＇səseว $(\mathrm{L}=\boldsymbol{\nu})$［セ！！

 （千•9を） ${ }_{\underset{T}{*}}^{\{ }\left\{(\tau) u_{I}\right\} s=W$

$$
{ }_{s / x-} \frac{s}{\mathrm{~L}}=(\mathrm{x})_{\mathrm{J}}
$$

$$
\begin{align*}
& { }_{o(s / x)-} \partial_{\mathrm{L}-}(\mathrm{s} / \mathrm{x}) \frac{\mathrm{s}}{\mathrm{~J}}=(\mathrm{x})_{, \mathrm{H}}=(\mathrm{x})_{\mathrm{J}} \tag{qで9z}\\
& (\mathrm{~s} / \mathrm{x})_{-} \partial-\mathrm{I}=(\mathrm{x})_{\underline{\mathrm{H}}}
\end{align*}
$$

（eで9て）

$$
\begin{equation*}
\cdot \frac{\mathrm{Z}}{\mathrm{I}}=\mathrm{xp}(\mathrm{x})_{\mathrm{J}}^{\mathrm{W}} \int_{\infty}^{\mathrm{N}}=(\mathrm{N})_{\mathrm{H}}-\mathrm{I}=(\mathrm{N}<\mathrm{X}) \mathrm{qoox}_{\mathrm{d}} \tag{qi.9z}
\end{equation*}
$$

‘Кұұәәрл！̣пbə ‘ло
（e［•9Z）

$$
\frac{\mathrm{Z}}{\mathrm{~L}}=\operatorname{xp}(\mathrm{x}) \mathrm{I}_{\mathrm{W}}^{0}=(\mathrm{W}) \mathrm{H}=(\mathrm{W}>\mathrm{X}) q \mathrm{q} \mathrm{x}_{\mathrm{C}}
$$

（てI「9て）
（LI•9Z）

Кq pәụәр si！‘f•p•d әч7＇（て＇6I）

$$
\begin{equation*}
\cdot x p(x) \nexists x \int_{\infty}^{0}=n \tag{0L`9Z}
\end{equation*}
$$

$$
\begin{equation*}
0=\operatorname{xp}(x) \mp \int_{\infty}^{0} r^{\prime}-\operatorname{xp}(x) \mp x \int_{\infty}^{0} \tag{6.97}
\end{equation*}
$$

$$
0=x p(x)_{\mathfrak{J}}\left(n^{\prime}-x\right) \int_{\infty}^{0}
$$

$$
\operatorname{xpp}^{\prime}(x) \not\left(n^{\prime}-x\right) \int_{n}^{0}=\left(\left[n^{\prime} 0\right]^{\prime} L\right) \nmid u_{I}
$$

$$
\begin{equation*}
\operatorname{sxp}(x)_{\mathfrak{f}}\left(n^{\prime}-x\right) \int_{\infty}^{n}=\left(\left(\infty^{\prime} r\right]^{\prime} L\right) \nmid u_{I} \tag{9`9z}
\end{equation*}
$$

$$
\left(c^{\circ} 9 Z\right) \quad(x)_{\ddagger}\left(n^{\prime}-x\right)=(x)_{L}
$$

（てで9て）

$$
{ }^{\prime} \mathrm{ns}=(\mathrm{n}) \mathrm{S}=\mathrm{x}
$$

$$
\begin{equation*}
\cdot \frac{s}{x}=(x) \phi=n \tag{Lで9Z}
\end{equation*}
$$

（0で9Z）

$$
\cdot \forall \tau-\frac{\varepsilon}{8}=\frac{\tau}{I} \cdot(\forall-I) t+\frac{\varepsilon}{\tau}=\mathfrak{z p}(\mathfrak{z}), \Lambda \int_{\infty}^{\tau}(\forall-I) t+\mathfrak{z p}(\mathfrak{z}), \Omega \int_{\tau}^{0}=n^{\prime}
$$

（81．9Z）

$$
\cdot \frac{\tau}{I}=\mathfrak{z p}(\mathfrak{z}), \Lambda \int_{\infty}^{\tau}
$$

$$
\begin{equation*}
\text { , } \frac{\varepsilon}{\tau}=0-\frac{\varepsilon}{\tau}=(0) \cap-(\tau) \cap=\neq p(\mathfrak{7}) \wedge \cap \int_{\tau}^{0} \tag{9ㄷ.9z}
\end{equation*}
$$

