
18. Two different ways to find the volume of a cone

Suppose you didn’t already know that the volume of a solid cone of radius R and height
H is 1

3
πR2H . How would you find out? One way would be to chop up the cone into

lots and lots of thin coaxial cylindrical shells with sloping rooves, find the volume of each
such shell and then sum the volumes to find the total. In Figure 1 I have drawn only
eight such shells, and in Figure 2 I have suggested only twenty, but I want you to imagine
that there are infinitely many of them; and because there are infinitely many of them, the
thickness of each shell must be vanishingly small—otherwise, you couldn’t possibly pack
them all into the region occupied by the cone.

Let V denote the total volume, i.e., the volume of the cone; and let δV denote the
infinitesimal element of volume–shown shaded in Figure 2e—that is added to the part of
the cone whose perpendicular distance from the axis of symmetry does not exceed t when
t increases infinitesimally to t + δt (for 0 < t < R). Observe that the direction in which t

increases is perpendicular to the surface of the infinitesimal element of volume, and for
that reason we refer to t as the transverse coordinate. So transverse equals radial.∗.

Also observe that the INNER CIRCUMFERENCE of the infinitesimal volume element
is 2πt, the OUTER CIRCUMFERENCE of the element is 2π(t + δt) and the thickness of the
element is δt. Let h denote the INNER HEIGHT of the infinitesimal volume element, so
that—because it is infinitesimal—its OUTER HEIGHT must be h + δh, where δh < 0. Then
whatever the magnitude of δV , it must exceed the volume of a cuboid of thickness δt

with length INNER CIRCUMFERENCE and breadth OUTER HEIGHT, but it cannot exceed
the volume of a cuboid of thickness δt with length OUTER CIRCUMFERENCE and breadth
INNER HEIGHT; that is, 2πt(h + δh)δt < δV < 2πh(t + δt)δt or

2πth δt + 2πt δh δt < δV < 2πth δt + 2πh δt2 (1)

(see Figure 2f, where the bounding cuboids are sketched). But it is clear from Figures 1-2
that δh → 0 as δt → 0 in such a way that

δh = o(δt) (2)

and (from the similar triangles in the vertical cross-section of Figure 2d)

H

R
=

h

R − t
. (3)

Thus, from (1)-(3),
δV = 2πthδt + o(δt) (4)

with†

h = h(t) =
H

R
(R − t). (5)

∗In this particular case, but not always—see later
†In fact δh = h′(t) δt = −H

R
δt (because h is a linear function of t, the junk term o(δt) in δh = h′(t) δt+o(δt)

is precisely zero), from which it can be shown that (1) is satisfied with δV = 2πthδt+π(2h−H)δt2− 2πH

3R
δt3

precisely. But this is far more than we need to know to find the volume of the cone: (4) is quite enough.



Figure 1: Using concentric cylindrical shells with sloping rooves for the volume of a (right circu-
lar) cone. The solids in the last eight panels fit inside one another to yield the cone in the first.
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Figure 2: Using concentric cylindrical shells with sloping rooves for the volume of a (right circu-
lar) cone. (a) The sloping roof of the cone, viewed from above with a typical elementary volume
shaded. (b) A vertical cross-section through the axis of symmetry, with a typical elementary vol-
ume (whose cross section is a vertical strip) shaded. (c) Horizontal cross-section of the generic
elementary volume; the transverse coordinate t increases perpendicularly to its surface (i.e., radi-
ally). (d) Vertical cross-section of the generic elementary volume; the cone is traced out by rotating
this triangle about the axis of symmetry through angle 2π or 360◦. (e) The generic elementary vol-
ume. (f) Rectangular slabs yielding upper (left) and lower (right) bounds on δV .

From (4), i.e., δV = 2πthδt + o(δt), we can now compute the volume as

V = lim
δV →0

∑

δV = lim
δt→0

∑

t∈[0,R]

{2πth δt + o(δt)}

= lim
δt→0

∑

t∈[0,R]

2πth δt + lim
δt→0

∑

t∈[0,R]

δt lim
δt→0

o(δt)

δt

=

∫ t=R

t=0

2πth dt +

∫ t=R

t=0

1 dt · 0 =

∫ R

0

2πth dt

(6)

or, on using h = H
R

(R − t) from (5),

V = πH
R

∫ R

0

2t(R − t) dt = πH
R

∫ R

0

(2Rt − 2t2) dt = πH
R

{

Rt2 − 2
3
t3

}

∣

∣

∣

R

0
= 1

3
πR2H (7)
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as expected.
Whenever we use integration to calculate a volume V , there is always a transverse

coordinate t satisfying
a ≤ t ≤ b (8)

for suitable a, b and an element of volume of infinitesimal thickness δt whose (infinitesi-
mal) volume δV is given with sufficient accuracy by an equation of the form

