Notes on Matrix Population Analysis

Conservation biologists and wildlife managers use life cycle graphs to characterize the life
history of the particular species whose population size they would like either to increase
(because it’s endangered) or decrease (because it’s a pest). An example appears in the
diagram below. Each stage-; individual contributes «;; individuals to stage : per period.
So, if there are n life-history stages and z;(¢) denotes number of stage-: individuals at time
t, we have

n

(1) ri(t+1) = Z%‘ (1)
or "
(2) x(t+1) = Ax(t), t=0,1,...,

where A is called the population projection matrix.
Suppose, for example, that there are three stage classes, namely,

1. Yearlings
2. Juveniles and young adults
3. Reproductive adults

as in the life cycle graph shown below; the F; represent fecundities, the &; represent prob-
abilities of surviving and growing to the next stage within a period, and the F; represent
probabilities of surviving but staying in the same stage (so, e.g., a stage-2 individual has
probability 1 — P, — (&, per period of dying). Then the associated projection matrix is

0 Fy F3
(3) A - Gl P2 0
0 Gy P

An example of a species with such a life cycle is the killer whale (Orcinus orca), for which

0 0.0043 0.1132
4) A = 109775 0.9111 0
0 0.0736 0.9534
Fs
F>
1 . 2 5

P> P3
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Note that its eigenvalues are
(5) A = 1.02544, X, = 0.834223, A3 = 0.0048357.

Because they are distinct, A is a simple (diagonalizable) matrix.

We will invariably assume that A has distinct eigenvalues, because the empirical
evidence in favor of this assumption is overwhelming. We will also assume that there is a
dominant real eigenvalue associated with a strictly positive eigenvector'—largely because
the empirical evidence for this assumption again is overwhelming, though more can be
said on purely theoretical grounds (see the remark at the very end). Let the eigenvalues
be ordered so that the dominant one is first, as in the example above. Then

(6) AL >N

Also, if the eigenvectors of A are the columns of W, then all entries of w; are strictly
positive; for example, for the killer whale,

0.0815501 0.0667654  0.678783
(7) W = [0.697169 —0.848929 —0.732138
0.712253  0.524272  0.0568073

, 1=2....,n.

3

so that wy = [0.0815501 0.697169 0.712253] T Because W forms a basis for R”, the initial
stage distribution vector can be written

(8) x(0) = chwk,
k=1
implying
(9) x(t) = A'x(0) = A" aw,
k=1
(10) = ZCkAth = ch)\};wk
k=1 k=1
(11) %Cl/\iwl
if ¢ is large. More precisely,
(12) lim /\l_tX(t) = C1Wj.
t—00

So w; yields the asymptotic stage distribution. For example, after many years, if the so-
called vital rates—i.e., the entries of A—don’t change, about 5.5% of killer whales will be
yearlings, about 47.8% will be reproductive adults and the remaining 46.7% or so will be
juveniles.

Because A is simple, we have AW = W D with D = diag(X4,... ,A,). Defining

(13) U= w,
we easily deduce that A = DU, and hence that if u’ denotes the i-th row of U then
(14) u'A = \u'

'More precisely, a nonzero eigenvector whose entries all have the same sign, so that they can all be made
positive without loss of generality
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We could call u’ the i-th left eigenvector of A to distinguish it from w;, which would then
become the j-th right eigenvector. Because UW = [ (the n x n identity matrix) implying

. 0if iy
= ; ikt = {1 if i = j,
if A had real eigenvalues and hence real eigenvectors (as in all of the cases we deal with
here), then (15) would make left and right eigenvectors associated with different eigen-
values orthogonal. If some eigenvalues and eigenvectors were complex, however, there
would arise the complication that (15) would no longer be a statement about orthogonal-
ity in the sense of vectors u and z being orthogonal if u”z = 0 (whereu = u” denotes the
complex-conjugate transpose of u). To circumvent this potential complication, we instead
define

T
(16) vi= ("),
so that V7 = W1, and say that v is a left eigenvector associated with eigenvalue ) if
(17) viA = W,
In this way both left and right eigenvectors are always column vectors, and a left eigen-
vector of A associated with eigenvalue ) is the same thing as a right eigenvector of A7
(= AT in population demography) associated with ), because (17) implies Afv = Av.
Moreover, VH W = I, so that left and right eigenvectors associated with different eigen-
values are orthogonal.

Although we are basically digressing, the effect of the above can be understood

most easily in terms of a simple example (that is completely irrelevant to any real-world
population). Suppose that

(18) A= E _11]

with eigenvalues A\ = 1+, =1—1 = ) and associated eigenvectors wy = [1, 17, wy =
[—2,1]T = W;. Then

1{—2 1 T —1
- sl wefi ]
satisfy UW = [, butu' = [—z' 1] /2, although orthogonal to w, = [—i 1] " in the sense
that u'w, = 0, is not orthogonal in the Hermitian sense because u'w, = 1. But with

Ui - a [—i 1
(20) v_§[1 1], 1% _[Z. 1}
we have vi’w, = 0, as required (also vi/'w; = 0 and Vi’w; = 1 = V&' w,). End of digression.
Now, from (8), we have x(0) = Wc or ¢ = Vx(0), from which it follows that

(21) ¢ = Z v1k2k(0).
k=1

So the asymptotic contribution to the population of an individual currently in stage ¢ will
be vy;/vy; times as great as that of an individual currently in stage j. In other words, the
vector v records the relative asymptotic contributions of the different stages. For that
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reason, vy is known as the stage-specific reproductive value. For example, for killer whales
we have

0.517574  0.542959  0.813275
(22) VA = vT = W' = |—0.865268 —0.738442 0.821873 |,
1.49615  0.00740146 —0.178548

so that the stage-specific reproductive value is

(23) vi = [0.517574 0.542959 0.813275] .

