
19. Continuous probability distributions: the fundamental theorem again

In Lecture 8, we introduced the concept of probability density function f for a continuous
random variable X; f is nonnegative, and total area under its graph is 1.  In this lecture, we
assume that X is also nonnegative (but we will relax this assumption in Lecture 28).  Then
the p.d.f. is defined on [0, ∞) with

   f(x)≥0,0≤x<∞(19.1a)
and

       
  
Int(f,[0,∞))=Area(f,[0,∞))=f(x)dx=1

0

∞

∫.(19.1b)

Note what this implies: no matter how far you go to the right, the area under the graph of f
remains precisely 1, which can happen only if f(x) → 0 as x → ∞.  Sometimes this condition
is satisfied because there exists some b such that f(x) = 0 for x > b; then Int(f, [b, ∞)) = 0,
and (1b) reduces to Int(f, [0, b]) = 1.  At other times, however, f(x) → 0 as x → ∞  despite
f(x) being positive (if mostly very small) throughout [0, ∞).  Then Int(f, [0, ∞)) is interpreted
to mean the limit of Int(f, [0, K]) as K → ∞ (and is precisely 1).  More generally, if there
exists no b such that f(x) = 0 for x > b, then Int(f, [a, ∞)) is called an improper integral and
is interpreted to mean the limit as K → ∞  of Int(f, [a, K]).  For this limit to exist, however,
i.e., for the integral to converge, it is not enough for f(x) to approach zero as x → ∞; rather,
f must approach zero sufficiently rapidly to prevent the enclosed area from growing
without bound.  We discuss improper integrals more fully in Lecture 27. Meanwhile, we
finesse the issue by always choosing f to guarantee convergence.

Conversely, any function f that satisfies (1) is the p.d.f. of a random variable
distributed over [0, ∞).  For example, the function f defined by

 

  

f(x)=
A+

1
4

{1−3A}xif0≤x<2

4(1−A)
x

3if2≤x<∞









         (19.2)

is a p.d.f. if 0 < A < 1 because (1) is then satisfied (see Exercise 1).  We used this p.d.f. with
A = 0.768 in Lecture 15 to model survival of melanoma patients.  According to this model,
for example, a patient survives between 1 and 3 years with probability

        
  

f(x)dx=
1

3

∫
47−29A

72
=0.343;(19.3)

see Exercise 2.1
From Lecture 10, the cumulative distribution function of X is defined in terms of its

p.d.f.  If F is the c.d.f., then F is defined on [0, ∞) by

  
F(t)=Prob(0≤X≤t)=Areaf,[0,t] ()=f(x)dx

0

t

∫.(19.4)

As t increases from 0 to ∞, more and more of the area under the graph of f is accounted for,
so that F(t) increases from 0 to 1.  That is, F must satisfy

1 Note, however, that according to Table 5.3, the same probability is (48+23)/256 = 0.277.  The discrepancy is
due to the error in the model, which Figure 15.5 reveals to be greatest on [1, 3].



M. Mesterton-Gibbons: Biocalculus, Lecture 19, Page 2

    F(0)=0(19.5a)
      Fisnondecreasing(19.5b)

  
limt→∞F(t)=1(19.5c)

or, equivalently,

    F(0)=0(19.6a)
        ′ F(t)≥0,0≤t<∞(19.6b)

    F(∞)=1.(19.6c)

Conversely, any F that satisfies (5) or (6) is the c.d.f. of a random variable on [0, ∞).
For example, the function F defined by

 

  

F(t)=
At+

1
8

{1−3A}t
2

if0≤t≤2

1−
2(1−A)

t
2if2≤t<∞,









         (19.7)

is a c.d.f. if 0 < A < 1 because (5) is then satisfied (see Exercise 1).  We used this c.d.f. with
A = 0.768 in Lecture 15 to model survival of melanoma patients.  For example, a patient
survives between 1 and 3 years with probability

       
  
F(3)−F(1)=

1
9

{7+2A}−
1
8

{1+5A}=0.343;(19.8)

see Exercise 2.  A more versatile example of a c.d.f. involves the exponential function.  In
Lecture 7 we showed that R defined by

           R(x)=exp(Ax
m

)(19.9)
is strictly increasing on [0, ∞); see (7.23).  So F defined on [0, ∞) by

  
F(x)=1−

1
R(x)

=1−
1

exp(Ax
m

)
(19.10)

is a legitimate c.d.f. for a continuous random variable.  Why?  First, because R(0) = 1, we
have F(0) = 1 – 1 = 0.  Second, because R(x) increases with x, 1/R(x) decreases with x, and
thus 1 – 1/R(x) increases with x, so that F is nondecreasing. Third, because R is strictly
increasing, 1/R(x) approaches zero as x → ∞, and so  F(∞) = 1 – 0 = 1.  Thus (5) is satisfied.

