

(玉~6L)

((6 L)

$$
\left\lfloor\varepsilon \nexists \varepsilon^{\circ} 0=\frac{Z L}{\forall 6 Z-\angle \hbar}=x p(x) f \int_{\varepsilon}^{I}\right.
$$

pue
(e[.6L)

$$
\infty>x>0 \quad \text { ‘ } 0<(\mathrm{x})_{\mathrm{f}}
$$

$$
\begin{equation*}
\operatorname{xpp}(\mathrm{x})_{\mathcal{J}} \int_{\mathfrak{7}}^{0}=(\mathfrak{7}) \boldsymbol{\mathcal { I }} \quad \Leftrightarrow \quad(\mathfrak{7}), \boldsymbol{\mathcal { I }}=(\mathfrak{7}) \mathrm{J} \tag{LI‘6L}
\end{equation*}
$$

әsneэәq ‘spıом дәчłо uI •f`p•d

К

(01.6L)

$$
\frac{\left({ }_{u} x V\right) d x \partial}{I}-I=\frac{(x) \mathrm{y}}{I}-I=(x)_{H}
$$

 $\left({ }_{u} \mathrm{x} V\right) \mathrm{dxə}=(\mathrm{x})$ y

Кq рәи!̣әр у ұечъ рәмочs әм \angle әлпәәт

$$
\begin{align*}
& \mathfrak{\varepsilon} \varepsilon \downarrow \varepsilon \cdot 0=\{\forall \varsigma+\mathrm{I}\} \frac{8}{\mathrm{~L}}-\{\forall Z+L\} \frac{6}{\mathrm{~L}}=(\mathrm{L})_{\mathrm{H}}-(\varepsilon)_{\mathrm{H}} \tag{8.6L}
\end{align*}
$$

(99.6L)
(e9*6L)
(0c\%6L)

$$
\begin{align*}
& \cdot \mathrm{I}=(\infty) \mathrm{H} \tag{396ㄷ}\\
& \infty>\mathfrak{F}>0 \quad \text { ‘ } 0<(\mathfrak{7}) \text {, в } \\
& 0=(0) \text { Н }
\end{align*}
$$

$$
\begin{aligned}
& 0=(0) \text { у }
\end{aligned}
$$

 （ 41.6 L ）

$$
\frac{\left(x_{V}\right) \mathrm{dxə}}{\mathrm{I}}-\mathrm{I}=(\mathrm{x})_{\mathrm{H}}
$$

－əq！

（91．6L）

$$
\cdot_{z}\left\{{ }^{u} \mathrm{~d}-(\mathrm{u})_{H}\right\} \underset{9}{\mathrm{I}=\mathrm{u}}=\nabla
$$

ऽлодıә

 （ $\subseteq 1 \circ 6 \mathrm{~L}) \quad{ }^{\mathrm{u}} \mathrm{d}=(\mathrm{u})_{\boldsymbol{H}}$

иәч

		$\subseteq \varepsilon$	モ
0	L₹	モL	ε
8	9	LOL	乙
ZI	G	2IE	I
	HLVAG HO とV日ス		HLVGG нО を＊

$$
\mathrm{I}={ }^{9} \mathrm{~d} \quad \frac{\mathrm{StS}}{\angle \varepsilon S}={ }^{G} \mathrm{~d} \quad \quad \frac{\mathrm{StS}}{\tau \tau S}={ }^{\dagger} \mathrm{d}
$$

$$
\cdot(\mathrm{u}>\mathrm{X}) \mathrm{qo}_{\mathrm{d}}={ }^{\mathrm{u}} \mathrm{~d}
$$

（ZI「6L） つOG \＃I民IVYd HO HLVAG LV \＃ЭV＝X

Кq Х әүqе！̣ел шориел snou！̣uov e әu！ృәр sn

$$
\begin{align*}
& \left.\cdot \cdot_{Z}\left(\frac{(\mathrm{~V} 9) \mathrm{d} \times ə}{\mathrm{~L}}\right)+{ }_{\tau}\left(\frac{(\mathrm{VG}) \mathrm{dxa}}{\mathrm{~L}}-\frac{\mathrm{GTG}}{8}\right)+{ }_{Z}{ }_{Z} \frac{(\mathrm{~V} \mp) \mathrm{dxa}}{\mathrm{~L}}-\frac{\mathrm{GTG}}{\varepsilon \tau}\right)+ \tag{8ㄷ6L}
\end{align*}
$$

