$$
\begin{equation*}
\cdot \frac{\mathrm{u}}{\mathrm{x}}+\mathrm{I}=(\mathrm{x})_{\mathrm{d}} \tag{líoz}
\end{equation*}
$$

（01．0Z）

$$
{ }^{\prime}\left((x)_{\mathrm{d}}\right)=(\mathrm{x})^{\mathrm{u}} \phi
$$

‘S！łeYL

$$
\cdot\left(\frac{u}{x}+L\right)=(x)^{u} \phi
$$

 （ $\mathrm{L} \cdot \mathrm{OZ)}$

$$
\cdot \frac{x p}{K p} \frac{\kappa p}{z p}=\frac{x p}{z p}
$$

$$
\begin{equation*}
{ }^{\prime}(\Lambda) \widetilde{\mathrm{O}}=\mathrm{z} \quad \prime(\mathrm{x})_{\mathrm{d}}=\Lambda \tag{9•0Z}
\end{equation*}
$$

$$
\begin{equation*}
\cdot\left((\mathrm{x})_{\mathrm{d}}\right)_{, \mathrm{O}}(\mathrm{x})_{, \mathrm{d}}=\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \widetilde{\mathrm{O}}\right\} \frac{\mathrm{xp}}{\mathrm{p}} \tag{c.oz}
\end{equation*}
$$

‘uo！̧̣æłou pax！̣u u！̣ ‘⿰㇒未

$$
\begin{equation*}
\left((\mathrm{x})_{\mathrm{d}}\right), \mathrm{O}(\mathrm{x})_{, \mathrm{L}}=(\mathrm{x}), \mathrm{S} \tag{モ・0Z}
\end{equation*}
$$

snчL
（ $\varepsilon \cdot 0 z$ ）

$$
\left.\cdot[\mathrm{Y}] \mathrm{O}+\left((\mathrm{x})_{\mathrm{d}}\right)\right)_{\mathrm{O}}(\mathrm{x})_{\mathrm{d}}=\frac{\mathrm{L}}{\left((\mathrm{x})_{\mathrm{d}}\right) \widetilde{\mathrm{O}}-\left((\mathrm{Y}+\mathrm{x})_{\mathrm{d}}\right) \widetilde{\mathrm{O}}}
$$

孔ечł имочs s！$\ddagger!$ әләчм ‘х！̣риәdde әчł u！әле

$$
\text { ..జu! } K_{\mathrm{L}} \mathrm{du}
$$

$$
\frac{\mathrm{Y}}{\left((x)_{\mathrm{d}}\right) \widetilde{O}-\left((\Psi+x)_{\mathrm{d}}\right) \check{O}}=\frac{\mathrm{U}}{(x) S-(\Psi+x) S}=\left(\left[\Psi+x^{\prime} x\right]^{\prime} S\right) \check{\mathrm{O}}
$$

$$
\begin{equation*}
\cdot\left((x)_{\mathrm{d}}\right) \widetilde{O}=(\mathrm{x})_{\mathrm{S}} \tag{등}
\end{equation*}
$$

$$
\begin{equation*}
\cdot\left({ }_{u} x \forall\right) d x \partial_{\mathrm{L}-\mathrm{u}} \mathrm{x} \forall \mathrm{u}=\left\{\left({ }_{\mathrm{u}} \mathrm{x} V\right) \mathrm{dx} \mathrm{\partial}\right\} \frac{\mathrm{xp}}{\mathrm{p}} \tag{8で0z}
\end{equation*}
$$

（ Lで0Z）
（0で0Z）

$$
\left((x)_{d}\right), \partial\left\{{ }_{u} x \forall\right\} \frac{x p}{p}=
$$

$$
\left((x)_{\mathrm{d}}\right)_{,} \widetilde{\mathrm{O}}(\mathrm{x})_{, \mathrm{d}}=\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \widetilde{\mathrm{O}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}=\left\{\left({ }_{u} \mathrm{x} v\right) \mathrm{dxə}\right\} \frac{\mathrm{xp}}{\mathrm{p}}
$$