Now, in Lectures 8 and 10, we first defined the p.d.f and then used (4) to deduce the
c.d.f.  But the fundamental theorem tells us that F(t) = Int(f, [0, t]) implies   f(t)=′ F(t).  So
another way to specify a distribution is to define F first and then use   f=′ F to deduce the
p.d.f.  In other words, because

  
f(t)=′ F(t)⇔F(t)=f(x)dx

0

t

∫,(19.11)

either f or F completely specifies a continuous distribution.2
In fact, when fitting a distribution to a sample, the method of choice is to fit the data

to the c.d.f. (by, e.g., the method of Lectures 10 and 15), and then use (11) to deduce the
p.d.f.  Consider, for example, the data in Table 1.  It shows year of death for 545 male

2  Nevertheless, it is traditional to characterize a distribution in terms of properties of its p.d.f.  For example,
if f is piecewise-constant or piecewise-uniform, then F is piecewise-linear, but we describe the distribution
as piecewise-uniform; see Exercise 3.  Similarly, the distribution defined in Exercise 4 is piecewise-linear.
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prairie dogs living in South Dakota between 1975 and 1989 (Hoogland, 1995, p. 396).  Let
us define a continous random variable X by

X = AGE AT DEATH OF PRAIRIE DOG(19.12)

chosen randomly from Hoogland's data, and a sequence {Pn} by

  Pn=Prob(X≤n).(19.13)
Then, from Table 1, P0 = 0 and

      
  

P1=
312
545P2=

413
545P3=

487
545

P4=
522
545P5=

537
545P6=1

(19.14)

The sequence {Pn} is graphed in Figure 1(b).

YEAR OF
DEATH

FREQUENCYYEAR OF
DEATH

FREQUENCY

1312512
210168
374≥ 70
435

Table 19.1   Prairie dog lifespans

We think of {Pn} as sampling the function F defined by F(x) = Prob(X ≤ x) =
Prob(PRAIRIE DOG LIVES AT MOST x YEARS) at integer values of x.  If F is a perfect model,
then

  F(n)=Pn(19.15)
for all n (in other words, when {Pn} and F are graphed together, the dots all lie on the
curve).3  A measure of the extent to which this constraint is violated is the sum of squared
errors

          
  
∆={F(n)−Pn}

2

n=1

6

∑.(19.16)

The smaller the value of ∆, the better the fit of the c.d.f.  So we try to make ∆ as small as
possible.

For example, we will be able to show in Lecture 20 that F defined by (10) is concave
down if m = 1 but has an inflection point if m ≥ 2.  From Figure 1, however, the prairie-dog
c.d.f. is evidently concave down, and so we will fit the data to the c.d.f. defined by

  
F(x)=1−

1
exp(Ax)

,(19.17)

i.e., (10) with m = 1.  From (14) and (16), the sum of squared errors is

  

∆={F(n)−Pn}
2

n=1

6

∑=1−
1

exp(An)
−Pn









2

n=1

6

∑

=
233
545−

1
exp(A) ()

2
+

132
545−

1
exp(2A) ()

2
+

58
545−

1
exp(3A) ()

2

+
23
545−

1
exp(4A) ()

2
+

8
545−

1
exp(5A) ()

2
+

1
exp(6A) ()

2
.

(19.18)

3 Note, however, that the converse of this statement is false: if F(n) = Pn for all n, then it does not follow that
F is a perfect model.  See Exercise 3.
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Note that ∆ depends only on A.  Although it does not reduce to a simple expression like
(15.38), it is just as easy for a computer to plot.  The graph of ∆ versus A is shown in Figure
2, which reveals that the error is least where A = 0.778 and

  
∆={F(n)−Pn}

2

n=1

6

∑=0.220×10
−2

.(19.19)

So we choose F defined by

  
F(x)=1−

1
exp(0.778x)

(19.20)

to model the prairie-dog distribution.
As a further illustration of this method, we now choose F to model the distribution

of leaf thickness in Dicerandra linearifolia (Lectures 5 and 8).  The relevant data from Lecture
5 are reproduced as Table 2.  Because thicknesses are rounded to the nearest sixtieth of a
millimeter, any thickness between 7/120 = 0.0583 mm and 9/120 = 0.075 m was recorded
as 8/120 = 0.067 mm, whereas any thickness between 9/120 mm and 11/120 = 0.0916 mm
was recorded as 10/120 = 0.083 mm, etc.  Thus, if X is the thickness of a leaf selected at
random, Table 2 implies Prob(X ≤ 0.0583) = 0, Prob(X ≤ 0.075) = 9/489 = 0.0184, Prob(0.075
≤ X ≤ 0.0916) = {9+5}/489 = 14/489 = 0.0286, and so on.  It is therefore convenient to define
a sequence {xn} by {x0, x1, x2,..., x12} = {0.0583, 0.075, 0.0916, ... , 0.2583} or

  xn=
1

120{2n+7},0≤n≤12(19.21)
and to redefine Pn by

  Pn=Prob(X≤xn),(19.22)
instead of (15).  Then we regard F as fitting the data perfectly if

  F(xn)=Pn,0≤n≤12(19.23)
and our measure of the extent to which this constraint is violated becomes

  
∆={F(xn)−Pn}

2

n=0

12

∑,(19.24)

in place of (16).

