
16. Integration by substitution

Let’s begin by re-stating the essence of the fundamental theorem of calculus: differentia-
tion is the opposite of integration in the sense that

F ′(u) = f(u) ⇐⇒
∫

f(u) du = F (u) + C (1)

for some constant C or, equivalently,

F ′(u) = f(u) ⇐⇒
b

∫

a

f(u) du = F (b) − F (a) (2)

for arbitrary a and b, where
∫ b

a
f(u) du denotes the definite integral of f over the subdo-

main [a, b], i.e., the signed area enclosed by the graph y = f(u), the horizontal coordinate
axis y = 0 and vertical line segments at u = a and u = b, with area counted positively
above the axis and negatively below it.

Because the fundamental theorem is about a relationship between f and F on an
entire domain, it does not matter what symbol we use to denote an arbitrary element of
that domain. Furthermore, the information content of the fundamental theorem is in no
way altered by re-labelling G and g as F and f , respectively (provided, of course, we are
100% consistent about it). Thus an identical statement of the fundamental theorem is that

g(x) = G′(x) ⇐⇒ G(x) + C =

∫

g(x) dx (3)

for some constant C or, equivalently,

g(x) = G′(x) ⇐⇒ G(β) − G(α) =

β
∫

α

g(x) dx (4)

for arbitrary α and β, where
∫ β

α
g(x) dx denotes the definite integral of g over the subdo-

main [α, β], i.e., the signed area enclosed by the graph y = g(x), the horizontal coordinate
axis y = 0 and vertical line segments at x = α and x = β; again, of course, area is counted
positively above the axis and negatively below it.

Now suppose that u and x are related by u = φ(x), where φ is an invertible (either
increasing or decreasing) function on a subdomain of interest. Then there exists an inverse
function, say ζ, such that

u = φ(x) ⇐⇒ x = ζ(u) (5)

(Figure 1). Furthermore, define a composition G by

G(x) = F (φ(x)), (6)

which implies, of course, that
F (u) = G(ζ(u)). (7)
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Figure 1: (a) A typical substitution and (b) its inverse; typically both functions are increasing (as,
for example, in all of the exercises at the end of this lecture). Integration with respect to x from α

to β corresponds to integration with respect to u from a to b, and vice versa.

Applying the chain rule to each of these equations in turn, we have both that

G′(x) = F ′(φ(x)) φ′(x) (8)

and
F ′(u) = G′(ζ(u))ζ ′(u). (9)

But F ′(u) = f(u) =⇒ F ′(φ(x)) = f(φ(x)), and G′(x) = g(x) =⇒ G′(ζ(u)) = g(ζ(u)). So,
from above,

g(x) = f(φ(x)) φ′(x) (10)

and
f(u) = g(ζ(u))ζ ′(u). (11)

Now we put it all together to get both

∫

f(u) du = F (u) + C = F (φ(x)) + C

= G(x) + C =

∫

g(x) dx

=

∫

f(φ(x)) φ′(x) dx =

∫
{

f(u)
du

dx

}

dx

(12)

and
∫

g(x) dx = G(x) + C = G(ζ(u)) + C

= F (u) + C =

∫

f(u) du

=

∫

g(ζ(u)) ζ ′(u) du =

∫
{

g(x)
dx

du

}

du.

(13)

So the substitution u = φ(x) can be used to convert an integral with respect to u into an
integral with respect to x; and, correspondingly, the inverse substitution x = ζ(u) can
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be used to convert an integral with respect to x into an integral with respect to u. This
process is known as integration by substitution.

The corresponding equations for definite integrals are as follows. First, to convert an
integral with respect to u into an integral with respect to x, note that u = φ(x) =⇒ δu =
φ′(x)δx + o(δx) from Lecture 6, and that u ∈ [a, b] =⇒ x ∈ [ζ(α), ζ(β)] from (5). Hence∗

∫ u=b

u=a

f(u) du = lim
δu→0

∑

u∈[a,b]

f(u) δu = lim
δx→0

∑

x∈[ζ(α),ζ(β)]

f(φ(x)){φ′(x)δx + o(δx)}

= lim
δx→0

∑

x∈[ζ(α),ζ(β)]

f(φ(x))φ′(x)δx + lim
δx→0

∑

x∈[ζ(α),ζ(β)]

f(φ(x))δx lim
δx→0

o(δx)

δx

=

∫ x=ζ(b)

x=ζ(a)

f(φ(x)) φ′(x) dx +

∫ ζ(b)

ζ(a)

f(φ(x)) dx · 0

or
∫ u=b

u=a

f(u) du =

∫ x=ζ(b)

x=ζ(a)

f(φ(x)) φ′(x) dx. (14)

Second, to convert an integral with respect to x into an integral with respect to u, note
that x = ζ(u) =⇒ δx = ζ ′(u)δu + o(δu) and x ∈ [α, β] =⇒ u ∈ [φ(a), φ(b)], from (5). Hence

