

$$
\begin{aligned}
& \text { sге! }
\end{aligned}
$$

$$
\cdot L<u \quad \frac{(x)^{L^{-u}} n}{(x)^{u} n}=(x)^{u} \phi
$$

 ＇s［e！̣ouKโod ！ээeuoq！

$\left(39^{\circ} \mathrm{L}\right)$
（99 ${ }^{\circ}$ ）
$\cdot \mathrm{L}<\mathrm{u} \quad$ £！${ }^{\mathrm{L}-\mathrm{u}} \mathrm{nx}+{ }^{\mathrm{u}} \mathrm{n}={ }^{\mathrm{I}+\mathrm{u}} \mathrm{n}$
（e9． L ）

$$
\mathrm{L}={ }^{\mathrm{I}} \mathrm{n}
$$

$$
\mathrm{I}={ }^{0} \mathrm{n}
$$

 （ $C^{\circ} \angle$ ） ${ }^{\mathrm{L}-\mathrm{u}} \mathrm{nx}+{ }^{\mathrm{u}} \mathrm{n}={ }^{\mathrm{t}+\mathrm{u}} \mathrm{n}$

（ $9^{\circ} \mathrm{L}$ ）
（セも゙し）
${ }^{u} e+{ }^{u} K={ }^{\text {i＋u }} \boldsymbol{e}$
${ }^{u}{ }^{u} \mathrm{ex}={ }^{\mathrm{t}+\mathrm{u}} K$
（ $\varepsilon \cdot \sim$ ）$\quad{ }^{.} K+{ }^{u} e={ }^{u} n$

 sә马еләле se＂ （でし）
${ }^{\cdot{ }^{-u}}{ }^{\mathrm{u}}+{ }^{\mathrm{L}-\mathrm{u}} K={ }^{\mathrm{u}} \mathrm{e}$

 （ $\mathrm{I} \circ \mathrm{L}$ ）${ }^{〔-\mathrm{L}} \mathrm{ex}={ }^{\mathrm{u}} К$

¿Mou worf леаК е чłлом

 (01 \angle)

$$
(x)^{\infty} \phi=(x)^{u} \phi \quad \begin{gathered}
\infty \leftarrow u \\
u!̣
\end{gathered}
$$

ұечъ sлеәdde $\ddagger!$ 'sрлом ләчłо uI ‘рро ло чәлә

$$
\cdot\{\underline{x}+\mathrm{L} \Lambda+\mathrm{L}\} \frac{\mathrm{z}}{\mathrm{~L}}=(\mathrm{x})^{\infty} \phi
$$

$$
\begin{aligned}
& \left({ }_{\mp} \mathrm{x} G+{ }_{\varepsilon} \mathrm{x} 0 Z+{ }_{\tau} \mathrm{x} L Z+\mathrm{x} 8+\mathrm{L}\right) /\left({ }_{G} \mathrm{x}+{ }_{\mp} \mathrm{x} G I+{ }_{\varepsilon} \mathrm{x} G \varepsilon+{ }_{\tau} \mathrm{x} 8 Z+\mathrm{x}_{6}+\mathrm{L}\right) \quad 0 \mathrm{~L} \\
& \left({ }_{t} \mathrm{x}+{ }_{\varepsilon} \mathrm{x} 0 \mathrm{I}+{ }_{\tau} \mathrm{x} G I+\mathrm{x} L+\mathrm{L}\right) /\left({ }_{\text {t }} \mathrm{xG}+{ }_{\varepsilon} \mathrm{x} 0 \tau+{ }_{\tau} \mathrm{x} L Z+\mathrm{x} 8+\mathrm{L}\right) \\
& \left({ }_{\varepsilon} \mathrm{X} \boldsymbol{\square}+{ }_{\tau} \mathrm{x}_{0} \mathrm{I}+\mathrm{x} 9+\mathrm{I}\right) /\left({ }_{\tau} \mathrm{x}+{ }_{\varepsilon} \mathrm{x}_{0} \mathrm{I}+{ }_{\tau} \mathrm{x} G I+\mathrm{x}_{L}+\mathrm{I}\right) \quad 8
\end{aligned}
$$

$$
\begin{aligned}
& \left({ }_{\tau} \mathrm{x} \varepsilon+\mathrm{x} \boldsymbol{\mathrm { D }}+\mathrm{L}\right) /\left({ }_{\varepsilon} \mathrm{x}+{ }_{\tau} \mathrm{x} 9+\mathrm{xG}+\mathrm{L}\right) \quad 9 \\
& \left({ }_{\tau} x+x \varepsilon+L\right) /\left({ }_{\tau} x^{2}+x_{\mp}+L\right) \quad \subseteq \\
& (x \tau+I) /\left({ }_{\tau} x+x \varepsilon+I\right) \quad \mp \\
& (\mathrm{x}+\mathrm{L}) /(\mathrm{x} Z+\mathrm{L}) \quad \varepsilon \\
& \mathrm{x}+\mathrm{I} \text { 乙 } \\
& \text { I } \\
& (x){ }^{u} \phi={ }^{u} \phi \quad u
\end{aligned}
$$