THICKNESS (mm)FREQUENCYTHICKNESS (mm)FREQUENCY

0.06790.167118
0.08350.18317
0.1280.29

0.117450.2331
0.1331650.252
0.1590

  Table 19.2  Leaf thicknesses in  Dicerandra linearifolia

From (22) and Table 2, the sequence {Pn} is defined on [0...12] by

    
  

P0=0P1=
3

163P2=
14
489P3=

14
163P4=

29
163P5=

84
163P6=

114
163

P7=
460
489P8=

159
163P9=

162
163P10=

162
163P11=

487
489P12=1.

(19.25)
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It is plotted in Figure 3(b), from which it appears that there is an inflection point between n
= 4 and n = 6, i.e., between x4 = 0.125 mm and x6 = 0.1553 mm.  We therefore require m ≥ 2
in (10).  Suppose we take m = 7.  Then, replacing A by   B

7
 in (10), we have

  
F(x)=1−

1
exp({Bx}

7
)
.(19.26)

Which value of B shall we choose?  From (21) and (24), the sum of squared errors is

  
∆=1−

1
exp({(2n+7)B/120}

7
)

−Pn









2

n=0

12

∑,(19.27)

which is plotted against B in Figure 4(a).  Because ∆ is least for B = 6.5735, we choose

  
F(x)=1−

1
exp({6.5735x}

7
)

=1−
1

exp(530388x
7
)

(19.28)

to model the data; see Figure 3(b).  Note the inflection point where x = 0.1494.

mLEAST SUM OF SQUARED ERRORS   (∆)B    AT MINIMUM

20.442 6.311
30.1886.389
40.07966.453
50.03186.504
6  1.23×10

−26.543
7  0.75×10

−26.574
8  1.07×10

−26.599
9  1.84×10

−26.621
10  2.85×10

−26.641

Table 19.3Least sum of squared errors when fitting (29) to the leaf-thickness data

But why choose m = 7 to begin with?  If you were to repeat the above exercise with 

  
F(x)=1−

1
exp({Bx}

m
)

(19.29)

for different m and in each case calculate ∆, then you would find that ∆ decreases with m
for 2 ≤ m ≤ 7 but increases again for m ≥ 8; see Table 3.  So m = 7 is optimal.

SIZE  (mm) ABOVE BASE LENGTH1-34-67-910-1213-1516-1819-2122-2425-27
NUMBER1225267114257177412
PROBABILITY0.000.030.070.090.160.350.240.060.00

Table 19.4     Frequency and probability of lengths above 12 mm in Thompson's catch of 733 minnows

4 See (20.32), from which the inflection point is at 0.978/B = 0.149.
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mLEAST SUM OF SQUARED ERRORS   (∆)B    AT MINIMUM

20.164 0.05513
30.0482 0.05563
4  1.32×10

−2 0.05587
5  0.787×10

−2 0.05607
6  1.42×10

−2 0.05624
7  2.5×10

−2 0.05639
8  3.72×10

−2 0.05649

Table 19.5Least sum of squared errors when fitting (27) to minnow size (above base length)

As our third and final illustration of the method, we now choose F to model the
distribution of size above base length in D'Arcy Thompson's minnows.  The relevant data
from Lecture 10 are reproduced as Table 4.  Now, in place of (21), the sequence {xn} is
defined by {x0, x1, x2,..., x9} = {0.5, 3.5, 6.5, ... , 27.5} or

  xn=
1
2{6n+1},0≤n≤9,(19.30)

and in place of (25) the sequence  {Pn} is defined by

    
  

P0=0P1=
1

733P2=
23

733P3=
75

733P4=
142
733

P5=
256
733P6=

513
733P7=

690
733P8=

731
733P9=1.