		06	GI＇0
乙	Gで0	G91	
I	ととで0	St	LILO
6	で0	87	［＇0
LI	E8L．0	G	ع80\％ 0
8LI	L9［＇0	6	$\angle 90^{\circ} 0$

（モで6L）

$$
(\varepsilon て ゙ 6 \mathrm{~L})
$$

（てで6L）
（LZ＂6L）

$$
Z I>u>0 \quad{ }^{u}{ }_{\mathrm{u}} \mathrm{~J}=\left({ }^{\mathrm{u} x}\right)_{\mathrm{H}}
$$

 Кq u d әич̣әрәл он рие

$$
\begin{equation*}
\frac{(x 8 L \angle \circ 0) \mathrm{dx} \partial}{\mathrm{I}}-\mathrm{I}=(\mathrm{x})_{\mathrm{H}} \tag{0で6L}
\end{equation*}
$$

Кq pәu！̣әр н әsooч әм оS
（6I＊6L）
${ }_{z-} 0\left[\times 0 z Z \cdot 0={ }_{z}\left\{{ }^{u} \mathrm{~d}-(\mathrm{u})_{\mathrm{H}}\right\}{\underset{9}{\mathrm{I}=\mathrm{u}}}_{]_{9}}=\nabla\right.$

 （6で6L）

$$
\frac{\left({ }_{u}\{x q\}\right) \mathrm{dx} \partial}{\mathrm{I}}-\mathrm{I}=(\mathrm{x})_{\mathrm{H}}
$$

（87．6L）

$$
\frac{\left({ }_{L} \mathrm{x} 88 \varepsilon 0 \varepsilon \subseteq\right) \mathrm{dx}}{\mathrm{~L}}-\mathrm{L}=\frac{\left({ }_{L}\left\{\mathrm{x} \subseteq \varepsilon \angle \mathcal{S}^{\circ} 9\right\}\right) \mathrm{dx} \mathrm{\partial}}{\mathrm{~L}}-\mathrm{L}=(\mathrm{x})_{H}
$$

$$
\begin{equation*}
\cdot \frac{\left(\left(_{L}\{x g\}\right) \mathrm{dx}\right.}{\mathrm{I}}-\mathrm{I}=(\mathrm{x})_{\mathrm{H}} \tag{9で6L}
\end{equation*}
$$

$(G \varepsilon \cdot 6 \mathrm{~L}) \cdot\left\{\frac{(x) y}{\mathrm{I}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}(\mathrm{x}) \mathrm{y}+\frac{(\mathrm{x}) \mathrm{y}}{\mathrm{I}} \cdot(\mathrm{x}), \mathrm{d}=\left\{\frac{(\mathrm{x}) \mathrm{y}}{\mathrm{I}} \cdot(\mathrm{x}) \mathrm{y}\right\} \frac{\mathrm{xp}}{\mathrm{p}}=\{\mathrm{I}\} \frac{\mathrm{xp}}{\mathrm{p}}=0$

$$
\frac{(x) \mathrm{y}}{\mathrm{I}} \cdot(\mathrm{x}) \mathrm{y}=\mathrm{I}
$$

（モど6L）

$$
\cdot\left\{\frac{(x) \mathrm{y}}{\mathrm{I}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}-=\left\{\frac{(\mathrm{x}) \mathrm{y}}{\mathrm{I}}-\mathrm{I}\right\} \frac{\mathrm{xp}}{\mathrm{p}}=(\mathrm{x})_{, \mathrm{A}}=(\mathrm{x})_{\mathrm{J}}
$$

（ $\varepsilon \varepsilon$ • 6 L ）

 ие әлеч р

$$
' 6>u>0 \quad\left\{\{I+u 9\} \frac{\tau}{L}={ }^{u} x\right.
$$

$$
\begin{align*}
& \frac{\varepsilon \varepsilon L}{\Sigma \tau \tau}={ }^{\dagger} \mathrm{d} \quad \frac{\varepsilon \varepsilon L}{\mathcal{S L}}={ }^{\varepsilon} \mathrm{d} \quad \frac{\varepsilon \varepsilon L}{\varepsilon \tau}={ }^{\tau} \mathrm{d} \quad \frac{\varepsilon \varepsilon L}{\mathrm{~L}}={ }^{\mathrm{I}} \mathrm{~d} \quad 0={ }^{0} \mathrm{~d}
\end{align*}
$$

