

$$
\cdot_{\tau / \varsigma-} K \mathcal{E} L \angle E 00-={ }_{\tau / \varsigma-} K_{\varepsilon / \varsigma}(8 \cdot 0) \frac{00 \mathcal{S}}{L Z}-=\left({ }_{(1-\tau / \varepsilon-)} K \frac{Z}{\varepsilon}-\right)_{\varepsilon / 5}(8 \cdot 0) \frac{0 \varsigma \tau}{6}=
$$

(ι° © $)$

$$
\{\tau / \varepsilon-K\} \frac{K p}{p} \varepsilon_{\varepsilon / \varsigma}\left(8^{\circ} 0\right) \frac{0 \varsigma \tau}{6}=(\Lambda), \delta
$$

$$
{ }_{\tau / \varepsilon-} K_{\varepsilon / \mathrm{g}}(8 * 0) \frac{0 \varsigma 乙}{6}=(\Lambda)_{\mathcal{B}}
$$

uоч̣еnbə sey NW os pue ' $800=x$ әuеॉd

$$
\cdot_{\varepsilon / \tau} x \varsigma 9 \varepsilon \cdot 0={ }_{\varepsilon / \tau} x_{\tau / \varepsilon-}(\varepsilon \cdot 0) \frac{0 \varsigma}{\varepsilon}={ }_{(1-\varepsilon / \varsigma)} x \frac{\varepsilon}{\varsigma} \tau_{\tau / \varepsilon-}(\varepsilon \cdot 0) \frac{0 \varsigma \tau}{6}=
$$

$$
\{\varepsilon / s x\} \frac{x p}{p}{ }_{\tau / \varepsilon}(\varepsilon \cdot 0) \frac{0 \varsigma \tau}{6}=(x)_{, J}
$$

$$
{ }_{\varepsilon / \varsigma^{\prime}} x_{\tau / \varepsilon-}(\varepsilon \cdot 0) \frac{0 G Z}{6}=(x)_{\mp}
$$

$$
{ }_{\tau / \varepsilon-} K_{\varepsilon / \mathrm{s}} \mathrm{x} \frac{0 \varsigma \mathcal{Z}}{6}=\left(K^{\prime} \mathrm{x}\right)_{\mathrm{d}}
$$

әчł әләчм '(e) โ әхns!!

pue
($\ddagger I^{\circ} \subseteq$)

 sеәләчм 'x ио К

($\varepsilon L^{\circ} \mathcal{G}$)

$$
\begin{aligned}
& { }_{\tau / \mathrm{G}-} K_{\varepsilon / \mathrm{G}} \mathrm{w} \frac{00 \mathrm{G}}{L Z}-=(К), \delta \\
& \varepsilon / \tau x_{z / \varepsilon-}>\frac{O G}{\varepsilon}=(x)_{J} J
\end{aligned}
$$

(ZI`GZ)
u!̣ełqo əм snчı

$$
{ }_{z / \varepsilon^{-}} \Lambda_{\varepsilon / \mathrm{s}} \mathrm{u} \frac{0 \mathrm{G} Z}{6}=\left(\Lambda^{\prime} \mathrm{u}\right)_{\mathrm{d}}=\mathrm{z}
$$

$$
{ }_{\varepsilon / G} x_{\tau / \varepsilon-}>1 \frac{0 G Z}{6}=(x)_{J}
$$

$$
{ }_{z / \varepsilon-} y_{\varepsilon / \mathrm{s}} x \frac{0 G Z}{6}=\left(y^{\prime} x\right)_{d}=z
$$

（9でGZ）

$$
z / \varepsilon_{-} \Lambda_{\varepsilon / \tau} \times \frac{0 G}{\varepsilon}={ }_{z / \varepsilon-} K \frac{0 G Z}{6}{ }_{\varepsilon / \tau} \times \frac{\varepsilon}{G}=
$$

$$
{ }_{z / \varepsilon-} K \frac{0 \varsigma Z}{6}\left({ }_{\varepsilon / \mathrm{s}} x\right) \frac{x p}{p}=\left(z / \varepsilon-K \frac{0 \varsigma z}{6}{ }_{\varepsilon / s^{\prime}} x\right) \frac{x e}{e}=\frac{x e}{z \varrho}
$$

 $(\subsetneq て ゙ \subseteq Z)$
‘uo！̣ełou pax！̣u u！‘‘о
（モでGZ）
sə！̣du！̣（6I）pue
（ $\subset Z^{\circ} \subseteq$ ）
sə!̣du!̣ (8L) uәчL •К ло x ұиеләןə Кие лоғ

$$
(K))^{(x}(x)_{\mathcal{H}}=\left(\Lambda^{\prime} x\right)_{\mathrm{d}}
$$

 （LでGZ）

$$
z_{z / \mathrm{s}-} \Lambda_{\varepsilon / \mathrm{s}} \mathrm{x} \frac{00 \mathrm{~S}}{\angle Z}-=\left(\Lambda^{\prime} \mathrm{x}\right) \mathrm{U}
$$

pue
（0て＇GZ）

$$
z / \varepsilon-\Lambda_{\varepsilon / z} x \frac{O G}{\varepsilon}=\left(\Lambda^{\prime} x\right) \varnothing
$$

әлеч әм ‘L әлn今！
（61．\subseteq Z $)$
＇sỊ feY L I•

（ $\angle I^{\circ} \subseteq{ }^{\circ}$ ）

$$
\dot{z / G-} K_{\varepsilon / \varsigma} \times \frac{00 G}{\angle 乙}-=\frac{K \varrho}{z \varrho}
$$

$$
\cdot \frac{\text { Kexe }}{z_{z} e}=\frac{x e K e}{z_{z} e}
$$

（ç｀૬z）

$$
\{z / s-K\} \frac{K p}{p}{ }_{\varepsilon / s} \times \frac{00 \varsigma}{L Z}-=\left(z / s-K_{\varepsilon / s} \times \frac{00 \varsigma}{L z}-\right) \frac{K e}{e}=\frac{z^{K} \ell}{z_{z} e}
$$