(19.31)

The sequence {Pn} plotted in Figure 5(b), from which it appears that F should have  an
inflection point between n = 5 and n = 6, i.e., between x5 = 15.5 mm and x6 = 18.5 mm.  We
again require m ≥ 2, but this time the optimal value of m turns out to be m = 5; see Table 5.
From (29)-(30), the sum of squared errors is

  
∆=1−

1
exp({(6n+1)B/2}

5
)

−Pn









2

n=0

9

∑,(19.32)

which is plotted against B in Figure 4(b).  Because ∆ is least for B = 0.05607, we choose

  
F(x)=1−

1
exp({0.05607x}

5
)

=1−
1

exp(5.5399x
5

⋅10
−7

)
(19.33)

to model the data; see Figure 5(b).  Note the inflection point where x = 17.1.5
Also plotted, in Figures 1(a), 3(a) and 5(a), are the probability density functions of

the fitted distributions for prairie-dog life span, leaf thickness and minnow size.  In all
three cases, from (10) and (11), the p.d.f. is defined by

  
f(x)=′ F(x)=

d
dx

1−
1

R(x)








=−
d

dx
1

R(x)








.(19.34)

We can simplify this expression by using the product rule; because

  
1=R(x)⋅

1
R(x)

 ,

we have

  
0=

d
dx

1{}=
d

dx
R(x)⋅

1
R(x)









=′ R(x)⋅
1

R(x)
+R(x)

d
dx

1
R(x)









,(19.35)

5 Again, see (20.32), from which the inflection point is at 0.956/B = 17.1.
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from which (34) yields

  
f(x)=−

d
dx

1
R(x)









=′ R(x)
{R(x)}

2.(19.36)

Thus we know f(x) if we know   ′ R(x).  But R is a composition.  So immediately we ask,
how do we find the derivative of a composition?  To that we will turn our attention in
Lecture 20.

Meanwhile, there are a number of distributions for which your knowledge of
derivatives is already sufficient to obtain the p.d.f. from the c.d.f. by using   f=′ F.  For
example, you can readily verify that (7) implies (2).  Other examples appear in Exercises 3,
4, 7 and 14.

Reference

Hoogland, J.L. (1995)  The Black-Tailed Prairie Dog.  University of Chicago Press
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Exercises 19

19.1(i)Show that (2) implies Int(f, [0, 2]) = (1+A)/2 and Int(f, [2, ∞]) = (1–A)/2.  
Hence verify that f is a p.d.f. when 0 < A < 1, i.e., that (1a) and (1b) are satisfied.
(ii)Verify that F defined by (7) is a c.d.f. when 0 < A < 1, i.e., (5) is satisfied.

19.2Verify (3) and (8).

19.3Show that the piecewise-linear join F defined by

  

F(x)=

312
545xif0≤x<1

101x+211
545if1≤x<2

74x+265
545if2≤x<3

35x+382
545if3≤x<4

3(5x+154)
545if4≤x<5

8x+497
545if5≤x<6
1if6≤x<∞

















is a cumulative distribution function, and find the associated probability density 
function.  Verify that F satisfies (13) exactly for every value of n.  Does F yield a 
better model of prairie-dog survival than the c.d.f. in Figure 1(b)?  Why or why not?

19.4Show that the piecewise-quadratic join F of seven components defined by

  

4360F(x)=

2496xif0≤x≤
1
2

−211+3340x−844x
2

if
1
2≤x≤

3
2

1445+1132x−108x
2

if
3
2≤x≤

5
2

1145+1372x−156x
2

if
5
2≤x≤

7
2

2076+840x−80x
2

if
7
2≤x≤

9
2

3129+372x−28x
2

if
9
2≤x≤

11
2

3976+64xif
11
2≤x≤6

4360if6≤x<∞



















is a cumulative distribution function, and find the corresponding probability 
density function.  Is F smooth?  Show that if F is used to model the prairie-dog 
survival data in Table 1, then the sum of squared errors is   ∆=0.248×10

−2
.

19.5Verify Table 8.2 (by using a calculator).

19.6A function f is defined on [0, ∞) by

  

f(x)=
4x/b

2
if0≤x≤b/2

4(b−x)/b
2

ifb/2≤x≤b
0ifb≤x<∞









where b is an arbitrary positive constant.
(i)Show that f defines a legitimate probability density function on [0, ∞)
(ii)Find an explicit expression for its cumulative distribution function.
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19.7Is the function defined by

  
F(x)=

1+b(x−a)
3

if0≤x≤a
1ifa≤x<∞





a legitimate c.d.f for (i) all values of b (ii) no values of b or (iii) some values of b?  
Elucidate.  If F is indeed a c.d.f., then find its p.d.f.

19.8Is the function defined by

  
F(x)=

1
6x

3
−x

2
+

19
12xif0≤x≤4

1if4≤x<∞




a legitimate c.d.f?  Why or why not?

19.9It is known that the probability density function f defined on [0, ∞) by

  

f(t)=

2t
5

if0≤t<1
αif1≤t<

7
6

9−βtif
7
6≤t<

3
2

0if
3
2≤t<∞











is a continuous function.  What are therefore the values of α and β?  Obtain an 
explicit formula for the associated cumulative distribution function F on [0, ∞).