（G1．9Z）

$$
\cdot \frac{7}{\mathrm{~L}}-=(\mathfrak{7}) \Lambda
$$

Кq（ ∞＇乙］uo pәu！̣əр s！Λ р pue
（モI．9Z）

$$
\text { Кq [乙 ‘0] uo pəu!̣ృəp s!̣ } \cap \text { әләчм }
$$

（ $\varepsilon \check{L}^{\circ} 9$ ）

$$
\begin{aligned}
& \mathfrak{f p}(\mathfrak{7}), \Lambda \int_{\infty}^{\tau}(\forall-I) \downarrow+\operatorname{qp}(\mathfrak{q}) \wedge \Omega \int_{z}^{0}=
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{f p}(\mathfrak{f}) \mathfrak{y t} \int_{\infty}^{\tau}+\mathfrak{f p}(\mathfrak{f}) \mathfrak{y} \int_{z}^{0}=\mathfrak{f p}(\mathfrak{f}) \mathfrak{f t} \int_{\infty}^{0}=\mathfrak{n}^{\prime}
\end{aligned}
$$

Кq рәu！̣әр ј uo！̣əunf әчғ
 （てと・9ス）

$$
\mathrm{np}_{\mathrm{n}_{-} \partial^{2} / \mathrm{I}} \mathrm{n} \int_{\infty}^{0} \mathrm{~s}=\mathrm{n}^{\prime}
$$

（Lど9Z）
${ }_{\text {K }}^{\text {I }} \mathrm{du}$
 （0と・9Z）
§u！̣イ［du！
（6で9Z）
S！əऽıəли！əSOЧМ
（8で9Z）
${ }^{\prime}{ }^{\prime} \mathrm{x}=(\mathrm{x}) \phi=\mathrm{n}$

（Lで9Z）
$\cdot \operatorname{xp}_{\partial^{x}-} \partial_{0} x \int_{\infty}^{0} x s=n^{\prime}$
：n Кq x әэеґdәл
 （9で9ス）
o子 səэnрәл（0z）
（č•9Z）

$$
y_{0}(\mathrm{~s} / \mathrm{x})-\partial_{0}(\mathrm{~s} / \mathrm{x}) \mathrm{J}=(\mathrm{x})_{\mathrm{B}}^{8}
$$

（モで9て）
 （とで9ス）

$$
\cdot s=(n), S
$$

$$
\begin{align*}
& \text { әлеч әм '(LZ‘LZ) யолн (}{ }^{\infty}-=(\infty) \phi \tag{たで9Z}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{np}(\mathrm{n}), \mathcal{L}_{\partial(\mathrm{s} /(\mathrm{n}))_{2}-\partial_{\partial}\left(\mathrm{s} /(\mathrm{n}) \mathcal{S}_{2}\right) \int_{(\infty) \phi}^{(0) \phi}=}= \\
& \operatorname{np}(\mathrm{n}) \cdot \mathcal{S}\left((\mathrm{n}) \mathcal{L}_{2}\right) \mathrm{S}_{(\infty) \phi}^{(0) \phi}=\operatorname{xp}(\mathrm{x}) \mathrm{g}_{\infty}^{0} \int_{\infty}^{0}=\mathrm{n}^{\prime} \\
& \text { 'nps }{ }_{\mathrm{n}^{n-} \partial_{\mathrm{n}}} \mathrm{n}_{\infty}^{0} \mathrm{~J}=
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\prime}(\mathrm{n}) \mathrm{L}_{2}={ }_{\mathrm{o} / \mathrm{L}} \mathrm{n}=\mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \operatorname{np}_{n-} \partial_{\mathrm{L}-(\partial / \mathrm{L}+\mathrm{I})} \mathrm{n} \int_{\infty}^{0} \mathrm{~s}= \\
& \operatorname{np}_{\mathrm{L}-\partial / \mathrm{L}} \mathrm{n}_{\mathrm{L}} \mathrm{n}_{\mathrm{n}_{-}} \text {ən } \int_{\infty}^{0} \mathrm{os}=
\end{aligned}
$$

