

$$
\mathfrak{e}-\mathfrak{f}=(\mathrm{e}-\mathfrak{f}) \cdot \mathrm{I}=\left(\left[\mathfrak{f}^{\prime} \mathrm{e}\right]^{\prime} \mathscr{8}\right) \text { eәл } \forall
$$

$$
\left(z^{\varepsilon} \partial+M^{\imath} \partial+x^{1} \partial\right) \text { еәл } \forall=(Y) \text { eәл } \forall
$$

$$
\begin{equation*}
{ }^{‘} Y+马^{0} \supset=\mathrm{J} \tag{C`LI}
\end{equation*}
$$

$$
\begin{equation*}
(x) z^{\varepsilon} \partial+(x) M^{〔} \partial+(x) x^{\downarrow} \supset=(x) \cup \tag{モ・IL}
\end{equation*}
$$

pue

$$
\begin{equation*}
\cdot{ }_{\varepsilon} x \frac{6}{00000 \Pi L}+{ }_{\tau} x \frac{6}{000086}-x \frac{6}{00 G Z 6 \mathrm{~L}}+\frac{\varepsilon}{0 \varsigma \hbar Z}-=(x)_{\mp} \tag{I•LL}
\end{equation*}
$$

(6I•LL)

$$
\cdot\left\{\left(\varsigma_{0} \circ 0\right) Z-(\mathfrak{l}) Z\right\}^{\dagger} \supset+
$$

(8I•LL)

$$
\cdot\left(\varsigma_{0} \circ 0\right) Z-(\mathfrak{q}) Z=\left(\left[\mathfrak{l}^{\prime} \varsigma_{0} \circ 0\right]^{\prime} Z\right) \text { еәл } V
$$

‘xe[no!̣xed uI
(LI•LL)

$$
\cdot(\mathfrak{e}) Z-(\mathfrak{q}) Z=\left(\left[\mathfrak{l}^{\prime} \mathfrak{e}\right]^{\prime} Z\right) \text { еәл } Z
$$

Łечł sə!̣duı! (GI) uəчL
(9I•LL)

$$
\cdot\left(\left[\mathfrak{f}^{\prime} 0\right]^{\prime} \mathrm{Z}\right) \operatorname{eax} \mathrm{F}=(\mathfrak{f}) \mathrm{Z}
$$

Кq Z uо!̣әunf мәи е әu!̣әр әм
(GI'LL)

$$
\cdot\left(\left[\operatorname{e}^{\prime} 0\right]^{\prime} z\right) \text { eәл } V-\left(\left[\mathfrak{t}^{\prime} 0\right]^{\prime} z\right) \text { eәл } V=\left(\left[\mathfrak{t}^{\prime} \mathrm{e}\right]^{\prime} z\right) \text { eәл } V
$$

$$
\cdot\left({ }_{\varepsilon} \subseteq 0 \cdot 0-{ }_{\varepsilon} \mathfrak{f}\right) \frac{\mathcal{\varepsilon}}{[}=\left(\left[\mathcal{t}^{\prime} \varsigma 0 \cdot 0\right]^{\prime} M\right) \text { eә. } V
$$

‘ле[no!̣ıed uI
($\varepsilon L^{\prime} \cdot L$)

$$
\cdot\left({ }_{\varepsilon} \mathrm{e}-{ }_{\varepsilon} \mathfrak{q}\right) \frac{\varepsilon}{\mathrm{L}}=\quad{ }_{\varepsilon} \mathrm{e} \frac{\tau}{\mathrm{~L}} \quad-\quad{ }_{\varepsilon} \neq \frac{\tau}{\mathrm{L}}=
$$

$$
\begin{equation*}
\cdot\left({ }_{z} \mathcal{S} 0 \cdot 0-{ }_{z} \mathfrak{z}\right) \frac{\tau}{L}=\left(\left[\mathfrak{t}^{\prime} \mathcal{S} 00^{\circ} 0\right]^{\prime} x\right) \text { eәл } \mathrm{V} \tag{ZI’IL}
\end{equation*}
$$

(LI'LL)

（GZ＇LL）
sрІә！$К \mathrm{I}-\mathrm{u}=\mathrm{W}$ ภu！

$$
\begin{equation*}
{ }_{\gamma}(\mathrm{I}+\mathrm{u})_{\tau} \mathrm{u} \frac{\mathrm{t}}{\mathrm{~L}}={ }_{\varepsilon} \gamma \underset{{ }^{\mathrm{I}}}{\stackrel{\mathrm{I}=\mathrm{x}}{\mathrm{u}}} \tag{モでLL}
\end{equation*}
$$

$$
\begin{equation*}
{ }_{\tau}(I+W)_{z} N \frac{I}{L}={ }_{\varepsilon}>{ }^{I} \underset{W}{I=Y} \tag{とでLL}
\end{equation*}
$$