$\left(98^{\circ} \angle\right)$

$$
\mathrm{L}<\mathrm{u} \ddagger!\frac{{ }^{u} \phi}{\mathrm{x}}+\mathrm{I}={ }^{\mathrm{t}+\mathrm{u}} \phi
$$

($\mathrm{e} \cdot \mathrm{B} \mathrm{L}$)

$$
I={ }^{I} \phi
$$

 (GI*L)

$$
\cdot \frac{(\mathrm{x}) \mathrm{dx} \partial}{\mathrm{I}}=(\mathrm{x}) \mathrm{b}
$$

($\varepsilon[\llcorner\circ$) $\quad \mathrm{L}=(0) \mathrm{dx}$

$$
\cdot \infty>x>0 \quad \text { ' }<u \quad, \quad\left(\frac{u}{x}+\mathrm{L}\right)=(\mathrm{x})^{\mathrm{u} \phi}
$$

Кq pəu!̣əр ‘əəuәnbəs

$$
\frac{\left(\mathrm{u}^{\mathrm{x} V}\right) \mathrm{dx} \boldsymbol{x}}{\mathrm{~L}}=\frac{(\mathrm{x})_{\mathrm{y}}}{\mathrm{~L}}=(\mathrm{x}) \mathrm{b}
$$

 （ ε でし）

$$
\cdot\left({ }_{u} x \forall\right) d x \partial=((x) \cap) d x \partial=((x) \cap) \circlearrowright=(x)_{y}
$$

（でて）

$$
\cdot(\Lambda) \mathrm{dxa}=(\Lambda) \check{\partial}
$$

 $\left(0 z^{\prime} L\right) \quad\left({ }_{z} \mathrm{x}+\mathrm{I}\right) \mathrm{u}_{\mathrm{I}}=((\mathrm{x}) \cap) \mathrm{u}_{\mathrm{I}}=((\mathrm{x}) \cap) \mathrm{O}=(\mathrm{x})$ у
＇（6L）－（LL）wory＇mon （ $65^{\circ} \mathrm{L}$ ）

$$
\cdot(\Lambda) \mathrm{u}_{\mathrm{I}}=(К) \check{\mathrm{O}}
$$

 （81 $\quad \mathrm{L}$ ）

$$
{ }_{2}{ }^{x}+\mathrm{L}=(\mathrm{x})_{\cap}
$$

$$
\mathfrak{q}>x>\mathrm{e} \quad \quad\left((\mathrm{x})_{\cap}\right) \widetilde{O}=(\mathrm{x})_{\mathrm{U}}
$$

$$
\begin{aligned}
& \left.\left(\varepsilon+{ }_{\tau} \mathrm{x} Z I-{ }_{\dagger} \mathrm{x}\right\rceil\right) \boldsymbol{}=(\mathrm{x})^{\dagger} \mathrm{H} \\
& \text { I }<\mathrm{u} \quad{ }^{\prime}\left({ }^{\mathrm{L}-\mathrm{u}} \mathrm{H}^{\mathrm{U}}-{ }^{\mathrm{u}} \mathrm{H}^{\mathrm{x}}\right) \mathrm{Z}={ }^{\mathrm{L}+\mathrm{u}} \mathrm{H} \\
& x Z={ }^{\mathrm{L}} \mathrm{H} \\
& \mathrm{~L}={ }^{0} \mathrm{H}
\end{aligned}
$$

ио!̣чегәл әэиәллпәәл әчң

$$
\begin{align*}
\cdot 0<u \quad\left(\frac{\tau^{u}}{x}+{ }^{u} s\right) \frac{z}{L} & ={ }^{\mathrm{L}+\mathrm{u}^{u}} \mathrm{~S} \tag{!}\\
\mathrm{~L} & ={ }^{0} \mathrm{~S}
\end{align*}
$$

$$
\begin{align*}
0<u \quad\left(\frac{{ }^{u}}{x}+{ }^{u^{\prime}} s\right) \frac{\tau}{L} & ={ }^{{ }^{1+u}} s \\
L & ={ }^{0} s
\end{align*}
$$