әృиәдəәบ
‘モI pue L^{\prime} 无

＇0Z әェмэəТ

（9ع．6L）

$$
\cdot \frac{z^{\{ }\{(x) \mathrm{y}\}}{(x), \mathrm{U}}=\left\{\frac{(\mathrm{x}) \mathrm{y}}{\mathrm{I}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}-=(\mathrm{x})_{\mathrm{J}}
$$

$x>q \quad j!$	0
$\mathrm{q}>\mathrm{x}>\mathrm{Z} / \mathrm{q}$ ¢！	$\left.{ }_{\tau} q /(x-q) t\right\}$
て／q＞x＞0 \ddagger	${ }_{2} 9 / x_{\dagger}$

$$
\text { Kq (} \infty^{\prime} 0 \text {] uo pəu!̣əə s! ғ uo!̣ృuņ } V
$$

9.6 L

$\infty>\times>9$ ¢！	09とt	
$9>\mathrm{x}>\frac{\mathrm{z}}{\mathrm{LI}} \mathrm{f!}$	xモ9＋9L6を	
$\frac{\tau}{\mathrm{LI}}>x>\frac{\tau}{6} \mathrm{f!}$		
$\frac{2}{6}>x>\frac{2}{L} \mathrm{f!}$	${ }_{2}{ }^{\text {x }} 08-\mathrm{x} 078$＋9L0z	＝（x）H09Et
$\frac{\tau}{4}>x>\frac{\tau}{9} \mathrm{f!}$	${ }_{2} \mathrm{x} 9 \mathrm{SL}$－x $2 \angle E L+$ StIL	－（x）
$\frac{\tau}{q}>x>\frac{\tau}{\varepsilon} \mathrm{f!}$		
$\frac{\tau}{\varepsilon}>x>\frac{\tau}{\square} \mathrm{f}$ ！		
$\frac{\tau}{\tau}>x>0$ f！	x96㲸	

－（8）pue（ ε ）Кч！ゅә Λ

（！）$\quad \mathbf{L} \mathbf{6 L}$

$$
\begin{align*}
& \text { つ pue g 'V puis (! } \tag{!!!}\\
& L=\operatorname{tp}(\mathfrak{7}) \underset{\varepsilon}{ } \int_{\varepsilon}^{0} \\
& \text { sə!̣y!̣łes }
\end{align*}
$$

$$
\begin{aligned}
& \left.\begin{array}{lcc}
\infty>x>\varnothing & \text { f! } & I \\
\text { ォ }>x>0 & \text { f! } & x \frac{\mathrm{zI}}{6 \mathrm{~L}}+{ }_{\tau} \mathrm{x}-{ }_{\varepsilon} \mathrm{x} \frac{9}{\mathrm{I}}
\end{array}\right\}=(\mathrm{x})_{\mathrm{H}}
\end{aligned}
$$

$$
\left.\begin{array}{ccc}
\infty>x>e & \text { £! } & L \\
e>x>0 & \ddagger! & \varepsilon(e-x) q+I
\end{array}\right\}=(x)_{\text {H }}
$$

$$
\left.\begin{array}{l}
\infty>x>q \text { I! } \\
q>x>0 \text { f! }
\end{array}\left\{(x) b\left(\frac{q}{x}-\underline{L}\right)+L\right\} \frac{q}{x}\right\}=(x)_{\text {I }}
$$