So juveniles are almost 5% more valuable than yearlings in terms of long-term reproduc-
tion, and adults in turn are almost 50% more valuable than juveniles.

In practice, wildlife biologists are often most interested in how changes in vital rates
affect population growth rate. The sensitivity of A\, to a change in flux along the life-cycle
arc from node j to node : is measured by the relevant partial derivative. Because we
are now interested solely in the dominant eigenvalue and its associated left and right
eigenvectors, however, it greatly simplifies notation to denote them by A, v and w, re-
spectively (as opposed to A;, vy and wy). Then the sensitivity of the asymptotic growth
rate to changes in the rate of transition from stage ; to stage : of the life cycle is

oA
8aij '

(24) Sij =

Sensitivity, however, is an absolute measure of influence. For many purposes one is
much more interested in a relative measure: roughly, by what percentage will A change
in response to a 1% change in «a;;? If the absolute change in both quantities is small, say
da;; for the change in a;; and A for the corresponding change in A, then a 1006a;;/a;; %
change in vital rate yields—all other things being equal— a 1006A/A% change in popula-
tion growth rate. The ratio of these two quantities in the limit as da;; — 0 (and dA — 0) is
the elasticity of A with respect to a;; and is denoted by ¢;;. That is,

aij(S/\ . a;; 6/\ . ;5545

25 o= i = 4 =
( ) €ij 5a¢1]H—1>0 /\5@2']' A 8aij A

Note that this limit does not exist if a,; is identically zero.
A useful formula for s;; (and hence a;;) can be obtained as follows. First, because
vI'w = 1 (both vectors being real) and Aw = Aw, we have

(26) A= viAw = zn:vkzn:akmwm = zn:zn:akmvkwm
k=1 =1

k=1 m=1

because the order of summation is irrelevant; here v; and w,, denote, respectively, the
k-th element of v and the m-th element of w. Alternatively, A is defined implicitly by the
equation |[A — AI| = 0, where [ is the n x n identity matrix. Either way, A is a function
of at most n? variables. But some «a;;, say r in all, are identically zero because they cor-
respond to impossible arcs of the life cycle graph. So in practice A is a function of n? — r
variables; more precisely, A is a function of the «;; corresponding to arcs for which «;; is
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not identically zero. Now

I D ) JL SIS 3 SUSLL TS 3 grm.
ij

k=1 m=1 k=1 m=1 k=1 m=1
8akm (%k ~ awm _
= ;; Das; VW, + Z 8am Z Ao Wry, + mz_:l Dar; ;Ukakm
8akm 8vk & awm
= ;mz:l Ba; vkwm—l—za Z'j/\wk—l—mz:; 8aij/\vm

by the definitions for left and right eigenvector. Because summation indices are inter-
changeable, it follows that

n

aA aakm awm
(28) = vkwm + A wk + A — U,
aakm - awk
= Z Z vk, AZ 2 VA G
k=1 m=1 = k=1
g, (vrwy)
_ A
>y B, Vi Z S
k=1 m=1
8akm 8 “
= Z Z vkwm + /\aaij Z VWi .
k=1 m=1 k=1
But Y, viwi = vI'w = 1, so that the last term of (28) is identically zero, and
0akm 1 if i=k AND j=m AND ay, isnotidentically zero
(29) — = .
daij 0 otherwise.

Alternatively, we can say that the above expression for d\/da;; applies only to the a;; that
might be nonzero; in the other r cases, 9A/da;; = 0 because ) is a function of only n* — r
variables. Either way, it follows from (24), (25) and (28) that

viw; if a;; 0
30 o= B “
(30) = { 0 if a;=0
and
a;;0;,Ww;
(31) € = %

For example, for killer whales it follows from above that the sensitivity matrix is

0 0.3608 0.3686
(32) S = [0.0443 0.3785 0
0 0.5670 0.5793
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and the elasticity matrix is

0  0.0015 0.0407
(33) E = [0.0422 03363 0
0 0.0407 0.5386

The most important arc in the life cycle graph appears to be adult survival.

All of the above depends, of course, on A having a dominant eigenvalue associated
with positive left and right eigenvectors, for which a sufficient condition is that A (given
that it’s nonnegative) be primitive, i.e., that K exist such that A* is positive (in which case,
K cannot exceed (n — 1)(n — 2)). For example, A defined by (3) is primitive because A? is
positive.?
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A primitive matrix is invariably also irreducible, which means that its graph is strongly connected; i.e.,
there exists a path from any node to any other node (there are no black holes).



