG. For example:

d  sin(?) _ 4 {sin(t)} cos(t) — sin(t) % {cos(t)}
dt  cos(t) {cos(t)}?
_ cos(t) - cos(t) — sin(t) {— sin(¢)}
cos?(t)
_cos?(t) +sin*(t) 1 B 1\’
B cos?(t) © cos(t) <cos(t)>

on using our special results. A neater way to rewrite this result is
d 2
a{tan(t)} = sec”(t). (16)
We can use the quotient rule to extend the result that
d
Ir {z"} = ra"! (17)

if r is a positive integer to negative-integer exponents. For s > 0, we have

d {2} d 1 4 (1)-a* 1L (2%) 025 —1.sz°! o
r - = = = —su )
dz dr x° ((L’S)Q xr2s
This result agrees with (17) for r = —s. Now we know that (17) holds for any integer,

regardless of whether it is positive or negative.

A general result for the derivative of a composition is even simpler to derive than the
product or the quotient rule.” Let x be the independent variable, let y depend upon z, and
let z in turn depend on y. Then three derivatives are involved, because y is changing with
z and z is changing with y, which in turn makes z change with z. The three derivatives

e d sy d 5 d 5
Y — tim —y, Z tim 2 and & = lim &,
dr  sz—0dz  dy  sy—0dy dr  s2—0 0z’

respectively, and we assume that they all exist, which requires in particular that dy — 0
as 0z — 0, and vice versa. Thus applying the combination rule to

we obtain 5 e by R
fimge = Mmy, dms, = dmy, bm )
or dz dz dy
i = dydo (20a)

*If we assume, as we are going to, that if the function called U in (20b) is a join, then it doesn’t have
subdomains on which it is constant. Then, on the one hand, we don’t need the result for that particular
subdomain to begin with; and on the other hand, the result is still true for the entire domain—but the
derivation is trickier, and we prefer to avoid unnecessary complications.
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Note that if y = U(z), 2 = P(y) and the composition is called R, as in Lecture 2, so that
z = R(z), then (20a) becomes R'(x) = P'(y) U'(x); that s,

R(z) = P(U(z)) = R'(z) = P'(U(z))U'(z). (20b)

This general result for the derivative of a composition should perhaps be called the com-
position rule—but it isn’t, it’s called the chain rule.
For example, suppose you wish to calculate

d 1
— sin — . 21
oo sin (21)
Then set . p |
Y
_ = = 22
Y x — dx x? 22)
(from Lecture 5) and set
. dz
z = sin(y) = ol cos(y) (23)
Y

(again from Lecture 5) so that you can calculate (21) in terms of (20a) as

d . 1 d (sin ()} dz dz dy cos(y) 1
— sin — = — {sin = — = —— = ——
dx x dz Y dz dy dx Y x?
(24)
1 1 1
= —;cos(y) = —5cos —

In practice, the most useful expression of the chain rule is often neither (20a) nor
(20b), but rather a hybrid of the two: we set z = P(y) in (20a) to obtain

LPWY = 2 (Pu) 25)

Thus, for example, L {sin(y)} = %{sin(y)} j—g = cos(y) % so that

d dy

——{sin(y)} = cos(y) =

dx (26)

holds for an arbitrary relationship between z and y (regardless of whether we know it).
In the case where y = 1/z, (26) reduces to (24); in the case where y = 22, (26) yields

d . 2 o 2 i 27 2y.
%{sm(m )} = cos(z )dx {z°} = 2z cos(z?); (27)

in the case where y = z?, (26) yields

Zrlsin?)} = cos(a®) {a") = 32 cos(a?); 28)

and so on.



We can use the chain rule to extend our result for the derivative of a square root from
Lecture 3 to a result for the derivative of an arbitrary n-th root. Let

so that
y =r == %{y}—%{m}
d dy
= —{y"}-—= =1
a W' (30)
dy
n—1-"J — 1
by the chain rule. Hence
dy 1 1, 1, 11x 1 1,
dr ~ nyn 1 n? N n(T ) -t 31

which agrees with (17) for r = % But any rational number r can be written as r = m/n,
where m is an integer and n is a positive integer. So we can apply the chain rule with

y = z'/" and z = y™ to obtain
d d d d dz
— r = — m/n - { 1/n m} _ Y om _ gz
dZ dy -1 ]- _1+1/ 1/ m—1 ]. _1+1/
dy dx my nt m (x ) " (32)
et ml‘{mil}/n l$71+1/n — Exm/nfl/nflJrl/n — Tmr'fl
n n

for any rational number.
Finally, the simplest case in many ways is that of a join: all you do is differentiate
separately on each contiguous subdomain. That is, if W is defined on |[a, b] by either

_JF(t) if a<t<ec
Wi = {G(t) if e<t<b (332)
or

W(t)

{F(t) if a<t<c (33b)

Gt) if c<t<b

then its derivative W’ is defined on at least (a, c) U (¢, b) by'

W) = F'(t) if a<t<ec (34)
@) if e<t<b.