$$
L^{\prime} \Phi=606^{\circ} 0 \times L^{\prime} I \times L^{\prime} Z=\left(L^{\prime} \mathrm{I}\right) \mathrm{I} \times L^{\prime} \mathrm{I} \times \angle^{\prime} Z=(\angle \cdot \varepsilon) I
$$

$$
(x)\rfloor^{\mathrm{I}}=(\mathrm{I}+\mathrm{x}) \mathrm{J}^{\mathrm{I}}
$$

Кол

 (cc.9Z)
$(乙) \amalg=\mathrm{I}=(\mathrm{I}) \mathrm{J}$
әsneวəq

 -(IE) Su!̣sn uo

$$
'(\mathrm{~J} / \mathrm{L}+\mathrm{L}) \beth^{S}=\mathrm{n}
$$

 ($\varepsilon \varepsilon^{\circ} \cdot 9$)

$$
\mathrm{np}_{\mathrm{n}-} \partial_{\mathrm{I}-\mathrm{x}} \mathrm{n} \int_{\infty}^{0}=(\mathrm{x})_{\mathrm{I}}
$$

 ($2 \subset \cdot 9$) ${ }^{\prime} \sharp \mathcal{} \downarrow=\left(\frac{\tau}{\mathrm{L}}\right) \amalg$

$$
\frac{\mathrm{T}}{\mathrm{~s} / \mathrm{x}-^{\partial_{\mathrm{I}-\mathrm{x}} \mathrm{x}}}=(\mathrm{x})_{\mathrm{f}}
$$

[^0]\[

$$
\begin{aligned}
& \left.\begin{array}{lc}
\infty>x> & \text { f! } \\
\tau>x>0 \text { £! } & 0 \\
\text { T/ }(x-z)_{z} x
\end{array}\right\}=(x)_{f}
\end{aligned}
$$
\]

8.92

9.97

S.97

$$
\cdot x\left([-x) \cdot \cdots \cdot \varepsilon \cdot Z \cdot I=i x^{\prime} \cdot \partial \cdot \underline{T}\right.
$$

sa!̣du! (ε) Mon
($\varepsilon V^{\circ} \cdot 9 Z$)
$\cdot{ }_{\infty}^{0} \int_{n-} \partial_{\mathrm{I}} \mathrm{n}=\mathrm{np}_{\mathrm{n}-\partial_{\mathrm{L}-(\mathrm{I}+\mathrm{x})} \mathrm{n}} \int_{\infty}^{0}-n p_{\mathrm{n}_{-} \partial_{\mathrm{L}-\mathrm{I}}} \mathrm{n} \int_{\infty}^{0} \mathrm{x}$

(ZV•9Z)
(IV•9Z)

$$
\begin{aligned}
& \cdot n p\left\{{ }_{n-} \partial_{\mathrm{x}} \mathrm{n}\right\} \frac{\mathrm{np}}{\mathrm{p}} \int_{\infty}^{0}=\operatorname{np}\left\{\mathrm{n}_{\mathrm{n}-}{ }^{2}-{ }_{\mathrm{n}-\partial_{\mathrm{I}-\mathrm{x}}} \mathrm{n} \mathrm{I}\right\} \int_{\infty}^{0} \\
& { }_{\mathrm{x}} \mathrm{n}_{\mathrm{n}_{-}} \mathrm{\partial}^{-1}{ }_{\mathrm{n}-}{ }^{\mathrm{D}}{ }_{\mathrm{L}-\mathrm{I}} \mathrm{~nJ}=
\end{aligned}
$$

$$
\begin{aligned}
& \left\{{ }_{n-} \partial\right\} \frac{n p}{p}{ }_{x} n+{ }_{n-\partial}\left\{{ }_{x} n\right\} \frac{n p}{p}=\left\{{ }_{n-} \partial_{x} n\right\} \frac{n p}{p}
\end{aligned}
$$

Su!̣ィ〔du!