19.10It is known that the probability density function f defined on [0, ∞) by

  

f(t)=

t
3

if0≤t<1
1if1≤t<α

2(β−t)ifα≤t<β
0ifβ≤t<∞











is a continuous function.  What are therefore the values of α and β?  Obtain an 
explicit formula for the associated cumulative distribution function F on [0, ∞).

19.11 A smooth function f, defined on [0, 3] by

  
f(t)=

At−Bt
2

if0≤t≤2
C(3−t)

2
if2≤t≤3





satisfies

  
f(t)dt=1

0

3

∫
(i)Find A, B and C
(ii)Find all local extrema of f on [0, 3]
(iii)Is f a probability density function?  Why, or why not?
(iv)Crudely sketch the graphs of f,   ′ f and   ′′ f, clearly indicating

(A) the unique global maximum of f
(B)  the unique inflection point of f



M. Mesterton-Gibbons: Biocalculus, Lecture 19, Page 10

19.12A smooth function f, defined on [0, 5] by

  
f(t)=

At(16−t
2
)if0≤t<3

Bt−Ct
2

if3≤t≤5




satisfies

  
f(t)dt=1

0

5

∫.

(i)Find A, B and C
(ii)Find all local extrema of f on [0, 5], if any.
(iii)Find all inflection points of f on [0, 5], if any.
(iv)Is f a probability density function?  Why, or why not?
(v)Crudely sketch the graph of f, indicating both its global maximum and 

global minimum on [0, 5].

19.13If q denotes a nondecreasing function on [0, b] satisfying q(b) = 1, show that F 
defined on [0, ∞) by

  

F(x)=
x
b

1+1−
x
b






q(x) 








if0≤x<b

1ifb≤x<∞






is a legitimate continuous c.d.f.

19.14A function F is defined on [0, ∞) by

  

F(t)=
At(c−t)+θ+Ac

2

θ+1
t
c







if0≤t≤c

1−
1−Ac

2

θ+1
c
t







θ

ifc≤t<∞










where θ is a positive integer.
(i)When is F a cumulative distribution function?
(ii)What is then the associated probability density function f?
(iii)Is F smooth?
(iv)Is f smooth?

19.15A smooth function f, defined on [0, ∞] by

  

f(t)=
1−At(t−1)

2
if0≤t<1

Bt−C
t

5if1≤t≤∞






satisfies

  
f(t)dt=1

0

∞

∫.

(i)Find A, B and C
(ii)Find all local extrema of f on [0, ∞], if any.
(iii)Find all inflection points of f on [0, ∞], if any.  Where is f concave down?
(iv)Is f a probability density function?  Why, or why not?
(v)Crudely sketch the graph of f, indicating both global extrema.
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Answers and Hints for Selected Exercises

19.1From (2) and (12.25) with a = 0, b = 2, k = A, q = (1–3A)/4, u(x) = 1 and v(x) = x,

  

f(x)
0

2

∫dx=A+
1
4

{1−3A}x 





 0

2

∫dx

=A1
0

2

∫dx+
1
4

{1−3A}x
0

2

∫dx

=A2−0 ()+
1
4

{1−3A}⋅
1
2

2
2

−0
2

()=
1+A

2
From (2), (12.25) with a = 2, b = ∞, k = 4(1–A), q = 0, u(x) =   x

−3
 and Table 18.1,

  

f(x)
2

∞

∫dx=
4(1−A)

x
3







 2

∞

∫dx=4(1−A)x
−3

2

∞

∫dx

=4(1−A)
d

dx
−

1
2

x
−2 






 2

∞

∫dx=4(1−A)′ V(x)
2

∞

∫dx,

where we have defined V on [2, ∞) by

  
V(x)=−

1
2x

2.

Hence, by the fundamental theorem, i.e., (18.20), with a = 2 and t → ∞, we have

  

f(x)
2

∞

∫dx=4(1−A)′ V(x)
2

∞

∫dx=4(1−A){V(∞)−V(2)}

=4(1−A)0−−
1
8















=
1−A

2
,

because 1/2  x
2
 approaches zero as x approaches infinity.

19.3The p.d.f. is f defined by

  

f(x)=

312
545if0≤x<1
101
545if1≤x<2
74
545if2≤x<3
7

109if3≤x<4
3

109if4≤x<5
8

545if5≤x<6
0if6≤x<∞.
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19.4The p.d.f. is f defined by

  

f(x)=

312
545if0<x<

1
2

835−422x
1090if

1
2<x<

3
2

283−54x
1090if

3
2<x<

5
2

343−78x
1090if

5
2<x<

7
2

21−4x
109if

7
2<x<

9
2

93−14x
1090if

9
2<x<

11
2

8
545if

11
2<x<6

















19.6(i)       Clearly f(x) ≥ 0 for all x ∈ [0, ∞).  So f is a p.d.f. if Int(f, [0, b]) = 1.  Because f is 
piecewise-linear and continuous with f(0) = 0 = f(b) and mode b/2, Area(f, [0, b]) 
is the area of a triangle with base b and height f(m) = f(b/2) = 2/b.  So Int(f, [0, b]) 
= Area(f, [0, b]) = (1/2) ⋅ b ⋅ 2/b = 1.
(ii)For t ≤ b/2, we have F(t) =

        
  

f(x)dx
0

t

∫=
4x
b

2dx
0

t

∫=
4
b

2xdx
0

t

∫=
4
b

2

x
2

20

t

=
4
b

2

t
2

2
−

0
2

2





=

2t
2

b
2.