δV = f(t)δt + o(δt) (9)

for suitable f , and V is always calculated as

V = lim
δV →0

∑

δV = lim
δt→0

∑

t∈[a,b]

{f(t) δt + o(δt)} =

∫ b

a

f(t) dt. (10)

For example, with cylindrical shells we have f(t) = 2πth(t), from (7). Nevertheless, there
is considerable choice over what to use for a transverse coordinate and, correspondingly,
how to chop up the volume V into suitable infinitesimal elements: we do not have to use
thin cylindrical shells.

In particular, we can use thin circular disks with sloping rims instead. In Figure 3
I have drawn only eight such disks, and in Figure 4 I have suggested only twenty, but I
want you to imagine there are infinitely many of them; and because there are infinitely
many of them, the thickness of each must be vanishingly small—otherwise, you couldn’t
possibly pack them all into the region occupied by the cone. Let δV now denote the
infinitesimal element of volume that is added to the part of the cone whose perpendicular
distance from the base does not exceed t when t increases infinitesimally to t + δt (for 0 <

t < H). The direction in which t increases is still (as always) perpendicular to the surface
of the infinitesimal element of volume, but now transverse means axial—not radial.

Let r denote the base radius of the infinitesimal volume element (Figure 4d) so that—
because it is infinitesimal—its roof radius must be r + δr, where δr < 0; then the lower
surface area of the volume element is πr2, its upper surface area is π(r + δr)2 and its
thickness is δt (as always). Whatever the magnitude of δV , it must exceed the volume of
a cylindrical disk (i.e., one having vertical rim) with thickness δt and cross-sectional area
π(r + δr)2, but it cannot exceed the volume of a cylindrical disk with thickness δt and
cross-sectional area πr2; that is, π(r + δr)2δt < δV < πr2δt or

πr2δt + 2πr δr δt + πδr2δt < δV < πr2δt. (11)

But it is clear from Figures 3-4 that δr → 0 as δt → 0 in such a way that

δr = o(δt) (12)

and (from the similar triangles in the vertical cross-section of Figure 4d)

H

R
=

H − t

r
. (13)

Thus, from (11)-(13),
δV = πr2δt + o(δt) (14)
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Figure 3: Using coaxial circular disks with sloping rims for the volume of a (right circular) cone.
The solids in the last eight panels stack upon one another to produce the cone in the first panel.
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Figure 4: Using coaxial circular disks with sloping rims for the volume of a (right circular) cone.
(a) The sloping roof of the cone, viewed from above with a typical elementary volume shaded. The
view is identical to Figure 2a but the interpretation is completely different because the shading no
longer represents the sloping roof of a cylindrical shell—instead it represents the sloping rim of a
thin circular disk perpendicular to the cone’s axis of symmetry. (b) A vertical cross-section through
the axis of symmetry, with a typical elementary volume (whose cross section is a horizontal strip)
shaded. (c) Horizontal cross-section of the generic elementary volume, viewed from above; the
transverse coordinate t increases perpendicularly to its surface, and hence to the page (i.e., axially).
(d) Vertical cross-section of the generic elementary volume; the cone is traced out by rotating this
triangle about the axis of symmetry through angle 2π or 360◦.

6



with‡

r = r(t) =
R

H
(H − t). (15)

From (14) we now compute the volume as

V = lim
δV →0

∑

δV = lim
δt→0

∑

t∈[0,H]

{πr2 δt + o(δt)}

= lim
δt→0

∑

t∈[0,H]

πr2 δt + lim
δt→0

∑

t∈[0,H]

δt lim
δt→0

o(δt)

δt

=

∫ t=H

t=0

πr2 dt +

∫ t=H

t=0

1 dt · 0 =

∫ H

0

πr2 dt

(16)

or, on using (15),

V = πR2

H2

∫ H

0

(H − t)2 dt = πR2

H2

{

−1
3
(H − t)3

}

∣

∣

∣

H

0
= 1

3
πR2H (17)

as expected.
Both methods generalize to other volumes with an axis of circular symmetry (which

need not be vertical); and with non-circular slices as elementary volumes, the second
method generalizes to arbitrary volumes. As a general rule, however, we try to avoid
drawing three-dimensional diagrams like Figures 1 and 3 because a cross-section through
the axis of symmetry–like those in Figures 2 and 4—usually suffices. Indeed we can use
the very same diagram that we would use to calculate area: it is necessary only to re-
interpret it appropriately.
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Figure 5: Using thin coaxial cylindrical shells for a volume of revolution. The transverse coordi-
nate is t = x; (b)-(d) show vertical cross-sections through the axis of symmetry.