∫ x=β

x=α

g(x) dx = lim
δx→0

∑

x∈[α,β]

g(x) δx = lim
δu→0

∑

u∈[φ(α),φ(β)]

g(ζ(u)){ζ ′(u)δu + o(δu)}

= lim
δu→0

∑

u∈[φ(α),φ(β)]

g(ζ(u))ζ ′(u)δu + lim
δu→0

∑

u∈[φ(α),φ(β)]

g(ζ(u))δu lim
δu→0

o(δu)

δu

=

∫ u=φ(β)

u=φ(α)

g(ζ(u)) ζ ′(u) du +

∫ φ(β)

φ(α)

g(ζ(u)) du · 0

or
∫ x=β

x=α

g(x) dx =

∫ u=φ(β)

u=φ(α)

g(ζ(u)) ζ ′(u) du. (15)

In either case, note that integration by substitution requires both the original substitution
and the inverse substitution: specifically, the original substitution is used to

1. Rewrite the old integrand in terms of the new integration variable

2. Differentiate to find the (nonlinear) scaling factor by which the old integrand must
be multiplied to become the new integrand

and the inverse substitution is used to

3. Convert the old integration limits into the new integration limits.

∗Note that lim
δx→0

∑

x∈[ζ(α),ζ(β)]

f(φ(x))δx =
ζ(b)
∫

ζ(a)

f(φ(x)) dx, which is not the integral whose value we seek:

and we don’t care about its value, because the only thing that matters in obtaining (14) is that multiplying

by zero yields zero. Likewise for lim
δu→0

∑

u∈[φ(α),φ(β)]

g(ζ(u))δu =
u=φ(β)

∫

u=φ(α)

g(ζ(u)) du in obtaining (15).
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For example, to calculate

I =

1

63
∫

0

64
√

x

(1 + x)
7

2

dx (16)

we can use the substitution
x = ζ(u) =

u

16 − u
. (17)

Because x = u
16−u

=⇒ (16 − u)x = u =⇒ 16x − ux = u =⇒ 16x = ux + u = u(x + 1), the
inverse substition is

u = φ(x) =
16x

x + 1
. (18)

So, from (15) with α = 0, β = 1
63

and g(x) = 64
√

x

(1+x)
7
2

, we obtain

I =

∫ x= 1

63

x=0

64
√

x

(1 + x)
7

2

dx =

∫ u=φ( 1

63
)

u=φ(0)

64
√

ζ(u)

(1 + ζ(u))
7

2

ζ ′(u) du. (19)

At first, perhaps, this looks worse. But (17) =⇒ ζ ′(u) = d
du

{

16
16−u

− 1
}

= 16 d
du

{(16 − u)−1}−
0 = 16{−(16 − u)−2} d

du
{16 − u} = 16{−(16 − u)−2}{−1} = 16

(16−u)2
and 1 + ζ(u) = 16

16−u
.

Also (17) =⇒ φ(0) = 0 and φ
(

1
63

)

= 16
1+63

= 1
4
. So (19) reduces to

I =

∫ u= 1

4

u=0

64
√

u
16−u

(

16
16−u

)
7

2

16

(16 − u)2
du =

∫ 1

4

0

64

√

u

16 − u

(

16 − u

16

)
7

2 16

(16 − u)2
du

=
64 · 16

16
7

2

∫ 1

4

0

√
u(16 − u) du =

64

16
5

2

∫ 1

4

0

{

16u
1

2 − u
3

2

}

du

= 1
16

∫ 1

4

0

d

du

{

32
3
u

3

2 − 2
5
u

5

2

}

du = 1
16

{

32
3
u

3

2 − 2
5
u

5

2

}
∣

∣

∣

1

4

0

= 1
16

{

32
3

(

1
4

)
3

2 − 2
5

(

1
4

)
5

2 − 32
3
0

3

2 + 2
5
0

5

2

}

= 1
16

{

32
3
· 1

8
− 2

5
· 1

32
− 0 + 0

}

= 317
3840

(≈ 0.0825521).

(20)
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Exercises

1. Calculate
∫ 1

0
x(x2 + 1)4 dx by

(a) using the substitution x =
√

u − 1 and

(b) some other method.

2. Use the substitution x = 1 + u2 to show that
∫ 5

1
x
√

x − 1 dx = 272
15

.

3. Use the substitution x =
√

1 + u2 to show that
∫

√
5

1
x3
√

x2 − 1 dx = 136
15

.

4. Use the substitution x = 1 + u2 to show that

(a)
∫ 2

1
(x + 2)

√
x − 1 dx = 12

5

(b)
∫ 2

1
(2x + 1)

√
x − 1 dx = 14

5
.

Suitable problems from standard calculus texts

Stewart (2003): pp. 420-421, ## 1-74.
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