1t is also defined on [a,c) U (c,b] if we have a right- and left-hand derivative at + = a and ¢ = b,
respectively—see the remark at the end of Lecture 6, which also implies that F'(c) and G'(c) in (37) must
be interpreted as left- and right-hand derivatives, respectively.
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On the other hand, there is a question that doesn’t arise in the other three cases, namely,
whether the resulting derivative (34) must have a hole in its domain at ¢t = ¢ (as in Figure
4 of Lecture 4), or whether it is removable (as described in Figure 3 of Lecture 4).

To deal with this question, we find it convenient to have a more compact notation for
left- and right-handed limits. Accordingly, we define

wat) = limw@), w(@) = lin w) (35)

for any function called w—including any derivative, so (35) automatically implies

W'(a™) = lim W'(x), W'(a™) = lim W'(z). (36)

z—at z—a~

It follows immediately from (34) that the left- and right-handed limits of W' at ¢ = c are

W'(c )= lim W'(t) = F'(¢c’) and W'(c")= lim W'(t) = G'(c"), (37)

t—c™ z—ct

respectively. If these two limits are equal, that is, if
F'(er) = G'(c"), (38)

then—exactly as in Lecture 4—we can remove the hole by defining 1¥'(c) to be their com-
mon value. If F'(¢”) # G'(c¢*), on the other hand, then W'(c) is undefined.
We illustrate these ideas with two familiar joins from Lecture 2, namely, photosyn-

thesis rate
L  EALEVI-R)u i 0<u<24vd
u =
1 if 24V2<u<o

(39)

and diastolic inflow

o(t) = 81600(30t — 23)(5¢ — 2)(4t —3)  if 0.4 <t<0.75 (10)

1430300(1% — 11)(4¢ — 3)(10t — 9) if 0.75<¢<0.9.

From (33)-(34), (3) and (9) with the obvious modifications, we obtain

i 27\/5(2+\/§—%u)u if 0<u<2+4+V2
L) = {du 2+V2 (41a)
%{1} if 24+v2<u<oo
22 d . .
il _1 < 2
_ 2+\/§du{(2+\/_ 2u)u} if 0<u<2++2 (41b)
0 if 24vV2<u<oo
B §;£(2+\/§—u) if 0<u<2++2 410
0 if 24+4vV2<u<o



in the first instance, with L'(2 + v/2) undefined; see Exercise 1. From (41c), however, with
c=2++v2wehave L'(c) = ;;g (24 v2 — ¢) = 0, which equals L'(c"). Hence (38) is
satisfied with W = L, and so we can re-define L' as a continuous function without a hole:

2V2 (242 —u) if 0<u<2+4V2

D) = 22 42
(u) 0 if 2+v2<u< oo (42)
On the other hand, when we differentiate v (Exercise 2), we obtain
81600 £1800¢2 — 2300t if 04<t<0.
St = { 300t + 709} if 04<t<0.75 (43)

28000 {72082 — 1232t + 525} if 0.75<t<0.9.

after simplification, so that +'(0.75") = 5£2{1800(0.75)* — 2300(0.75) 4+ 709} ~ —253 while

V(0.75%) = 28904790(0.75)2 — 1232(0.75) + 525} ~ 5091. Thus ¢'(0.75") # (0.75), and

the graph of v' has a hole at ¢t = 0.75; see Figure 1.

@ (b)

y
300 Y
4000

200
2000

100
0

Ooa5 065 085! 045 065 0.85'

Figure 1: (a) y = v(t) and (b) y = v'(t) defined by (40) and (43), respectively.