Consider, for example, the volume in Figure 5a, generated when the region shaded
in Figure 5b (as opposed to the triangle in Figure 2d or Figure 4d) is rotated through
360◦ about the y-axis (which is therefore in this case the axis of symmetry). If we use
cylindrical shells as elementary volumes, then the transverse coordinate is perpendicular

‡In fact δr = r′(t) δt = −R

H
δt (again, because r is a linear function of t, the junk term o(δt) in δr =

r′(t) δt + o(δt) is precisely zero), from which it can be shown that (11) is satisfied with δV = πr2δt +

πrδrδt + πR
2

3H2 δt3 precisely. But again this is far more than we need to know to find the volume of the cone:
(14) suffices.
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to the axis of symmetry, hence in this case perpendicular to the y-axis. Because of the
circular symmetry, it does not matter in which direction we measure distance from the
axis of symmetry; accordingly, we choose the direction parallel to the x-axis by setting

t = x, 2 ≤ x ≤ 31. (18)

Then, because Figures 5b-5d are identical to Figure 5 of Lecture 17, we already know from
(21) of that lecture that the height of the generic element (Figure 5d) is

h(x) =











2
√

x − 2 if 2 ≤ x < 6√
31 − x +

√
x − 2 − 3 if 6 ≤ x < 27

2
√

31 − x if 27 ≤ x ≤ 31.

(19)

But we interpret h(x) as the height of a cylindrical shell of radius x (as opposed to the
height of a planar strip). Now, from (18) by analogy with (4) and (6), we obtain

δV = 2πxh(x)δx + o(δx) =⇒ V =

∫ 31

2

2πxh(x) dx = 2π

∫ 31

2

xh(x) dx. (20)

Hence, from (19),

V = 2π

{
∫ 6

2

xh(x) dx +

∫ 27

6

xh(x) dx +

∫ 31

27

xh(x) dx

}

= 2π{2I1 + I2 + 2I3} (21)

where I1, I2 and I3 are defined by

I1 =

∫ 6

2

x
√

x − 2 dx

I2 =

∫ 27

6

{

x
√

31 − x + x
√

x − 2 − 3x
}

dx

I3 =

∫ 31

27

x
√

31 − x dx.

(22)

Each of these integrals is readily evaluated. For example, the substitution u =
√

x − 2 =⇒
x = 2 + u2 =⇒ dx

du
= 0 + 2u =⇒

I1 =

∫ u=
√

6−2

u=
√

2−2

(2 + u2)u
dx

du
du = 2

∫ 2

0

(2u2 + u4) du = 2
(

2
3
u3 + 1

5
u5

)∣

∣

2

0
= 352

15
(23)

and from Exercise 1 we similarly find that I2 = 3069
2

and I3 = 2288
15

. So, from (21),

V = 2π
(

2 · 352
15

+ 3069
2

+ 2 · 2288
15

)

= 3773π. (24)

Nevertheless, it would have been easier to use disks instead. Then the transverse coordi-
nate is aligned with (as opposed to perpendicular to) the axis of symmetry; accordingly,
we now choose

t = y, 1 ≤ y ≤ 8 (25)
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Figure 6: Using thin coaxial circular disks for a volume of revolution. The transverse coordinate
is t = y, and (b)-(d) show vertical cross-sections through the axis of symmetry. The planar region
(b) that generates the solid is the difference between planar region (d) and planar region (c).
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Figure 7: Using thin coaxial circular disks for a volume of revolution. The diagrams show a
vertical cross section through the axis of symmetry of the two elementary volumes used.

so that perpendicular distance from axis of symmetry is

r = x. (26)

Observe from Figure 6 that the planar region that generates the solid of revolution when
rotated about the y-axis (i.e., the region shaded in Figure 6b) is the difference between the
region shaded in Figure 6d and the region shaded in Figure 6c. So we can use disks as
elementary volumes to calculate the volumes generated by rotating the planar regions in
Figure 6c and Figure 6d about the y-axis, and then subtract the first from the second to
deduce the volume generated by rotating the planar region in Figure 6b.