$\frac{(x) \Lambda}{(x) S}=(x) d$	[[${ }^{0}$]	d
$(((x) \cap) \widetilde{\mathrm{O}}) \mathrm{y}=(\mathrm{x})_{\Lambda}$	[['0]	Λ
$x Z=(x) S$	[[© 0]	S
$\mathrm{z}+\mathrm{I}=(\mathrm{z}) \mathrm{Y}$	[\sim^{\prime} ' I]	d
$\tau_{\tau / 1}{ }^{\text {a }}=\underline{\Lambda}{ }^{\prime}=(\Lambda) \widetilde{\mathrm{O}}$	[9^{\prime} L]	О
x ¢ $+\mathrm{I}=(\mathrm{x}) \cap$	[['0]	\cap
gTny LNANNDISSV	NIVWOC	gWVN

$\cdot(x)^{s}$ d pu!̣ pue

$$
\begin{aligned}
& \left(\varepsilon-{ }_{\tau} \mathrm{x} \mathcal{)}\right) \times \frac{\tau}{\mathrm{L}}=(\mathrm{x})^{\varepsilon} \mathrm{d} \\
& \text { L<U } \quad{ }^{I-u} d \frac{I+U}{u}-{ }^{u} d \frac{I+U}{x(I+U Z)}={ }^{I+u} d \\
& x={ }^{\mathrm{L}} \mathrm{~d} \\
& \mathrm{~L}={ }^{0} \mathrm{~d}
\end{aligned}
$$

ұечł MOчS

วınכəય əપł

${ }^{\cdot}(\mathrm{x})^{9}$ т pu!̣ pue

$$
\begin{aligned}
\mathrm{TZ}+\mathrm{x} 96-{ }_{\tau} \mathrm{x} Z L+{ }_{\varepsilon} \mathrm{x} 9 \mathrm{I}-{ }_{\dagger} \mathrm{x} & =(\mathrm{x})^{\dagger} \mathrm{T} \\
\mathrm{I}<\mathrm{u} \quad{ }^{\mathrm{I}-\mathrm{u}} \mathrm{I}_{\tau} \mathrm{u}-{ }^{\mathrm{u}} \mathrm{~T}(\mathrm{x}-\mathrm{I}+\mathrm{u} Z) & ={ }^{\mathrm{I}+\mathrm{u}} T \\
\mathrm{x}-\mathrm{I} & ={ }^{\mathrm{I}} \mathrm{~T} \\
\mathrm{I} & ={ }^{0} T
\end{aligned}
$$

fечъ MOчS

(9Vㄴ)

$$
{ }^{\infty} \phi-{ }^{u} \phi\left|z 9^{\circ} 0>\left|{ }^{\infty} \phi-{ }^{\text {I+u}} \phi\right|\right.
$$

$$
\cdot \frac{x_{\mp}+\mathrm{L} \mathcal{L}+\mathrm{I}}{x_{Z}}=(x) \mathrm{d}
$$

Кq [ı ‘0] uo pəu!̣əр s!̣ d әләчм
($\ddagger V^{\circ} \angle$)

$$
\begin{aligned}
\left.\right|^{\infty} \phi-{ }^{u} \phi \mid(x) d & = \\
\cdot\left|{ }^{\infty} \phi-{ }^{u} \phi\right| \frac{{ }^{\infty} \phi}{x} & > \\
\left|{ }^{\infty} \phi-{ }^{u} \phi\right| \frac{{ }^{\infty} \phi^{u} \phi}{x} & =\left|{ }^{\infty} \phi-{ }^{\text {I+u }} \phi\right|
\end{aligned}
$$

ұечł оs
$\left(\varepsilon V^{\circ} \angle\right)$

$$
\left\langle\left\{{ }^{\infty} \phi-{ }^{u} \phi\right\} \frac{{ }^{\infty} \phi^{u} \phi}{x}-={ }^{\infty} \phi-{ }^{\imath+u} \phi\right.
$$

$$
\cdot\{\underline{x} \bar{\tau}+\mathrm{I} \wedge+\mathrm{I}\} \frac{\mathrm{Z}}{\mathrm{~L}}={ }^{\infty} \phi
$$

($\mathrm{IV} \cdot \mathrm{L}$)

$$
\cdot \frac{\infty}{x}+I={ }^{\infty} \phi
$$

sə!̣duu! (8) '孔!

モI ${ }^{\circ}$

$$
\frac{x \mp+\mathrm{L} \mathcal{L}+\mathrm{I}}{\mathrm{x} Z}=(\mathrm{x}) \mathrm{d}
$$

Su!̣_的u!