Note that F(m) = F(b/2) = 1/2.  Thus, for b/2 ≤ t ≤ b, we have

        

  

F(t)=f(x)dx
0

t

∫=f(x)dx
0

b/2

∫+f(x)dx
b/2

t

∫=F(b/2)+
4(b−x)

b
2dx

b/2

t

∫

=
1
2

+
4
b

2(b−x)dx
b/2

t

∫=
1
2

+
4
b

2b1dx−xdx
b/2

t

∫ b/2

t

∫












=
1
2

+
4
b

2b(t−b/2)−
1
2

t
2

−
b
2 ()

2

{}








=
4bt−b

2
−2t

2

b
2

after simplification.  Note that F(b) = 1.  Thus the c.d.f. is given by

  

F(t)=
2t

2
/b

2
if0≤t≤b/2

(4bt−b
2

−2t
2
)/b

2
ifb/2≤t≤b

1ifb≤t<∞









19.7F(0) = 0 implies that F is a c.d.f only if b =   a
−3

.  Then, because

  

d
dx

(x−a)
3

{}=
d

dx
x

3
−3ax

2
+3a

2
x−a

3
{}=3x

2
−6ax

2
+3a

2
−0=3(x−a)

2
,

we have

  
f(x)=

3(a−x)
2

/a
3

if0≤x<a
0ifa≤x<∞





Note that the method used here to obtain   f=′ F is inefficient; it will be superseded 
in the following lecture.

19.8No, because there exists a subdomain on which F is decreasing.
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19.9From f(1–) = f(1+) and f(7/6 –) = f(7/6 +) we obtain α = 2 and β = 6.  So

  

f(x)=

2x
5

if0≤x<1
2if1≤x<

7
6

9−6xif
7
6≤x<

3
2

0if
3
2≤x<∞











⇒F(t)=f(x)dx
0

t

∫=

1
3

t
6

if0≤t<1

2t−
5
3

if1≤t<
7
6

9t−3t
2

−
69
12

if
7
6≤t<

3
2

1if
3
2≤t<∞















19.10Because f is a p.d.f. with f(t) = 0 on [β, ∞), Int(f, [0, ∞)) = 1 ⇒

  
  

t
3

0

1

∫dt+1
1

α

∫dt+2(β−t)
α

β

∫dt=1.

So, on using the fundamental theorem, we have

  
  

t
4

40

1

+t1

α
+−(β−t)

2
{}α

β
=1,

implying

  
  

1
4

+α−1−(β−β)
2

+(β−α)
2

=1

or α +   (β−α)
2
 = 7/4.  Because f is continuous, f(α–) = f(α+), implying 1 = 2(β – α).  

So β – α = 1/2, implying α  +   (1/2)
2
 = 7/4 or α = 3/2.  Then β = α + 1/2 = 2.  So

  

f(x)=

x
3

if0≤x<1
1if1≤x<

3
2

2(2−x)if
3
2≤x<2

0if2≤x<∞











⇒F(t)=f(x)dx
0

t

∫=

1
4

t
4

if0≤t<1

t−
3
4

if1≤t<
3
2

4t−t
2

−3if
3
2≤t<2

1if2≤t<∞














19.11(i)   On [0, 3],

  
f(t)=

At−Bt
2

if0≤t<2
C(3−t)

2
if2≤t≤3





implies

  
′ f(t)=

A−2Btif0≤t<2
−2C(3−t)if2≤t≤3





Because f is continuous, f(2-) = f(2+) ⇒ 2A – 4B = C; because f is smooth,   ′ f(2-) = 
  ′ f(2+) ⇒ A – 4B = –2C.  Subtracting to eliminate 4B, we get A = 3C.  Therefore B 
= (2A–C)/4 = 5C/4.  So

  
f(t)=

C
4

12t−5t
2

if0≤t<2
4(3−t)

2
if2≤t≤3





But Int(f, [0, 3]) = 1.  Therefore,

  

C
4

(12t−5t
2
)dt

0

2

∫+4(3−t)
2
dt

2

3

∫








=1,



M. Mesterton-Gibbons: Biocalculus, Lecture 19, Page 14

implying

  