From Lecture 17, the curved boundary of the region shaded in Figure 6c and sliced
into disks in Figure 7a is given by

x = L(y) = 38 − 12y + y2. (27)
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Hence, for the volume of revolution it generates, we obtain

δV = πr2 δt + o(δt) = πx2 δy + o(δy) =⇒

V =

∫ 8

1

πr2 dt =

∫ 8

1

πx2 dy = π

∫ 8

1

{L(y)}2 dy = π

∫ 8

1

{38 − 12y + y2}2 dy

= π

∫ 8

1

{1444 − 912y + 220y2 − 24y3 + y4} dy

= π
{

1444y − 456y2 + 220
3

y3 − 6y4 + 1
5
y5

}

∣

∣

∣

8

1
= π

{

28384
15

− 15833
15

}

= 12551π
15

(28)

from (25)-(26) by analogy with (14) and (16). Also from Lecture 17, the curved boundary
of the region shaded in Figure 6d and sliced into disks in Figure 7b is given by

x = R(y) = 22 + 6y − y2. (29)

Hence, for the volume of revolution it generates, we obtain

δV = πr2 δt + o(δt) = πx2 δy + o(δy) =⇒

V =

∫ 8

1

πr2 dt =

∫ 8

1

πx2 dy = π

∫ 8

1

{R(y)}2 dy = π

∫ 8

1

{22 + 6y − y2}2 dy

= π

∫ 8

1

{484 + 264y − 8y2 − 12y3 + y4} dy

= π
{

484y + 132y2 − 8
3
y3 − 3y4 + 1

5
y5

}

∣

∣

∣

8

1
= π

{

78304
15

− 9158
15

}

= 69146π
15

(30)

again from (25)-(26) by analogy with (14) and (16). Hence the volume of revolution gen-
erated by the planar region in Figure 6a is

69146π
15

− 12551π
15

= 3773π (31)

in agreement with (24).
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Exercises

1. For the integrals defined by (22):

(a) Use the substitution u =
√

31 − x to show that I3 = 2288
15

.

(b) Show that I2 = 3069
2

.

2. The region R is bounded above by the line y = 1
2
x + 1, to the right by the parabola

x = 1
3
y2 + 1 and below by the line y = 0.

(a) Use integration with respect to x to find the volume generated by rotating R

about the x-axis.

(b) Use integration with respect to y to find the volume generated by rotating R

about the x-axis.

(c) Use integration with respect to x to find the volume generated by rotating R

about x = 4.

(d) Use integration with respect to y to find the volume generated by rotating R

about x = 4.

Suitable problems from standard calculus texts

Stewart (2003): pp. 452-453, ## 1-36 and 48-49; pp. 452-453, ## 1-26 and 37-46.

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.

Solutions or hints for selected exercises

2. (a) Here the transverse coordinate t = x is aligned with the axis of symmetry. We
must therefore use disks. To find the volume V generated by rotating R, i.e., the
darker shaded region in the diagram below, we subtract the volume V1 generated
by rotating the lighter shaded region from the volume V2 of the cone generated
by rotating both regions together. This cone has “base radius” 3 and “height” 6.
Hence V2 = 1

3
π32 × 6 = 18π. The element of volume for V1 is δV1 = πr2δt + o(δt) =

πr2δx+o(δx), where r is the distance from the axis of symmetry to the circumference

of the disk, and hence to the curve x = 1
3
y2 + 1 or y =

√

3(x − 1). Hence r = y =

11



√

3(x − 1) =⇒ r2 = 3(x − 1). Now we have

V1 = lim
δV1→0

∑

δV1 = lim
δt→0

∑

t∈[LOWEST,HIGHEST]

{πr2 δt + o(δt)} =

∫ t=HIGHEST

t=LOWEST

πr2 dt

=

∫ x=4

x=1

πr2 dx = 3π

∫ 4

1

(x − 1) dx = 3π 1
2
(x − 1)2

∣

∣

∣

4

1
= 3π

{

1
2
(4 − 1)2 − 1

2
02

}

or V1 = 27π
2

. Thus V = V2 − V1 = 18π − 27π
2

= 9π
2

.
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(b) The transverse coordinate t = y is now perpendicular to the axis of symmetry.
We must therefore use cylindrical shells. The generic shell is obtained by rotating
the generic strip, which is aligned with the axis of symmetry and therefore stretches
from the point (x1, y) to the point (x2, y), where (x1, y) lies on the line y = 1