әлеч

 ' ${ }_{n-}$ ə S!

sұә.я ұечъ Ви!

$$
\begin{align*}
& (\mathfrak{q}-\mathcal{E})_{z} \neq \frac{\mathrm{I}}{\mathrm{~L}}=(\mathfrak{q})_{\mathrm{Z}} \quad(\Lambda!) \quad \mathrm{I}=\mathrm{n} \quad(!!!) \\
& \varepsilon / \varnothing=T \\
& \text { (!) } \quad 9^{\circ} 97
\end{align*}
$$

－（9Z x！̣puədd \forall ло）$て ゙ \angle$ әans！

‘шәлоәчъ［еұиәшерипл әчł рие

$$
\begin{aligned}
& n p\left\{{ }_{n-} \partial-\right\} \frac{n p}{p} \int_{\infty}^{0}=n p_{n_{-} \partial_{\mathrm{L}-\mathrm{L}}} \mathrm{n} \int_{\infty}^{0}=(\mathrm{L})_{\mathrm{I}}
\end{aligned}
$$

 ${ }_{\mathrm{n}-} \partial \mathrm{n}={ }_{\mathrm{n}_{-}} \partial(\mathrm{I}+\mathrm{n})+\left({ }_{\mathrm{n}_{-}} \mathrm{\partial}^{-}\right) \cdot\{0+\mathrm{I}\}=$
\left.${\left(n_{-} \partial-\right.}^{\partial}\right) \frac{n p}{p}(I+n)+\left({ }_{n_{-}} \partial-\right) \cdot\left\{(I+n) \frac{n p}{p}\right\}=$

$$
\left\{\left({ }_{n-} \partial-\right)(\mathrm{I}+\mathrm{n})\right\} \frac{\mathrm{np}}{\mathrm{p}}=\left\{\mathrm{n}_{-} \partial(\mathrm{I}+\mathrm{n})-\right\} \frac{\mathrm{np}}{\mathrm{p}}
$$

$$
\begin{aligned}
& { }^{\circ} 89 Z^{\prime} \mathrm{I}=\varepsilon \rho-\varepsilon
\end{aligned}
$$

$$
\begin{align*}
& \prime\{x \varepsilon-z\}(x-z) \frac{\hbar}{\varepsilon}=\{(z-) x+x-z\}(x-z) \frac{\frac{\hbar}{\varepsilon}}{\varepsilon}= \\
& \left\{\{(\mathrm{I}-)(\mathrm{x}-\mathrm{z}) \mathrm{z}\} \mathrm{x}+{ }_{\tau}(\mathrm{x}-\mathrm{z}) \cdot \mathrm{I}\right\} \frac{\frac{\hbar}{\varepsilon}}{\varepsilon}= \\
& \left\{\left\{(x-z) \frac{x p}{p}(x-z) z\right\} x+{ }_{\tau}(x-z) \cdot I\right\} \frac{\hbar}{\varepsilon}= \\
& \left\{\left\{{ }_{z}(x-z\} \frac{x p}{p} x+{ }_{z}(x-z) \cdot\{x\} \frac{x p}{p}\right\} \frac{\hbar}{\varepsilon}=\right. \\
& \left\{{ }_{\tau}(x-\tau) x\right\} \frac{\mathrm{xp}}{\mathrm{p}} \frac{\Phi}{\varepsilon}=(\mathrm{x})_{\text {, }} \tag{ب!}
\end{align*}
$$

$$
\begin{aligned}
& \cdot \frac{\varepsilon}{\boldsymbol{\tau}}=\left\{{ }_{\ddagger} 0 \frac{\hbar}{\tau}+{ }_{\varepsilon} 0 \frac{\varepsilon}{\hbar}-{ }_{\tau} 0 \cdot \tau\right\}-{ }_{\mp} Z \frac{\hbar}{\tau}+{ }_{\varepsilon} 乙 \frac{\varepsilon}{\hbar}-{ }_{\tau} \tau \cdot \tau= \\
& { }_{\tau^{\dagger}}^{0} x^{\frac{\hbar}{\tau}}+{ }_{\varepsilon} x \frac{\varepsilon}{\hbar}-{ }_{\tau} x^{2}= \\
& \operatorname{xp}\left\{\left\{_{\tau} x \frac{\hbar}{\tau}+{ }_{\varepsilon} x \frac{\varepsilon}{\hbar}-{ }_{\tau} x z\right\} \frac{\mathrm{xp}}{\mathrm{p}} \int_{\tau}^{0}=\right. \\
& \operatorname{xp}\left\{{ }_{\varepsilon} \mathrm{x}+{ }_{2} \mathrm{x} \boldsymbol{\square}-\mathrm{x} \boldsymbol{\square}\right\} \int_{\tau}^{0}= \\
& 0+x p\left\{{ }_{z} x+x \neq-\mp\right\} x \int_{\tau}^{0}= \\
& \operatorname{xp}_{0} \int_{\infty}^{\tau}+\operatorname{xp}_{\tau}(x-z) x \int_{\tau}^{0}=x p(x) 8 \int_{\infty}^{0}=7
\end{aligned}
$$