（モع＇¢Z）

$$
S_{z / G-} K_{\varepsilon / Z} \times \frac{00 L}{6}-=\left\{z / G-K \frac{00 G}{L Z}-\right\}_{\varepsilon / Z} \times \frac{\varepsilon}{G}=
$$

$$
\left\{z / s-1 \frac{00 G}{L Z}-\right\}\left\{\left\{_{\varepsilon / s} \times \frac{x p}{p}=\left(z / s-\Lambda_{\varepsilon / G} \times \frac{00 G}{L Z}-\right) \frac{x e}{e}=\frac{K e x e}{z_{z} e}\right.\right.
$$

pue
səл！̣елишәр［е！
（0ع＇ธz）
（8で〔Z）

－（८L）чџ！м ұиәшәәляе и！
（ Lて＇GZ）

$$
z / \varsigma-K_{\varepsilon / \varsigma} \times \frac{00 \varsigma}{L Z}-=\left(z / \varsigma-K \frac{\tau}{\varepsilon}-\right)_{\varepsilon / s} \times \frac{0 \varsigma \tau}{6}=
$$

$$
(z / \varepsilon-K) \frac{K \mathrm{p}}{\mathrm{p} \varepsilon / \mathrm{s}} \times \frac{0 \varsigma z}{6}=\left(z / \varepsilon-K_{\varepsilon / \mathrm{s}} \times \frac{0 G z}{6}\right) \frac{K e}{e}=\frac{K e}{z e}
$$

$$
\begin{align*}
& r_{z / s-} \Lambda_{\varepsilon / Z} \times \frac{00 L}{6}-=\left\{z / s-\frac{\tau}{\varepsilon}-\right\}_{\varepsilon / z} \times \frac{0 G}{\varepsilon}= \\
& \{z / \varepsilon-\Lambda\} \frac{K p}{p}{ }_{\varepsilon / z} x \frac{0 G}{\varepsilon}=\left(z / \varepsilon-K_{\varepsilon / z} \times \frac{0 G}{\varepsilon}\right) \frac{K \varrho}{e}=\frac{x \rho K e}{z_{z} e}
\end{align*}
$$

$$
\begin{aligned}
& { }_{z / \varepsilon-} K_{\varepsilon / L-} \times \frac{\mathrm{QZ}}{\mathrm{~L}}={ }_{z / \varepsilon-} K \frac{O G}{\varepsilon} \frac{\varepsilon / L-}{} \times \frac{\varepsilon}{\tau}= \\
& { }_{z / \varepsilon-} K \frac{0 G}{\varepsilon}\left\{\varepsilon / z^{x}\right\} \frac{x p}{p}=\left(z / \varepsilon-\Lambda_{\varepsilon / z} x \frac{0 G}{\varepsilon}\right) \frac{x e}{e}=\frac{z^{x} e}{z_{z} e}
\end{aligned}
$$

$$
\begin{aligned}
& z / L-X_{\varepsilon / G} \times \frac{00 Z}{L Z}=\left\{z / L-K \frac{Z}{G}-\right\}_{\varepsilon / G} \times \frac{00 G}{L Z}-=
\end{aligned}
$$

s! d £! seәләчм ‘Iq pue Ie uo К

 ($\left.\angle \varepsilon^{\circ} \subseteq \mathcal{C}^{\prime}\right)$

$$
\left.'\left(\mathcal{K}^{\prime} \mathrm{x}\right) \mathrm{y}=0=\left(\mathcal{K}^{\prime} \mathrm{x}\right)\right) \underset{\mathrm{O}}{ }
$$

〔̌ səs！઼ләхя
－К ${ }_{\text {II }}$ мәәиә 8
 әм ч尺̊
（qLゅ・｀Z）

$$
K p\left\{\left(\Lambda^{\prime} x\right)_{\mathrm{d}}\right\} \frac{x e^{\tau_{\mathrm{p}}}}{e} \int_{\tau_{q}}=\left\{K p\left(K^{\prime} x\right)_{\mathrm{d}} \int_{\tau_{q}}^{\tau_{\mathrm{q}}}\right\} \frac{\mathrm{xp}}{\mathrm{p}}
$$

 （ e した ${ }^{\circ} \mathrm{GZ)}$

$$
\cdot x p\left\{\left(\Lambda^{\prime} x\right)_{\mathrm{d}}\right\} \frac{K e^{\mathrm{I}_{\mathrm{p}}}}{e} \int_{\mathrm{I}_{\mathrm{q}}}=\left\{x p\left(\Lambda^{\prime} x\right)_{\mathrm{d}} \int_{\mathrm{I}_{\mathrm{q}}}^{\mathrm{I}_{\mathrm{q}}}\right\} \frac{K \mathrm{p}}{\mathrm{p}}
$$

‘（乙モ）®u！̣s ио ‘sрлом хәчдо иI
（97＊$\subseteq{ }^{\circ}$ ）

 （Gモ・GZ）

$$
\operatorname{xp}(x)_{H}(K), D \int_{\mathrm{I}_{\mathrm{q}}}^{\mathrm{I}_{\mathrm{L}}}=\operatorname{xp}(x)_{H} \int_{\mathrm{I}_{\mathrm{Q}}}^{\mathrm{I}_{\mathrm{e}}}(\Lambda), D=(K), M
$$

（モ゙・乌Z）

（ても・乌て）