2
x + 1 or

x = 2(y−1), and (x2, y) lies on the parabola x = 1
3
y2+1. In other words, x1 = 2(y−1)

and x2 = 1
3
y2 + 1. So the “height” of the strip—and hence of the generic shell—is

h = h(y) = |x2 − x1| = x2 − x1 = 1
3
y2 + 1 − 2(y − 1) = 3 − 2y + 1

3
y2

(note that x2 > x1 =⇒ |x2 − x1| = x2 − x1). The volume element is δV = 2πrhδt +
o(δt) = 2πrh(y)δy + o(δy), where r is the distance from the axis of symmetry to the
cylindrical wall of the shell. Hence r = y. Now we have

V = lim
δV →0

∑

δV = lim
δt→0

∑

t∈[LOWEST,HIGHEST]

{2πr h δt + o(δt)} =

∫ t=HIGHEST

t=LOWEST

2πr h dt

=

∫ y=3

y=0

2πy h(y) dy = 2π

∫ 3

0

{

3y − 2y2 + 1
3
y3

}

dy = 2π
{

3
2
y2 − 2

3
y3 + 1

12
y4

}

∣

∣

∣

3

0

= 2π
{

3
2
32 − 2

3
33 + 1

12
34 − 3

2
02 + 2

3
03 − 1

12
04

}

= 9π
2

as before.

(c) The transverse coordinate t = x is again perpendicular to the axis of sym-
metry (which is now vertical), and so again we must use cylindrical shells. To find
the new volume V generated by rotating R about this new axis of symmetry, we
subtract the volume V3 generated by rotating the lighter shaded region about x = 4
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from the volume V4 of the cone generated by rotating both regions together. The
new cone has “base radius” 6 and “height” 3. Hence V4 = 1

3
π62 × 3 = 36π. The

generic (lighter shaded) shell is obtained by rotating the generic (lighter shaded)
strip, which is aligned with the axis of symmetry and stretches from the x-axis to

the parabola y =
√

3(x − 1). In other words, the height of the strip—and hence of
the generic shell—is

h = h(x) =
√

3(x − 1).

Thus the element of volume for V3 is δV3 = 2πrhδt + o(δt) = 2πrh(x)δx + o(δx),
where r is the distance from the axis of symmetry to the cylindrical wall of the shell.
Hence r = 4 − x. Now we have

V3 = lim
δV3→0

∑

δV3 = lim
δt→0

∑

t∈[LOWEST,HIGHEST]

{2πr h δt + o(δt)} =

∫ t=HIGHEST

t=LOWEST

2πr h dt

=

∫ x=4

x=1

2π(4 − x) h(x) dx = 2π

∫ 4

1

(4 − x)
√

3(x − 1) dx.

This integral is best evaluated by means of the substitution u =
√

3(x − 1) or x =
1
3
u2 + 1, so that dx

du
= 2

3
u and

V3 = 2π

∫ x=4

x=1

(4 − x)
√

3(x − 1) dx = 2π

∫ u=
√

3(4−1)

u=
√

3(1−1)

(4 − x)
√

3(x − 1)
dx

du
du

= 2π

∫ u=3

u=0

(

4 − {1
3
u2 + 1}

)

u · 2
3
u du = 4

3
π

∫ 3

0

(

3 − 1
3
u2

)

u2 du

= 4
3
π

∫ 3

0

(

3u2 − 1
3
u4

)

du = 4
3
π

(

u3 − 1
15

u5
)

∣

∣

∣

3

0
= 4

3
π

(

33 − 1
15

35
)

− 0 = 72π
5

.

Thus V = V4 − V3 = 36π − 72π
5

= 108π
5

.

(d) The transverse coordinate t = y is aligned with the axis of symmetry. We
must therefore use disks as in (a), and so the element of volume for V3 is δV3 =
πr2δt + o(δt) = πr2δy + o(δy), where r is the distance from the axis of symmetry
x = 4 to the curve x = 1

3
y2 + 1. Hence r = 4 − x = 3 − 1

3
y2, and

V3 = lim
δV3→0

∑

δV3 = lim
δt→0

∑

t∈[LOWEST,HIGHEST]

{πr2 δt + o(δt)} =

∫ t=HIGHEST

t=LOWEST

πr2 dt

=

∫ y=3

y=0

πr2 dy = π

∫ 3

0

(

3 − 1
3
y2

)2
dy = π

∫ 3

0

(

9 − 2y2 + 1
9
y4

)

dy

= π
(

9y − 2
3
y3 + 1

45
y5

)

∣

∣

∣

3

0
= π

(

27 − 2
3
33 + 1

45
35

)

− π · 0 = 72π
5

.

So again we have V = V4 − V3 = 36π − 72π
5

= 108π
5
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