（てて＇LL）
（LでLI）
oł（0Z）səэпрәл чЈ！чм

$$
\begin{aligned}
& { }_{\varepsilon}>\underbrace{\mathrm{L}=\mathrm{y}}_{\mathrm{t}-\mathrm{u}}= \\
& { }_{\varepsilon}>{\underset{\mathrm{I}}{\mathrm{I}-\mathrm{u}}}_{\mathrm{I}=\mathrm{x}}^{\longrightarrow}+{ }_{\varepsilon} 0= \\
& { }_{\varepsilon}(\mathrm{I}-\mathrm{u})+\mathrm{Y}+{ }_{\varepsilon} Z+{ }_{\varepsilon} \mathrm{L}+{ }_{\varepsilon} 0=
\end{aligned}
$$

（0Z＇LL）

$$
\begin{aligned}
& \left\{{ }_{\varepsilon} Y+{ }_{\varepsilon}(I-y)\right\} \frac{\varepsilon^{u}}{{ }_{\varepsilon} f} \underset{{ }_{u}=x}{\zeta} \frac{u}{f} \frac{\tau}{I}=
\end{aligned}
$$

(0ع'LI)

$$
\begin{equation*}
{ }_{\mathrm{s}} \mathrm{x}=(\mathrm{x}) \mathrm{z} \tag{6Z'LL}
\end{equation*}
$$

(LZ'LL)
(9Z•IL)

$$
\begin{aligned}
& \text { - }+7\left\{\frac{z^{u}}{I}+I\right\} \frac{t}{I}= \\
& \left\{\frac{{ }_{\tau} u_{t}}{\tau+{ }_{\tau} u_{t}}\right\}_{t} \neq \frac{t}{I}= \\
& \left\{z+{ }_{\tau} \mathrm{u} z\right\} \frac{\tau^{u}}{{ }^{\mathrm{u}}} \frac{8}{\mathrm{q}}= \\
& \left\{{ }_{\tau}(\mathrm{I}-\mathrm{u})+{ }_{\tau}(\mathrm{I}+\mathrm{u})\right\}_{\tau} \mathrm{U} \frac{\mathrm{t}}{\mathrm{I}} \cdot \frac{{ }^{\frac{\mathrm{t}}{}} \frac{\mathrm{u}}{{ }^{7}} \frac{\tau}{\mathrm{I}}=}{}= \\
& \left\{{ }_{\tau}(\mathrm{I}-\mathrm{u})_{\tau} \mathrm{u} \frac{\mathrm{t}}{\mathrm{I}}+{ }_{\tau}(\mathrm{I}+\mathrm{u})_{\tau} \mathrm{u} \frac{\mathrm{t}}{\mathrm{I}}\right\} \frac{\mathrm{t}}{\mathrm{u}} \frac{\tau}{t^{t}} \frac{\tau}{\mathrm{~L}}=
\end{aligned}
$$

$$
\frac{\mathrm{I}+\mathrm{s}}{\mathrm{I}+\mathrm{s} \mathfrak{f}}=\left(\left[\mathrm{f}^{\prime} 0\right]^{\prime} \mathrm{z}\right) \operatorname{e\partial x} \forall \quad \Leftarrow \quad{ }_{\mathrm{s}} \mathrm{f}=(\mathfrak{f}) \mathrm{z}
$$

(Cع'LL)
($\varepsilon \varepsilon^{\circ} \cdot L$)

นəЧ.
(ટع'LI)

$$
\cdot{ }_{t} \mathrm{x}=(\mathrm{x}) \mathrm{z}
$$

(LE*LL)

$$
\begin{aligned}
& \left(\frac{\tau^{u}}{L}-\frac{u}{\varepsilon}-\varepsilon\right)\left(\frac{u}{L}-z\right)\left(\frac{u}{L}-I\right) \frac{0 \varepsilon}{{ }_{\mathrm{G}} \mathrm{u}}=
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left(\mathrm{I}-\mathrm{NZ}+{ }_{2} \mathrm{NZ}\right)_{\tau}(\mathrm{I}+\mathrm{W})_{\tau} \mathrm{N} \frac{Z \mathrm{~L}}{\mathrm{~L}}={ }_{c^{u}}{ }^{\mathrm{I}=\mathrm{U}}{ }_{\mathrm{W}}
\end{aligned}
$$

$$
\cdot\left(\mathrm{I}+\mathrm{W} \varepsilon-{ }_{\varepsilon} \mathrm{N} 9+{ }_{\ddagger} \mathrm{N} \varepsilon\right)(\mathrm{I}+\mathrm{NZ})(\mathrm{I}+\mathrm{N}) \mathrm{N} \frac{\tau \hbar}{\mathrm{~L}}={ }_{9}{ }^{\mathrm{u}}{\underset{\mathrm{I}}{\mathrm{~W}}}_{\mathrm{I}=\mathrm{u}}
$$