 ${ }^{\prime}(К)$ dхә $=(К) \circlearrowright$
pue
（61．0Z）

$$
{ }_{\mathrm{u}} \mathrm{x} V=(\mathrm{x})_{\mathrm{d}}
$$

（8100Z）

$$
\cdot\left({ }_{u} \mathrm{x} V\right) \mathrm{dx}=(\mathrm{x}) \mathrm{y}
$$

Kq（L～6I）u！pəu！̣әә

$$
\cdot(x) d x ə=\{(x) d x \partial\} \frac{x p}{p}
$$

$\cdot(x)_{\mathrm{d}}=К$ Ч
（91．0Z）

$$
(x)^{u} \phi_{\mathrm{I}_{-}}\left\{\frac{\mathrm{u}}{\mathrm{x}}+\mathrm{I}\right\}=\frac{(\mathrm{x})_{\mathrm{d}}}{\mathrm{u}\left((\mathrm{x})_{\mathrm{d}}\right)}={ }_{\mathrm{L}-\mathrm{u}}\left((\mathrm{x})_{\mathrm{d}}\right)=
$$

$$
{ }_{\mathrm{L}-\mathrm{u}}\left((\mathrm{x})_{\mathrm{d}}\right) \mathrm{u} \cdot \frac{\mathrm{u}}{\mathrm{~L}}=\left((\mathrm{x})_{\mathrm{d}}\right), \mathrm{O}(\mathrm{x})_{, \mathrm{L}}=\left\{(\mathrm{x})^{\mathrm{u}} \phi\right\} \frac{\mathrm{xp}}{\mathrm{p}}
$$

（GI．OZ）

$$
\cdot\left((x)_{\mathrm{d}}\right) \widetilde{\mathrm{O}}=(\mathrm{x})^{\mathrm{u}} \phi
$$

（モ1．0Z）
${ }_{{ }_{\mathrm{L}-\mathrm{u}}} \mathrm{Ku}=(К), \check{\mathrm{O}}$
（ $\left.\varepsilon \vdash^{\circ} \circ \mathrm{O}\right)$
（ZI゚○Z）

$$
\begin{aligned}
& \text { pue } \\
& \text { pue } \\
& \frac{u}{\mathrm{~L}}=\mathrm{L} \cdot \frac{\mathrm{u}}{\mathrm{~L}}+0= \\
& \{x\} \frac{x p}{p} \frac{u}{L}+\{L\} \frac{x p}{p}=\left\{\frac{u}{x}+L\right\} \frac{x p}{p}=(x), d
\end{aligned}
$$

$$
\begin{aligned}
& \cdot{ }_{u} \Lambda=(К) \circlearrowright
\end{aligned}
$$

$$
\frac{(\mathrm{u}\{\mathrm{~s} / \mathrm{x}\}) \mathrm{dxa}}{\mathrm{I}}-\mathrm{I}=(\mathrm{x})_{\mathrm{I}}
$$

 （zと＊0z）

$$
\begin{aligned}
& \cdot \frac{u}{I}\left\{\frac{V}{I}\right\}_{\frac{u}{I}}\left\{\frac{\mathrm{u}}{\mathrm{I}-\mathrm{u}}\right\}={ }_{*} x \\
& \text { әиبฺəр әм џ! }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\frac{x}{(I-u)}+{ }_{I-u} x \forall u-\right\}(x)_{f}= \\
& { }_{\mathrm{I}-\mathrm{u}} \mathrm{x} \forall \mathrm{Gu} \frac{(\mathrm{x}) \mathrm{y}^{\mathrm{x}}}{(\mathrm{I}-\mathrm{u})}+{ }_{\mathrm{I}-\mathrm{u}} \mathrm{x} \forall \mathrm{u} \cdot(\mathrm{x}) \mathrm{f}-= \\
& { }_{\tau-\mathrm{ux}} \mathrm{x}(\mathrm{I}-\mathrm{u}) \frac{(\mathrm{x})_{\mathrm{I}}}{\forall \mathrm{Uu}}+{ }_{\mathrm{I}-\mathrm{u}} \mathrm{x} \forall \mathrm{u} \cdot(\mathrm{x})_{f}-= \\
& \left\{{ }_{I-w} x\right\} \frac{x p}{p} \frac{(x) y}{\forall u}+{ }_{I-w} x \forall u \cdot(x)_{I}-= \\
& \left\{{ }_{I-w} x \forall u\right\} \frac{x p}{p} \frac{(x) y}{I}+{ }_{I-u m} x \forall u\left\{\frac{(x) y}{I}\right\} \frac{x p}{p}= \\
& \left\{{ }_{I-u} x \forall u \cdot \frac{(x) y}{I}\right\} \frac{x p}{p}=\left\{\frac{\left.{ }_{\text {u }} x \forall\right) d x \partial}{I_{-u} x \forall u \mathrm{u}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}=\text { (x), } \mathrm{f} \\
& \text { әлеч әм ‘(0ع) pue (8t) wox_ }
\end{aligned}
$$