Кq ($\infty^{\text {' } 0 \text {] uо рәич̣әр }}$

 ว pue g ' V pu!t

$$
\begin{equation*}
\cdot \mathrm{I}=\mathrm{fp}(\mathfrak{z}) \underset{\mathrm{S}}{ } \int_{\mathrm{S}}^{0} \tag{!!!}
\end{equation*}
$$

səỵs!̣es

$\cdot \frac{\tau}{V-I}=\left\{\left(\frac{8}{\mathrm{~L}}-\right)-0\right\}(\forall-\mathrm{L}) \mp=$

$$
\{(z) \Lambda-(\infty) \Lambda\}(\forall-L) \mp=x p(x), \Lambda \int_{\infty}^{\tau}(\forall-L) \mp=x p(x) f \int_{\infty}^{\tau}
$$

$$
\begin{aligned}
& \cdot \frac{z^{\mathrm{x}} \mathrm{z}}{\mathrm{~L}}-=(\mathrm{x})_{\Lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \prime \operatorname{xp}(x), \Lambda \int_{\infty}^{\tau}(\forall-L) \varnothing=x p\left\{z^{-} x \frac{\tau}{L}-\right\} \frac{x p}{p} \int_{\infty}^{\tau}(\forall-L) \varnothing= \\
& x p_{\varepsilon_{-}} x \int_{\infty}^{\tau}(V-I) \Phi=x p\left\{\frac{\varepsilon^{x}}{(V-L) \mp}\right\} \int_{\infty}^{\tau}=x p(x)_{I} \int_{\infty}^{\tau}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{Z}{V+L}=\left({ }_{\tau} 0-{ }_{\tau} \tau\right) \frac{Z}{L} \cdot\{\forall \varepsilon-I\} \frac{\hbar}{L}+(0-\tau) V= \\
& \operatorname{xpx} \int_{\tau}^{0}\{V \varepsilon-I\} \frac{\hbar}{L}+\operatorname{xp} L \int_{\tau}^{0} V= \\
& x p\left\{x\{\forall \varepsilon-I\} \frac{\hbar}{L}+V\right\} \int_{z}^{0}=x p(x) J \int_{\tau}^{0}
\end{aligned}
$$

$$
\left.\begin{array}{ccc}
\infty>x>e & \ddagger! & 0 \\
\mathrm{e}>\mathrm{x}>0 & \mathrm{f!} & { }_{\varepsilon} \mathrm{e} /{ }_{\tau}(\mathrm{x}-\mathrm{e}) \mathcal{E}
\end{array}\right\}=(\mathrm{x})_{\mathrm{J}}
$$

Әлеч ӘМ
${ }_{\tau}(\mathrm{e}-\mathrm{x}) \mathcal{E}=0-{ }_{\tau} \mathrm{e} \mathcal{E}+{ }_{\tau} \mathrm{xeq}-{ }_{\tau} \mathrm{x} \mathcal{E}=\left\{{ }_{\varepsilon} \mathrm{e}-\mathrm{x}_{\tau} \mathrm{e} \mathcal{E}+{ }_{\tau} \mathrm{xe} \mathcal{E}-{ }_{\varepsilon} \mathrm{x}\right\} \frac{\mathrm{xp}}{\mathrm{p}}=\left\{{ }_{\varepsilon}(\mathrm{e}-\mathrm{x})\right\} \frac{\mathrm{xp}}{\mathrm{p}}$

$$
\begin{equation*}
=(\mathfrak{7}) \text { н әлеч } \partial \text { ' }^{\prime} 乙 / q>\neq \text { лон } \tag{!!!}
\end{equation*}
$$

$$
\cdot \mathrm{I}=\mathrm{q} / \mathrm{Z} \cdot \mathrm{q} \cdot(\mathrm{Z} / \mathrm{I})=\left(\left[\mathrm{q}^{\prime} 0\right]^{\prime} \mathrm{f}\right) \text { eәл } \mathrm{V}=
$$

$9>x>\frac{\mathrm{l}}{\mathrm{LI}} \quad \mathrm{fl}$	$\frac{\mathrm{CFG}}{8}$	
$\frac{\tau}{\text { II }}>x>\frac{\mathrm{l}}{6} \quad \mathrm{fl}$	$\frac{0601}{x_{+1}-\varepsilon 6}$	
$\frac{\tau}{6}>x>\frac{\tau}{L} \quad$!	$\frac{60 \mathrm{~L}}{\mathrm{x}_{\mathrm{t}-\mathrm{L}}}$	
$\frac{\tau}{L}>x>\frac{\tau}{9} \quad$!	$\frac{060 \pm}{\mathrm{x}_{8}-\text { ¢ } ¢ \Sigma}$	$=(\mathrm{x}) \mathrm{f}$
$\frac{\frac{\tau}{G}}{}>x>\frac{\tau}{\varepsilon} \quad$!	$\frac{0601}{x_{+G-¢ 82}}$	
$\frac{\tau}{\varepsilon}>x>\frac{\tau}{1} \quad$!	$\frac{0601}{\text { zzzt }-9 ¢ 8}$	
$\frac{\mathrm{z}}{\mathrm{L}}>\mathrm{x}>0$ f!	$\frac{\text { ctg }}{\text { LIE }}$	

$$
\text { oS } \because / \supset G=\mp /(\supset-\forall Z)=
$$

sə!̣đuu!