We conclude by noting that a function whose derivative is a continuous function—if
necessary, after a removable hole has been filled—is called a smooth function. Thus L de-
tined by (39) is smooth because L' defined by (42) is continuous; whereas v defined by (40)
is not smooth, because v’ defined by (43) is discontinuous where ¢t = 0.75. Alternatively,
given the geometrical interpretation of the differential coefficient (Lecture 5), a function is
smooth if its graph has no corners, and otherwise is not smooth (as illustrated by Figure
1). In practice, however, even non-smooth functions are usually piecewise-smooth, in the
sense that if a graph has n corners then the function’s domain can be decomposed into
n + 1 subdomains with the corners always at endpoints, in such a way that the function
is smooth on every subdomain, despite not being smooth on its entire domain.

Exercises

1. Verify (42).
Hint: Use (33)-(34), (3) and (9) with the obvious modifications.
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2. Verify (43).
Hint: Apply (10) and (34) to (40).

d 1—t¢
3. Find d_i fory = 1—+twheret # —1.

d t
4. (a) Find d—i{ for y = ——, where B is a constant and ¢ # —B.

B+t
(b) Find the equation of the tangent line to the curve y = li“;m at the point with
coordinates (0, 0).
(c) Find the equation of the tangent line to the curve y = 13;7” at the point with

coordinates (1,1).

(d) Where do these two tangent lines meet?

(e) Sketch the graph of y = %%~ on (—3,1) together with its vertical asymptote

and both tangent lines, clearly indicating both their points of tangency and
their point of intersection.

2

., dy
5. Flnd % fOI'y = ﬁ

, where B is a constant and t # B.
d
6. Find d_?: for y = vt3 + 2t where t > 0.

7. Find (cil_?tJ fory = t>Vt3 +2t,t > 0.
8. For f defined by f(t) = tsin(nt)V#® + 2¢, find f'(1).
9. Find % for y = tan (V3 + 2t) where 0 < t < 1.

10. A smooth function W is defined on [0, c0) by

At + Bt? if 0<t<?2
Wi(t) = 1 )

where A and B are constants. What must be their values?
11. A smooth function W is defined on [0, c0) by

t(A—t) if 0<t<1

W(t) = t
Q —_— if 1<t<o
B+1

NG

where A and B are positive constants. What must be their values?



12. A smooth function W is defined on [0, c0) by
At + Bt3 if 0<t<1
Wit) = —
®) u if 1<t< o
1+t
where A and B are constants. What must be their values?
13. A smooth function W is defined on [0, 3] by
At? if 0<t<
Wi(t) = 12
if 2<t<3
Bt

where A and B are positive constants. What must be their values?
14. A smooth function W is defined on [0, c0) by

At — Bt? if 0<t<3

W(t) = 16t
Q — if 3<t<o
t+1

where A and B are positive constants. What must be their values?

15. A smooth function W is defined on [0, co) by

At — Bt? if 0<t<l1
W(t) = ot

— if 1<t<o
t+2

where A and B are positive constants. What must be their values?

d 4 3
16. Calculate . \/1 +v/24+VZ2+3 .
T

Suitable problems from standard calculus texts

Stewart (2003): p. 191, ## 15-16 and 19-27; p. 197, ## 7-11, 19-24, 27, 28, 31, 32 and 34-38;
p. 216, ## 17 and 9-19; and p. 224, ## 1-4, 7-14, 17-20, 25-27, 29, 30, 32-35, 37-41, 43-45, 48
and 51-54.

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.



Solutions to selected exercises

3.  From the quotient rule we have
dy L —t}-(1+t)—(1—t)- L{1+¢}
dt (1+41)2
_(0-1)-(14¢t) - (1-t)(0+1) -2
B (141)?  (1+1t)?
because £{1+t} = £{1} + 4{¢} = 0 + 1. Alternatively
1—t  2—1—t 2—(1+1) 2 »
YT T 1+t 1+t 141 (1+1)
implies
e e (I B I - LR
dt dt dt '
But from the chain rule we have
d, + d 4 do 1 dz
LR B R 2 dt
on using a special result from Lecture 5. Hence with = 1 4 ¢ we obtain
dy d 2 dx 2 -2
= = 92— N — — 1 _
i - @t T e (1+f)2df{ = Y = G
as before.

(a) From the quotient rule we have

dy L{ty-(B+t)—t-

_ 4{B+t}
dt (B + 1)
1-(B+t)—t-(04+1) B
(B +t)? - (B +1)?
(b) Note that
20 x

Y 1422 % +x
But from (a) with B = 1 we have

d t z

dt 14t (3 +1)?