（เど0z）

$$
\begin{aligned}
& \left({ }_{\mathrm{u}} \times V\right) \mathrm{dxa}{ }_{\mathrm{I}-\mathrm{w}} \times \forall \mathrm{Vu}\left(\tau_{-} \mathrm{K}_{-}\right)-= \\
& \left\{\left({ }_{w} \times V\right) d x a\right\} \frac{x p}{p}\left\{\frac{K}{I}\right\} \frac{K p}{p}-=
\end{aligned}
$$

$$
\begin{equation*}
\left\{\frac{\left(u^{x} \forall\right) d x \partial}{I}\right\} \frac{x p}{p}-=\left\{\frac{(x) y}{I}\right\} \frac{x p}{p}-=(x) \mathcal{I} \tag{6て"0z}
\end{equation*}
$$

（07．0Z）

$$
\begin{align*}
& \cdot L<x \quad \frac{x}{L}=\left\{(x) u_{T}\right\} \frac{x p}{p} \tag{Lซ•0Z}
\end{align*}
$$

$$
\begin{aligned}
& L<K \cdot \frac{K}{\mathrm{~L}}=\left\{(К) \mathrm{u}_{\mathrm{I}}\right\} \frac{\kappa \mathrm{p}}{\mathrm{p}}
\end{aligned}
$$

spiə！$К(8 \varepsilon)$ os $\cdot(\angle I)$ woxf $K=(x)$ dxa

（68＊0Z）
．${ }_{L_{-}}\left\{\frac{x p}{K p}\right\}=\frac{K p}{x p}$

（8と＊0Z）
$\frac{(\mathrm{x}), \mathrm{L}}{\mathrm{L}}=(\Lambda), \circlearrowright$

（ $\angle \varepsilon \cdot 0 Z)$
（9ع＊0Z）

$$
\cdot(\Lambda) \widetilde{\mathrm{O}}=\mathrm{x} \quad \Leftrightarrow \quad(\mathrm{x})_{\mathrm{d}}=\Lambda
$$

 （ce：0z）

$$
s_{\frac{u}{L}}\left\{\frac{u}{L}-I\right\}={ }_{*} x
$$

әрои чұ！м
（モど0Z）

$$
\frac{\left.\left(\mathrm{cul}_{\mathrm{u}} \mathrm{~s} / \mathrm{x}\right\}\right) \mathrm{dx} \mathrm{x} \mathrm{~s}}{\mathrm{I}-\mathrm{u}(\mathrm{~s} / \mathrm{x}) \mathrm{u}}=(\mathrm{x}) \mathrm{J}
$$

$$
\begin{equation*}
\frac{\varepsilon\left(I+{ }_{\varepsilon} \mathfrak{f}+{ }_{\downarrow} \mathfrak{Z}\right)}{I}-I=(\mathfrak{q})_{\mathrm{B}} \tag{!!}
\end{equation*}
$$

$$
\left.\begin{array}{ccc}
\infty>x>\varepsilon & \text { £! } & 0 \\
\varepsilon>x>0 & \text { f! } & (x-\varepsilon)_{\varepsilon} x \frac{\varepsilon \nsucc \tau}{0 Z}
\end{array}\right\}=(x)_{\mathrm{J}}
$$

$$
¿\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \mathrm{u}_{\mathrm{I}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}
$$

$$
¿\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \mathrm{dx} \partial\right\} \frac{\mathrm{xp}}{\mathrm{p}} \text { s! } \mathfrak{\notin \varphi M}
$$

Su！̣＿̌du！

（ $8 \mathrm{~V}^{\circ} 0 \mathrm{O}$ ）

$$
\left((\mathrm{x})_{\mathrm{d}}\right), \circlearrowright(\mathrm{x}), \mathrm{d} \varphi+\left((\mathrm{x})_{\mathrm{d}}\right) \widetilde{\mathrm{O}}=
$$

о子（9V）sәэпрәл

（q̧v•0z）
（egv•0z）

$$
\begin{aligned}
& ‘\{([\mathrm{Y}] \mathrm{O}+(\mathrm{x}), \mathrm{d}\} \mathrm{Y}= \\
&{ }^{\left\{\left(\mathrm{f}^{\prime} \mathrm{Y}\right)^{\mathrm{d}} 3+(\mathrm{x}), \mathrm{d}\right\} \mathrm{u}}=\underline{\mathrm{u}}
\end{aligned}
$$