孔ечł ЧS!াqełsə о子

$$
\begin{aligned}
& \infty>\mathrm{u}>\mathrm{I}+\mathrm{W} \mathrm{f} \text { ! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ұечł чs!!qеұsə оч }
\end{aligned}
$$

os

$$
\cdot\left\{\mathrm{I}+\frac{\mathrm{u}_{乙}}{L}-\frac{z^{\mathrm{u}} \mathrm{u}_{乙}}{L}+\frac{{ }_{\mathrm{t}}^{\mathrm{u} 9}}{L}-\frac{{ }_{9} \mathrm{u}_{9}}{\mathrm{~L}}\right\} \frac{L}{{ }_{L}^{\mathrm{u}}}=
$$

әлеч әм ‘əлоqе L-u = W su!̣əs ‘MoN

рІə！

$'\left(\mathrm{I}+\mathrm{N} \varepsilon-{ }_{\varepsilon} \mathrm{N} 9+{ }_{\mathrm{f}} \mathrm{N} \varepsilon\right)(\mathrm{I}+\mathrm{WZ})(\mathrm{I}+\mathrm{W}) \mathrm{N}={ }^{\mathrm{N}} \mathrm{O}={ }_{9} \mathrm{u} Z \mp \underset{\mathrm{~W}}{\mathrm{~L}=\mathrm{u}}$

$$
{ }_{9} \mathrm{u}_{\mathrm{ZT}}={ }^{\mathrm{L}-\mathrm{u}} \mathrm{O}-{ }^{\mathrm{u}} \widetilde{\mathrm{O}}
$$

sn_{L}
дечд оs

әэиәч рие
sрโə！$К$（рәриәuшоәәл

$$
\cdot{ }^{\mathrm{N}} \mathrm{O}=\left\{{ }^{\mathrm{L}-\mathrm{U}} \mathrm{O}-{ }^{\mathrm{u}} \mathrm{O}\right\} \underset{\mathrm{W}}{\underline{\mathrm{I}=\mathrm{u}}}
$$

IO
sə！̣duu！

$$
\left.\begin{array}{rlcc}
\infty>\mathrm{u}>\mathrm{I}+\mathrm{W} & \ddagger! & \mathrm{I} \\
\mathrm{~W}>\mathrm{u}>0 & \mathrm{f!} & { }^{\mathrm{W}} \widetilde{\mathrm{O}} /{ }^{\mathrm{u}} \widetilde{\mathrm{O}}
\end{array}\right\}={ }^{\mathrm{u}} \mathrm{~d}
$$

孔ечҰ әлләsqo łsı！！

$$
\begin{aligned}
& { }_{\iota} \mathrm{u} 9+{ }_{9} \mathrm{ULZ}+{ }_{\mathrm{g}} \mathrm{ULZ}+{ }_{\varepsilon} \mathrm{u}_{L}-\mathrm{u}={ }^{\mathrm{u}} \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& \text { '0000Z6I = } \\
& 00 \text { SL890t }+00 \text { SZS } 6 I \times \angle S-00 S L 6 \times 0 L 6+ \\
& \mathcal{E} / 00 \varsigma \varsigma I \times 0 \varsigma 0 t-00 \varepsilon \times \varsigma \angle 89-0 Z \times \varsigma \angle 89 t=\left(\left[\varsigma Z^{\prime} \varsigma\right]^{\prime} \phi\right) \text { еәлл } V \\
& \text { OS 00GL890才 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bu!̣§§du! }
\end{aligned}
$$

$$
‘ s+d \angle G-z 0 \angle 6+M_{0} 0 \subseteq 0 \pm-I G \angle 89-8 G \angle 89 才=\phi
$$

$$
\begin{aligned}
& \text { 'IZ/0000009I = } \\
& \text { L/ 0000000LZI + 00000S0I } \times 09-
\end{aligned}
$$

$$
\begin{aligned}
& \text { os } \quad \mathrm{L} / 0000000 \angle Z \mathrm{I}
\end{aligned}
$$

әлеч әм [ог"0г] ио

$$
\begin{aligned}
& \text { ло } \\
& 0+\left(\left[0 z^{\prime} 0 I\right]^{\prime} \phi\right) \operatorname{eza} \boldsymbol{x} \boldsymbol{0}+0=
\end{aligned}
$$

$$
\begin{aligned}
& { }_{9} \mathrm{x}+{ }_{\varsigma} \mathrm{x} 09-{ }_{\dagger} \mathrm{x} 00 \varepsilon I+{ }_{\varepsilon} \mathrm{x} 000 \tau \mathrm{I}-{ }_{\tau} \mathrm{x} 0000 t={ }_{\tau}\left({ }_{\tau} \mathrm{x}+\mathrm{x}_{0} \varepsilon-00 \tau\right)_{\tau} \mathrm{x}
\end{aligned}
$$