C
4

d
dt

(6t
2

−
5
3t

3
)dt

0

2

∫+−
4
3(3−t)

3
dt

2

3

∫








=1

and, by the fundamental theorem,

  

C
4

6t
2

−
5
3t

3

0

2
+−

4
3(3−t)

3

2

3

{}=1

or

  

C
4

6⋅2
2

−
5
32

3
−0+{−

4
30

3
−(−

4
31

3
)} {}=1

⇒
C
4

32
3

+
4
3









=1⇒C=
1
3

(ii)From above,

  
′ f(t)=

1−5t/6if0≤t<2
2
3(t−3)if2≤t≤3





On [2, 3), because t–3 < 0, we have   ′ f(t) < 0.  On [0, 2],   ′ f(t) > 0 if 0 ≤ t < 6/5 but 
  ′ f(t) < 0 if 6/5 < t ≤ 2.  So   ′ f(t) > 0 on [0, 6/5) but   ′ f(t) < 0 on (6/5, 3), implying a 
local maximum where t = 6/5.

(iii)Yes, f is a p.d.f. because Int(f, [0, 5]) = 1 and

  
f(t)=

t(1−5t/12)if0≤t<2
1
3(3−t)

2
if2≤t≤3





is nonnegative on [0, 3].

(iv)The graph of f is concave down on [0, 2] and concave up on [2, 3]; f 
increases from f(0) = 0 to its global maximum f(6/5) = 3/5 and then decreases 
again to f(3) = 0.  So there are two global minimizers.  The graph of   ′ f is 
piecewise linear.  It decreases from   ′ f(0) = 1 to   ′ f(2) = –2/3 and then increases 
again to   ′ f(3) = 0.  The graph of   ′′ fis piecewise constant (or, if you prefer, 
piecewise uniform); it jumps from –5/6 to 2/3 at t = 2, the unique inflection 
point (either because   ′′ fdiscontinuously changes sign, or because   ′ fhas a local 
minimum). Go to http://www.math.fsu.edu/~mm-g/QuizBank/mac3311.f96.html   
(Problem #2) to see the graphs.

19.12(i)   On [0, 5],

  
f(t)=

A(16t−t
3
)if0≤t<3

Bt−Ct
2

if3≤t≤5




implies

  
′ f(t)=

A(16−3t
2
)if0≤t<3

B−2Ctif3≤t≤5




Because f is continuous, f(3-) = f(3+) ⇒ 21A = 3B – 9C ⇒ 7A = B – 3C; because f is 
smooth,   ′ f(3-) =   ′ f(3+) ⇒ –11A = B – 6C.  Subtracting to eliminate B, we get 18A 
= 3C, or A = C/6.  Then B = 7A + 3C = 25C/6.  So
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f(t)=

C
6

16t−t
3

if0≤t<3
25t−6t

2
if3≤t≤5





But Int(f, [0, 5]) = 1.  Therefore,

  

C
6

(16t−t
3
)dt

0

3

∫+(25t−6t
2
)dt

3

5

∫








=1,

implying

  

C
6

d
dt

(8t
2

−
1
4t

4
)dt

0

3

∫+(
25
2t

2
−2t

3
)dt

3

5

∫








=1

and, by the fundamental theorem,

  

C
6

8t
2

−
1
4t

4

0

3
+

25
2t

2
−2t

3

3

5

{}=1

or

  

C
6

8⋅3
2

−
1
43

4
−0+

25
25

2
−2⋅5

3
−(

25
23

2
−2⋅3

3
) {}=1

⇒
C
6

3
2

8−
9
4





+5

225
2

−10 



−3

225
2

−6 













=1

⇒
C
6

207
4

+
125

2
−

117
2









=1⇒C=
24
223

(ii)From above,

  
′ f(t)=

4
223

16−3t
2

if0≤t<3
25−12tif3≤t≤5





On [3, 5], because 25 – 12t ≤ 25 – 36 = -11, we have   ′ f(t) < 0.  On [0, 3], if we define 
t* =   16/3=4/3, then

  
′ f(t)=

4
223

(16−3t
2
)=

12
223

16
3

−t
2 








=
12
223

(t*)
2

−t
2

{}=
12
223

(t*−t)(t*+t)

So   ′ f(t) > 0 if 0 ≤ t < t* but   ′ f(t) < 0 if t* < t ≤ 5, implying a local maximum f(t*) = 
512/{669  3} = 0.442 where t = t* = 2.309.

(iii)From above,

  
′′ f(t)=

4
223

−6tif0≤t<3
−12if3≤t≤5





So   ′′ f(t) does not change sign on [0, 5].  Hence no inflection points.

