

‘¡рои!̣и Күхеәр s!

$$
\begin{aligned}
& \text { (} \varepsilon \cdot 0 \mathrm{~L}) \quad(\mathrm{e})_{\mathrm{H}} \quad-\quad(\mathrm{q})_{\mathrm{y}} \quad=
\end{aligned}
$$

Кq ($\infty^{\prime} 0$] иo рәичэәр я

$$
\begin{array}{r}
\mathrm{y} x+8 \mathrm{~g}=\mathrm{y} \\
\cdot \mathrm{x}=(\mathrm{x}) \mathrm{Y} \\
\tau^{\mathrm{x}}=(\mathrm{x}) \stackrel{8}{8}
\end{array}
$$

sə!̣duu! (I) นәчъ
pue
($\mathrm{c}^{\circ} \mathrm{OL}$)

$$
{ }_{z} x y+x D=(x) \neq
$$

-

Кхәлә 孔ечң әsoddns ‘кч!

(cı.01)

S! uoب̣еш!

($\mathrm{m} \mathrm{I}^{\circ} \mathrm{OL}$)

 (عᄃ이)
s! uoụeuixxoadde

(ZI.OL)

$$
\begin{equation*}
\cdot \frac{\left(\left[G I^{\prime} 0\right]^{\prime} g\right) \operatorname{e\partial \lambda } V \cdot \tau}{0 G Z Z-Z}=g \tag{LI•OL}
\end{equation*}
$$

(0t)-(6) worf 'os
(01.0L)
(6.0L)

$$
L=\left(\left[G I^{\prime} 0\right]^{\prime} \Psi\right) \text { eə. } V \cdot x+\left(\left[G I^{\prime} 0\right]^{\prime} \AA\right) \text { eәл } V \cdot g
$$

$$
\text { sə!! } 1 \text { du! }(8) \text { ' } x=\text { b pue } g=x \text { y }
$$

$$
\begin{aligned}
& \cdot{ }_{\varepsilon} \frac{8}{\varepsilon} \frac{8}{\varepsilon}={ }_{\varepsilon} \frac{9 L}{G}+{ }_{\varepsilon} \frac{9 L}{L}= \\
& \left\{z^{7}+{ }_{z}(z / 7)\right\} \frac{\hbar}{L}+{ }_{\tau}(z / \mathfrak{f}) \cdot 7 \frac{\hbar}{L}=
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\varepsilon} \neq \frac{\mp G}{6 L}={ }_{\varepsilon} \neq \frac{\mp G}{\varepsilon L}+{ }_{\varepsilon} \neq \frac{\mp G}{G}+{ }_{\varepsilon} \neq \frac{\mp G}{L}=
\end{aligned}
$$

（0で0L）

$$
\left(6 I^{\circ} 0 \mathrm{~L}\right)
$$

（ $\angle I^{\circ} 0 \mathrm{O}$ ）
（91．0L）
snys u

$$
\begin{aligned}
& \text { оł (9i) səวпрәı чЈ!чм } \\
& { }_{2} \gg{\underset{\mathrm{~L}}{ } \mathrm{~L}-\mathrm{u}}_{\mathrm{L}=\mathrm{y}}^{=}= \\
& { }_{2}>{\underset{\mathrm{I}}{\mathrm{I}-\mathrm{u}}}_{\mathrm{I}=\mathrm{x}}^{=}+{ }_{20} 0= \\
& { }_{Z}(\mathrm{I}-\mathrm{u})+Y+{ }_{Z} Z+{ }_{Z} \mathrm{~L}+{ }_{Z} 0=
\end{aligned}
$$

$$
\begin{aligned}
& \left\{z^{y} x+{ }_{z}(I-y)\right\} \frac{z^{u}}{z^{\mathfrak{t}}} \underset{u}{\underline{L}=x} \frac{u}{f} \frac{z}{I}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { fng }
\end{aligned}
$$

$$
\begin{align*}
& (\mathrm{L}+\mathrm{WZ})(\mathrm{L}+\mathrm{W}) \mathrm{N} \frac{9}{\mathrm{~L}}={ }_{2} \gamma{ }^{\mathrm{L}={ }_{\mathrm{L}}^{2}} \\
& \text { әлеч әм ‘лəләмоч ‘(0で9) யолд } \tag{81.0L}
\end{align*}
$$

（e9で0I）

$$
\begin{aligned}
& { }^{2} \frac{\tau}{1} \cdot x+{ }_{\varepsilon} \frac{\downarrow}{} \frac{\mathcal{\varepsilon}}{1} \cdot\left(\frac{0 \varsigma z Z}{x \operatorname{czz}-\tau}\right)= \\
& { }^{2} \frac{7}{} \frac{\tau}{T} \cdot x+{ }_{\varepsilon} \frac{\mathfrak{q}}{\frac{\varepsilon}{T}} \cdot \mathcal{D}= \\
& z^{7} \frac{\tau}{1} \cdot x+(\mathfrak{f}) D \cdot g=
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left[7^{〔} 0\right]^{\prime} \Psi x+9 \mathrm{~g}\right) \text { eә. }= \\
& \left(\left[\mathfrak{7}^{\prime} 0\right]^{\prime} \mathrm{J}\right) \text { eәaл }=(\mathfrak{f})_{\mathrm{H}}
\end{aligned}
$$

（ç゙0L）
（モで0L）
（とで0L）

$$
\begin{aligned}
& \text {, } \frac{0 \varsigma z \tau}{x \varsigma Z Z-\tau}=\frac{(\varsigma I) \supset \tau}{x \varsigma Z \tau-\tau}=\varnothing
\end{aligned}
$$