$K \quad$ (!!) $\quad x \quad(!) \quad Z[\because \angle$

 Z $+\mathrm{x} 8 \mathrm{t}+{ }_{\varepsilon} \mathrm{x} Z \varepsilon-{ }_{\tau} \mathrm{x}_{\tau} Z I+\mathrm{x} \cdot{ }_{\varepsilon} \mathrm{x} \cdot$ ZI $\cdot 8 \cdot \tau-{ }_{9} \mathrm{x}_{\tau} 8=$

$$
Z+\left(x Z I-{ }_{\varepsilon} x 8\right) \mp-{ }_{\tau}\left(x Z I-{ }_{\varepsilon} x 8\right)=
$$

$$
\tau+(x)^{\varepsilon} \mathrm{H} \nabla-{ }_{r}\left\{(\mathrm{x})^{\varepsilon} \mathrm{H}\right\}=\left((\mathrm{x})^{\varepsilon} \mathrm{H}\right)^{\tau} \mathrm{T}
$$

'Кјег!!u!s

$$
\left(G+x \tau \varepsilon-{ }_{\tau} x_{0 \emptyset}+{ }_{\varepsilon} x 9 \tau-{ }_{\mp} x z\right)\left(\tau+x_{\emptyset}-{ }_{\tau} x\right) \mp=
$$

$$
\left(\varepsilon-\left\{\mp+x 9\left[-{ }_{\tau} x_{0} 0 \tau+{ }_{\varepsilon} x_{8}-{ }_{\mp} \mathrm{x}\right\} \tau\right)\left(\tau+x_{\mp}-{ }_{\tau} \mathrm{x}\right) \boldsymbol{\mp}=\right.
$$

$$
\left(\varepsilon-{ }_{r}\left\{z+x_{\mp}-{ }_{\tau} x\right\} z\right)\left(z+x_{\mp}-{ }_{\tau} x\right) \varnothing=
$$

$$
\left(\varepsilon-{ }_{r}\left\{(x)^{\tau} \square\right\} z\right)(x)^{\tau} \square \mp=
$$

$$
(x)^{\tau} T Z I-{ }_{\varepsilon}\left\{(x)^{\tau} T\right\} 8=\left((x)^{\tau} T\right)^{\varepsilon} H
$$

$$
\begin{array}{lll}
\varepsilon / \mathrm{L} & =(\mathrm{x})^{\infty} \mathrm{s} & (!!) \\
\mathrm{G} L \\
\mathrm{x} \mathcal{L}=(\mathrm{x})^{\infty} \mathrm{S} & (!!) & \mp \square \angle
\end{array}
$$

$$
\begin{aligned}
& \left(G I+{ }_{\tau} \mathrm{x}_{0} L-{ }_{\mp} \mathrm{x} \mathcal{E} 9\right) \times \frac{8}{\mathrm{I}}=(\mathrm{x})^{\mathcal{G}} \mathrm{d} \quad 6 \angle
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left(G 0 \mathrm{I}-{ }_{\tau} \mathrm{x} 0 \mathrm{LZ}+{ }_{\mp} \mathrm{x}_{\mathrm{f} 8} 8-{ }_{9} \mathrm{x} 8\right) \mathrm{x} 9 \mathrm{I}=(\mathrm{x})^{\iota} \mathrm{H} \quad L \angle
\end{aligned}
$$

־ZI дәрıо sеч ןе!̣ouК_od чәед

$$
\begin{aligned}
& \frac{8}{\varepsilon}+{ }_{\tau}\left(\varepsilon-{ }_{\tau} \times Z\right)_{\tau} \times 09-{ }_{\mp}\left(\varepsilon-{ }_{\tau} \times Z\right)_{\mp} \times 0 Z L I= \\
& \left(\varepsilon+{ }_{\tau}\left\{\left(\varepsilon-{ }_{\tau} x_{Z}\right) \times \mp\right\} 0 \varepsilon-{ }_{\mp}\left\{\left(\varepsilon-{ }_{\tau} x^{2}\right) \times \mp\right\} \subseteq \varepsilon\right) \frac{8}{L}=(x) \mathcal{B}
\end{aligned}
$$

pue

$$
\begin{aligned}
& \left(\varepsilon-\frac{\tau \varepsilon}{{ }_{\tau}\left(\varepsilon+{ }_{\tau} \mathrm{x} 0 \varepsilon-{ }_{\mp} \mathrm{x} \varphi \varepsilon\right)}\right)\left(\varepsilon+{ }_{\tau} \mathrm{x}^{2} 0 \varepsilon-{ }_{\mp} \mathrm{x} \subseteq \varepsilon\right) \frac{\tau}{\mathrm{L}}=(\mathrm{x})_{\ddagger}
\end{aligned}
$$

os $8 /\left(\varepsilon+{ }_{r}\left\{(x)^{\varepsilon} \mathrm{H}\right\} 0 \varepsilon-{ }_{\ddagger}\left\{(x)^{\varepsilon} \mathrm{H}\right\} \subseteq \varepsilon\right)$