So the first tangent line has slope

d x 2
™ @ Tee |, Gvzoop
and hence equation y — 0 = my(z — 0) or y = 2z.
(c) Likewise, the second tangent line has slope
d x 2 1
" T+z |, a (1+2.%)2 T2

and hence equation y — 3 = my(z — ) ory = 32 + 7.

0
(d) These lines meet where 2z = 3z + ; or ¢ = ¢, and hence y = 3; in other words,
at the point with coordinates (% %)

(e)

\
N| =+

Squaring, we have

d d
2 = t3+2t:>—{y} = %{t3+2t}:>2yd—gz = 31242

Hence
dy 3t2 +2 3t2 +2

a2y 2B 2
Alternatively, set z = t* + 2t. Then, on using the chain rule, the linear-combination
rule and special results, we have

dy d d d.?: 1 dx 1 3
7 2 - —_— = = — it 2t
1 3t2 4+ 2
= — t3 —|—2 t = 3t2+2 1) = ———
as before.
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10.

11.

Using our general results for the derivative of a join or sum together with a special
result from Lecture 5, we find that
A+ 2Bt if 0<t<?2
Wi(t) = 1 .
—— if 2<t<oo.
12

So the left-handed derivativeast — 2~ is W/(27) = A+ 2B -2 = A+ 4B, and the
right-handed derivative as ¢t — 2% is W/(2") = —5% = —1. For W to be smooth,
its derivative must be continuous everywhere, and hence in particular at ¢t = 2; so
we require W'(27) = W'(2+), or A+ 4B = —1. But W can’t have a continuous

derivative unless it is continuous itself, so we also require W (27) = W (2%), i.e,
A-24B-2*=1o0r2A+4B = 1. Subtracting A+ 4B = — 1 from 2A + 4B = ] yields
A = 2, and substituting back into one of these equations yields B = —3. Now we
have ensured that W defined on [0, co) by

HE-t) i 0<t<?2

Wi(t) = 1

is smooth, with derivative W' defined on [0, c0) by
13=2t) if 0<t<2
—— if 2<t< oo

The figure below shows the corresponding graphs, (a) y = W (¢) and (b) y = W'(?).
Note the smoothness of the join between different curves.

@ (b)

y y
1 \
0.5
0.5
0 t
0 2
%0 ! 0.25
Similarly, we have
TA—3t if 0<t<l1
W =By 1c4e
(B +1)? -
So the left-handed derivative as ¢t — 1~ is W/(17) = 14 — 1, and the right-handed
derivative as ¢t — 17 is W/(11) = ﬁ. Also, the left-handed limit of W itself as
t —17is W(17) = 3(A — 1), and the right-handed limit of W itself is W (17) = BLH.
For W to be smooth, we require both W (17) = W(1%) and W'(17) = W'(1+), hence
-1 = 2
A—3 = oy



12.
13.
14.
15.
16.

Subtraction yields 1 = - — or B2+ 2B -3 = (B+3)(B—1) =0, after

B+1 (B+1)2 ’

simplification. So either B = —3 or B = 1. But W would be discontinuous at ¢t = 3
for B = —3; therefore, we must take B = 1, with A = 1 + BLH = 3. Now we have

ensured that W defined on [0, c0) by

HE—-t)  if 0<t<1
IL—H if 1<t<o

is smooth, with derivative W' defined on [0, co) by

1B3-2t) if 0<t<1

Wit = (pit)Q if 1<t< .
A=1pB= 1
A:iB:4
A=7B=
A=4,B=1.
Making multiple use of our special results from Lecture 6, set:
y = 2243 — %:2x+0:2x v = wl/? -
2 =y == %:%ylﬂ u = 1+v =
w = 24z = %:0—1—1:1 s = ul/4 ==

Now, from repeated application of (20a):

d d ) d ./ d

— 1 24+ V22+3 = — 1+ 7?2 = —

dz + TVt dz + vy dz

d S — d d ds

— 1 sl — 2 ) = {4 = 2

dz { tw } dr { + U} dx {u } dx
_dsds _dsdo de_ dsdvds
- dzdr dv dz dxr  dvdz dz

dsdu  dodu  dzdy
du dv dw dz dy dx
ds du dv dw dz dy

du dv dw dz dy dx

— iu*3/4 1. %w’2/3 .1 %y*1/2 L9z

xXr
12{1+ (2+va2+3)" V" 2+ va2+3) " Va2 + 3

dv

_1,,.-2/3
aw = v
du
3_3 = 1y-3/4
u
149252

after simplification—absolutely gruesome, but perfectly straightforward.
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