（てで0L）

$$
\begin{aligned}
& { }_{\varepsilon^{\sharp}}\left\{\frac{z^{u}{ }^{u}}{\mathrm{I}}+\mathrm{I}\right\} \frac{\varepsilon}{\mathrm{L}}=
\end{aligned}
$$

$$
\begin{aligned}
& \left\{z+{ }_{\tau} u_{\eta}\right\} \frac{z^{u}}{{ }_{\varepsilon} \boldsymbol{q}} \frac{Z I}{I}= \\
& \left\{I+u_{\varepsilon}-{ }_{\tau} u Z+I+u \varepsilon+{ }_{\tau} u z\right\} u \frac{9}{L} \cdot \frac{\varepsilon^{u}}{\varepsilon^{\imath}} \frac{Z}{I}=
\end{aligned}
$$

$$
\begin{aligned}
& \left.\cdot\left(\mathrm{I}+\mathrm{u}_{\varepsilon}-{ }_{\tau} \mathrm{u}\right)\right) \mathrm{u} \frac{9}{\mathrm{~L}}=(\mathrm{I}-\mathrm{u})(\mathrm{I}-\mathrm{u}) \mathrm{u} \frac{9}{\mathrm{~L}}= \\
& (\mathrm{L}-\mathrm{uz}) \mathrm{u}(\mathrm{~L}-\mathrm{u}) \frac{9}{\mathrm{~L}}=(\mathrm{L}+\{\mathrm{I}-\mathrm{u}\} \mathrm{z})(\mathrm{I}+\mathrm{L}-\mathrm{u})(\mathrm{I}-\mathrm{u}) \frac{9}{\mathrm{~L}}={ }_{\mathrm{z}}>{\underset{\mathrm{T}}{\mathrm{~L}-\mathrm{u}}}_{\mathrm{L}=\gamma}^{7}
\end{aligned}
$$

（0ع．0L）

$$
\frac{\varsigma Z \mathrm{I}}{8}+\frac{\varsigma}{\partial t \varsigma}={ }_{\varepsilon} 9 \cdot\left(\frac{0 \mathrm{~L}}{\infty}-\frac{\varsigma Z \mathrm{IL}}{\mathrm{I}}\right) \frac{\varepsilon}{\mathrm{I}}+{ }_{\tau} 9 \cdot x \frac{\tau}{\mathrm{I}}=(9)_{\mathrm{H}}
$$

$$
\begin{equation*}
+t 60 t 00 \cdot 0+x 9 \cdot \varepsilon=\frac{9 \varsigma \tau}{I}-\frac{\varsigma Z I}{I}+\frac{\varsigma}{28 L} \tag{6で0L}
\end{equation*}
$$

LEt゙0	06で0	LLİ0	$280{ }^{\circ}$	Lzo 0	
Sttio	て9で0	ع0で0	$980{ }^{\circ}$	モ00\％	
モIL	$\angle 9$	ZS	zz	I	บ⿴囗NกN
¢I－EL	てI－01	6－L	9－ゅ	ε－I	HLכNAT 日Svg g iogv（uu） GZIS

9¢Z	でI	¢ \angle	$\varepsilon \tau$	I	
モLI	$\angle 9$	Z9	てz	I	y⿴囗十ดก
¢I－EI	2I－0I	6－L	9－モ	ε－I	HIDNHT HSVG g＾Ogv（uu）HZIS

－¢ Kuе лоғ
（ LZ＇0L）
（992．01）

$$
\begin{aligned}
& \mathrm{I}=(\mathrm{GI}) \mathrm{I}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\varepsilon}{ }^{t}\left(\frac{0 I}{D}-\frac{\text { SZII }}{I}\right) \frac{\varepsilon}{I}+{ }_{\tau^{7} \neq \frac{Z}{I}}^{I}=(\mathfrak{f})_{H}
\end{aligned}
$$

$$
(\mathrm{I}+\mathrm{W}) \mathrm{N} \frac{\mathrm{Z}}{\mathrm{~L}}=\mathrm{u} \underset{\mathrm{~W}}{\mathrm{~L}=\mathrm{u}}
$$

әэиәдғəу

Łт pue ε sәs!

－sıəso［ suoure uoụnqụustp

$$
\frac{00 \varepsilon L}{L}+{ }_{i}\left(\frac{09 \tau}{L 6}-\mathrm{d}\right) \frac{G Z}{\mp 0 L}=\nabla
$$

$$
\text { 'x-d }=(x) 8
$$

0	乙	乙	ε	ε	久ОNGกÖषу
	モ－	$\varepsilon-乙$	乙－I	L－ 0	（uw）BZIS NyOH

 pue［әрои иәәмұәq Кэие

$$
{ }^{\prime} x y+x=(x) y
$$

无	乙	$乙$	I	I	
$9-も$	王－	$\varepsilon-乙$	乙－I	L－ 0	（uu）BZIS NサOH

$$
\begin{align*}
& \cdot \frac{00 \varepsilon I}{L}+{ }_{2}\left(\frac{09 \tau}{L}-\chi\right) \frac{\subseteq Z}{\amalg 0 L}=\nabla
\end{align*}
$$

Su!̣イ_duu! 'cZ/L +

${ }_{r^{2}} x\left(x-\frac{G}{L}\right) \frac{G}{L}+x x=(x y+x z) \frac{\tau}{x}=(x)_{H}$

$$
\cdot\left(x-\frac{G}{L}\right) \frac{G}{\tau}=\delta
$$

$$
\begin{aligned}
& \frac{00 \varepsilon L}{L}+{ }_{z}\left(\frac{09 \tau}{L}-\chi\right) \frac{G Z}{\mp 0 L}= \\
& \frac{00 G Z}{L Z+209 G-{ }_{2} 000 \mp 0 L}=
\end{aligned}
$$