$$
\begin{aligned}
& \mathrm{L}={ }_{2}(x-\mathrm{g})+{ }_{2}(\mathrm{D}-\mathrm{g})-\mathrm{L}-\infty+\frac{\hbar}{\mathrm{L}}
\end{aligned}
$$

sə!̣đuu!

$$
\left.‘ G^{\prime} \times 0\right] \text { uO (! }
$$

-¢/9 = ł әләчм unuịxeu [еэој

‘วлоqе wox_

$$
\frac{\varepsilon}{\mathrm{L}}=\partial \Leftarrow \mathrm{L}=\left\{\frac{\varepsilon}{\varpi}+\frac{\varepsilon}{\tau \varepsilon}\right\} \frac{\varpi}{\partial} \Leftarrow
$$

$$
I=\left\{\left\{\left({ }_{\varepsilon} I \frac{\varepsilon}{\dot{t}}-\right)-{ }_{\varepsilon} 0 \frac{\varepsilon}{\frac{\varepsilon}{\eta}}-\right\}+0-{ }_{\varepsilon} Z \frac{\varepsilon}{\frac{\varepsilon}{g}}-{ }_{\tau} \tau \cdot 9\right\} \frac{\bar{\partial}}{\partial}
$$

ло
‘шәлоәчł โеұиәшерипл әчł Кq ‘puе

‘әлоqе шолы

‘әлоqе шолн

$$
\frac{\varepsilon Z Z}{\amalg Z}=\partial \Leftarrow L=\left\{\frac{\tau}{\angle I I}-\frac{\tau}{G Z I}+\frac{\mp}{\angle O Z}\right\} \frac{9}{\partial} \Leftarrow
$$

$$
L=\left\{\left(9-\frac{\tau}{G Z}\right)_{z} \varepsilon-\left(0 L-\frac{\tau}{G Z}\right)_{z} \varsigma+\left(\frac{\hbar}{6}-8\right)_{z} \varepsilon\right\} \frac{9}{\partial} \Leftarrow
$$

$$
\mathrm{I}=\left\{\left({ }_{\varepsilon} \varepsilon \cdot \tau-{ }_{\tau} \varepsilon \frac{\tau}{\varsigma \tau}\right)-{ }_{\varepsilon} G \cdot \tau-{ }_{\tau} G \frac{\tau}{\mathcal{G \tau}}+0-{ }_{\dagger} \varepsilon \frac{\hbar}{\mathrm{L}}-{ }_{\tau} \varepsilon \cdot 8\right\} \frac{9}{\partial}
$$

‘шәлоәчł [еұиәшерипу әчł Кq ‘pue

MON
＇s！̣ feyl

wody（！̣）GI‘6I

- = f pue
-(でゅ乙) әәऽ

$$
\cdot 0<(x), b^{\prime} \mathrm{L}=(\mathrm{q}) \mathrm{b}>(\mathrm{x}) \mathrm{b} \text { əsn uə૫L }
$$

$$
\left.\begin{array}{l}
\infty>x>q \text { f! } \\
q>x>0 \text { f! }
\end{array}\left\{(x), b x\left(\frac{q}{x}-I\right)+(x) b\left(\frac{q}{x z}-I\right)+L\right\} \frac{q}{I}\right\}=(x), H
$$

孔ечł moys fsaty EL｀6I

wors (!!!!)

$$
\left.\begin{array}{cc}
\infty>\neq>\text { I f! } & \frac{9^{\mathfrak{F}}}{(\mathfrak{f}-\mathrm{I}) 0 Z} \\
I>\mathfrak{F}>0 \text { f! } & (\mathfrak{f}-\mathrm{I})(\mathrm{I}-\mathfrak{Z \varepsilon}) 8
\end{array}\right\}=(\mathfrak{f}), \mathfrak{I}
$$