ауеұ pue $(x)_{\mathrm{d}}=$ 亿 ұәs әм

$$
\begin{equation*}
\{[\underline{\mathrm{Y}}] \mathrm{O}+(\Lambda), \nearrow \mathfrak{\mathrm { O }} \underline{\underline{\mathrm{u}}}+(К) \overline{\mathrm{O}}=(\underline{\mathrm{u}}+\Lambda) \widetilde{\mathrm{O}} \tag{モレ・0Z}
\end{equation*}
$$

 （ $\left.\varepsilon V^{\circ} 0 \mathrm{oz}\right)$ $\cdot\{[\varphi] O+(x), S\} \cup+(x) S=(\varphi+x) S$
（qZV•0Z）

$$
\left(e Z V^{\circ} 0 Z\right)
$$

$$
\begin{aligned}
\cdot\left\{[\mathrm{Y}] \mathrm{O}+(\mathrm{x})_{, \mathrm{d}\}}+\mathrm{Y}+(\mathrm{x})_{\mathrm{d}}\right. & = \\
\left\{\left(\mathrm{f}^{\prime} \mathrm{Y}\right)^{\mathrm{d}} 3+(x)_{d} \mathrm{~d}\right\} \mathrm{Y}+(x)_{\mathrm{d}} & =(\mathrm{Y}+\mathrm{x})_{\mathrm{d}}
\end{aligned}
$$

 （IV•0Z）

$$
\cdot q>x>e \quad \quad((x) d) \widetilde{O}=(x) S
$$

 $\cdot \frac{(x)_{\mathrm{d}}}{(\mathrm{x})_{, \mathrm{L}}}=\frac{(\mathrm{x})_{\mathrm{d}}}{\mathrm{L}} \cdot(\mathrm{x})_{, \mathrm{d}}=\left((\mathrm{x})_{\mathrm{d}}\right)_{, \mathrm{O}}(\mathrm{x})_{, \mathrm{d}}=\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \widetilde{\mathrm{O}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}=\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \mathrm{u}_{\mathrm{I}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}$
‘әрпл и！̣ечэ әчъ

E．0Z

$\cdot\left((\mathrm{x})_{\mathrm{d}}\right) \mathrm{dxə}(\mathrm{x})_{, \mathrm{d}}=\left((\mathrm{x})_{\mathrm{d}}\right), \nearrow(\mathrm{x})_{, \mathrm{d}}=\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \mathrm{O}\right\} \frac{\mathrm{xp}}{\mathrm{p}}=\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \mathrm{dx} \partial \frac{\mathrm{xp}}{\mathrm{p}}\right.$
‘əןn．и！̣чว әчғ

$$
\begin{aligned}
& \cdot \frac{\partial-\mathrm{x}}{\mathrm{~L}}=\frac{(\mathrm{x}) \mathrm{d}}{\mathrm{~L}} \cdot(\mathrm{x})_{, ~ \mathrm{~d}}=\left((\mathrm{x})_{\mathrm{d}}\right), \check{\mathrm{O}}(\mathrm{x})_{, \mathrm{d}}=(\mathrm{x}), \mathrm{S}
\end{aligned}
$$ oS •（モ๋LI әs！̣ләхя Кq）

$$
\cdot \frac{g^{(}(0-x)}{I}-={ }_{c-}(0-x) \nabla-=\left\{_{t-}(0-x)\right\} \frac{x p}{p}
$$

$$
\cdot \cdot_{6}(\mathrm{o}-\mathrm{x})_{0 I}=\left\{{ }_{0 \mathrm{~L}}(\mathrm{o}-\mathrm{x})\right\} \frac{\mathrm{xp}}{\mathrm{p}}
$$