(iv)f is a p.d.f. if Int(f, [0, 5]) = 1 and f(t) ≥ 0 on [0, 5].  The first condition is 
satisfied, but not the second, because on [3, 5] we have f(t) = 4t(25–6t)/223, which 
is negative for 25/6 < t ≤ 5.
(v)The global maximum and minimum are f(t*) =  512/{669  3} = 0.442 and 
f(5) = –100/223 = –0.448, respectively.
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19.13First show that

  

′ F(x)=
1
b

1+1−
2x
b







q(x)+1−
x
b







x′ q(x) 







if0≤x<b

0ifb≤x<∞






Then use q(x) ≤ q(b) = 1,   ′ q(x) ≥ 0.

19.14(i)When A  c
2
 ≤ 1 (if A  c

2
 > 1 then F(t) > 1).

(ii)See (24.2).
(iii)Yes, because F(c–) = F(c+) = (θ+A  c

2
)/(θ+1), f(c–) = f(c+) = θ(1–A  c

2
)/(θ+1)c 

and   f=′ F.
(iv)Only if   ′ f(c–) =   ′ f(c+), i.e., if –2A = –θ(1 – A  c

2
 )/  c

2
, or A  c

2
 = θ/(θ +2).

19.15(i)   From

  

f(t)=
1+A(2t

2
−t

3
−t)if0≤t<1

B
t

4−
C
t

5if1≤t≤∞






we have

  

′ f(t)=
A(4t−3t

2
−1)if0≤t<1

−
4B
t

5+
5C
t

6if1≤t≤∞






on using our rule for the derivative of a sum of multiples (in conjunction with 
Table 18.1).  Because f is continuous, f(1-) = f(1+) ⇒ 1 = B – C; and because f is 
smooth,   ′ f(1-) =   ′ f(1+) ⇒ 0 = 5C –4B.  So B = 5 and C = 4, implying

  

f(t)dt
1

∞

∫=
5
t

4−
4
t

5









dt
1

∞

∫=5t
−4

dt
1

∞

∫−4t
−5

dt
1

∞

∫

=5
d
dt

−
1
3

t
−3 








dt
1

∞

∫−4
d
dt

−
1
4

t
−4 








dt
1

∞

∫

=5−
1
3

t
−3 



1

∞

−4−
1
4

t
−4 



1

∞

=50−−
1
3















−40−−
1
4















=
2
3

But Int(f, [0, 1]) + Int(f, [1, ∞))  =  Int(f, [0, ∞)) = 1.  So  Int(f, [0, 1])  =  1 – 2/3 = 1/3.  
That is,

  

1
3

=1+A(2t
2

−t
3

−t) {}dt
0

1

∫=1dt+
0

1

∫A{2t
2

−t
3

−t}dt
0

1

∫

=1−0+A
d
dt

2
3t

3
−

1
4t

4
−

1
2t

2
{}dt

0

1

∫

=1+A
2
3t

3
−

1
4t

4
−

1
2t

2
()0

1
=1+A

2
3−

1
4−

1
2−0 ()=1−

A
12

,

implying A = 8.  In sum, A = 8, B = 5 and C = 4.
(ii)Now
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′ f(t)=
8(3t−1)(1−t)if0≤t<1

20(1−t)
t

6if1≤t≤∞






So   ′ f(t) is negative on [0, 1/3), positive on (1/3, 1) and negative on (1, ∞), with 
  ′ f(1/3)  =  0  =   ′ f(1).  This means there is a local (also global) minimum where t = 
1/3, and a local (also global) maximum where t = 1.
(iii)From

  

′′ f(t)=
A(4−6t)if0≤t<1

20B
t

6−
30C
t

7if1≤t≤∞






=

16(2−3t)if0≤t<1
20(5t−6)

t
7if1≤t≤∞






we see that there are two inflection points, one where t = 2/3 and another where 
t = 6/5 (there is no inflection point where t = 1 because   ′′ f does not change sign as it
drops from   ′′ f(1–)  =  –16 to   ′′ f(1+) = –20).  Because   ′′ f is positive on [0, 2/3), 
negative on (2/3, 1) and (1, 6/5) and positive on (6/5, ∞), f is concave down on 
(2/3, 6/5) and concave up elsewhere.
(iv)No, f is a p.d.f. because although Int(f, [0, ∞]) = 1,

  

f(t)=
1+A(2t

2
−t

3
−t)if0≤t<1

B
t

4−
C
t

5if1≤t≤∞






=

(1−2t)(1−6t+4t
2
)if0≤t<1

5t−4
t

5if1≤t≤∞







is negative on the interval [c, 1/2], where c = (6-25)/8 ≈ 0.191.
(v)Go to  http://www.math.fsu.edu/~mm-g/QuizBank/MAC2311.f97/ 
Answers/assC4.gif  for the graph.  The global maxima and minima are f(1) = 1 and 
f(1/3) = –0.185, respectively.