 $0=0-L=\{\partial\} \frac{x p}{p}-\{x\} \frac{x p}{p}=\{\partial-x\} \frac{x p}{p}=(x)_{d}{ }^{\prime}\left((x)_{d}\right) \widetilde{O}={ }_{0 I}\left\{(x)_{d}\right\}={ }_{0 \tau}(0-x)=(x) S$

$$
\begin{aligned}
& \left\{_{\ddagger}(x-モ) S-\right\} \cdot{ }_{\ddagger} x+{ }_{G}(x-\mp) \cdot{ }_{\varepsilon} X \mp= \\
& \left\{{ }_{g}(x-च)\right\} \frac{x p}{p} \cdot{ }_{\ddagger} x+{ }_{g}(x-च) \cdot\left\{_{\ddagger} x\right\} \frac{x p}{p}= \\
& \left\{{ }_{s}(x-\mp)_{ \pm} x\right\} \frac{x p}{p}=(x), \delta
\end{aligned}
$$

$$
\left.\begin{array}{llc}
\infty>x>\mp & \ddagger! & 0 \\
\mp>x>0 & \ddagger! & \varsigma_{9}(x-モ)_{\ddagger} x
\end{array}\right\}=(x) \mathcal{B}
$$

$$
\begin{aligned}
\cdot\{\mathrm{x} G-6\}(\mathrm{x}-\varepsilon)_{\tau} \mathrm{x}=\{\mathrm{x} \tau-(\mathrm{x}-\varepsilon) \varepsilon\}(\mathrm{x}-\varepsilon)_{\tau} \mathrm{x} & = \\
\{(\mathrm{x}-\varepsilon) \tau-\} \cdot{ }_{\varepsilon} \mathrm{x}+{ }_{\tau}(\mathrm{x}-\varepsilon) \cdot{ }_{\tau} \mathrm{x} \varepsilon & = \\
\left.\{(\mathrm{x}-\varepsilon)\} \frac{\mathrm{xp}}{\mathrm{p}} \cdot{ }_{\varepsilon} \mathrm{x}+{ }_{\tau}(\mathrm{x}-\varepsilon) \cdot{ }_{{ }_{\varepsilon}} \mathrm{x}\right\} \frac{\mathrm{xp}}{\mathrm{p}} & = \\
\left\{{ }_{\tau}(\mathrm{x}-\varepsilon)_{\varepsilon} \mathrm{x}\right\} \frac{\mathrm{xp}}{\mathrm{p}} & =(\mathrm{x}), 8
\end{aligned}
$$

 $\cdot(x-\varepsilon) z-=(x-\varepsilon) z \cdot(I-)=$
$\left((x)_{\mathrm{d}}\right), \nearrow \cdot(\mathrm{x})_{, \mathrm{d}}=\left\{\left((\mathrm{x})_{\mathrm{d}}\right) \widetilde{\mathrm{O}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}=\left\{_{\tau}(\mathrm{x}-\varepsilon)\right\} \frac{\mathrm{xp}}{\mathrm{p}}$

f әsneэəq）ұиелә

$$
\begin{aligned}
& \left.\begin{array}{lcc}
\infty>x>\varepsilon \text { Ғ! } & 0 \\
\varepsilon>x>0 \text { f! } & { }_{\tau}(x-\varepsilon)_{\varepsilon} x
\end{array}\right\}=(x)^{\mathcal{8}}
\end{aligned}
$$

‘әри.

! $\quad \angle 0 \%$

${ }^{\prime}(\mathcal{Z}+\mathrm{I})\{\mathfrak{z}-\mathrm{I}+\mathfrak{7}+\mathrm{I}\}-=$
$\tau_{-}(\mathfrak{7}+\mathrm{I})(\mathfrak{7}-\mathrm{I})-\tau_{-}(\mathfrak{7}+\mathrm{I})(\mathfrak{7}+\mathrm{I})-=$
$\left\{{ }_{2-}(\mathfrak{f}+\mathrm{I})-\right\} \cdot(\mathfrak{f}-\mathrm{I})+{ }_{\mathrm{I}-}(\mathfrak{f}+\mathrm{I}) \cdot(\mathrm{I}-0)=$

$\cdot{ }_{\tau-}(\mathfrak{f}+\mathrm{I}) \tau-=0-\left\{\frac{\mathfrak{q}+\mathrm{I}}{\mathrm{I}}\right\} \frac{\mathfrak{q}}{\mathrm{p}} \tau=\left\{\mathrm{I}-\frac{\mathfrak{q}+\mathrm{I}}{\tau}\right\} \frac{\mathfrak{q}}{\mathrm{p}}=\left\{\frac{\mathfrak{q}+\mathrm{I}}{(\mathfrak{f}+\mathrm{I})-\tau}\right\} \frac{\mathfrak{p}}{p}=\left\{\frac{\mathfrak{q}+\mathrm{I}}{\mathfrak{f}-\mathrm{I}}\right\} \frac{\mathfrak{q} p}{p}$ ‘əぇоэəәәчL