$$
\begin{aligned}
& ' \mathrm{~L}=\mathrm{xp} \frac{\mathrm{~T}}{(\mathrm{x}){ }_{\mathrm{O}}^{\infty}} \int_{\infty}^{0} \frac{\mathrm{~T}}{\mathrm{~L}} \Leftarrow \mathrm{~L}=\mathrm{xp} \frac{\mathrm{~T}}{(\mathrm{x}){ }_{\mathrm{O}}^{\infty}} \int_{\infty}^{0} \Leftarrow \mathrm{~L}=\mathrm{xp}(\mathrm{x}) \mathrm{J} \int_{\infty}^{0}
\end{aligned}
$$

$$
\begin{align*}
& \text { Кq .8 әu!̣ə } \tag{!}
\end{align*}
$$

$$
\begin{aligned}
& \text { (!) } 9.97
\end{aligned}
$$

$$
\begin{aligned}
& 0+\operatorname{xp}\left\{_{\tau} x+x \boldsymbol{t}-\boldsymbol{t}\right\}_{z} \times \int_{z}^{0}= \\
& x p_{0} \int_{\infty}^{\tau}+\operatorname{xp}_{z}(x-z)_{z} x \int_{\tau}^{0}=\mathrm{T}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{lc}
\infty>x>z \text { I! } & 0 \\
z>x>0 \text { I! } & z_{z}(x-z)_{z} x
\end{array}\right\}=(x)_{\Omega}^{8} \\
& \text { イq̊ วu!̣əด (!) 8.9て } \\
& \text { ‘I = (Z) д ұечł дұО }
\end{aligned}
$$

$$
\begin{align*}
& x p\left\{\left\{_{t} x+{ }_{\varepsilon} x_{\bar{F}}-{ }_{\tau} x_{\tau}\right\} \int_{\tau}^{0} \frac{\hbar}{\varepsilon}=\right. \\
& \left.\operatorname{xp}_{(\tau} \mathrm{x}+\mathrm{x}_{\boldsymbol{I}}-\mp\right)_{z} \mathrm{x} \int_{\tau}^{0} \frac{\tilde{\varepsilon}}{\varepsilon}= \\
& 0+\mathrm{xp}_{\tau}(\mathrm{x}-\tau)_{\tau} \mathrm{x} \int_{\tau}^{0} \frac{\hbar}{\varepsilon}= \\
& \operatorname{xp}_{0} x \int_{\infty}^{\tau}+\operatorname{xp}\left\{z(x-z) x \frac{\tilde{\varepsilon}}{\varepsilon}\right\} x \int_{\tau}^{0}=\operatorname{xp}(x) \neq x \int_{\infty}^{0}=\mathrm{n} \\
& \text { '(zI) uox }
\end{align*}
$$

$$
\begin{align*}
& x p\left\{{ }_{\mathcal{G}} x+{ }_{\mp} x_{I I}-{ }_{\varepsilon} x \boldsymbol{T}\right\} \int_{\tau}^{0} \frac{9 I}{G I}= \\
& x p\left({ }_{\tau} x+x \mp-モ\right)_{\varepsilon} x \int_{\tau}^{0} \frac{9 I}{G I}= \\
& \operatorname{xp}_{\tau}(x-z)_{\varepsilon} x \int_{\tau}^{0} \frac{9 L}{\mathcal{G L}}= \\
& \operatorname{xp}\left\{\left\{_{\tau}(x-z)_{\tau} x \frac{9 I}{G I}\right\} x \int_{\tau}^{0}=x p(x)_{\ddagger} x \int_{\infty}^{0}=\mathrm{n}^{\prime}\right. \tag{!!!!}
\end{align*}
$$

'(ZL) wors

$$
\begin{align*}
& \cdot\{x-L\}(x-\tau) \times \frac{\Phi}{G L}=\{(I-) x \tau+(x-\tau) \tau\}(x-\tau) \times \frac{9 I}{G L}= \\
& \left\{\{(\mathrm{I}-)(\mathrm{x}-\mathrm{z}) \tau\}_{\tau} \mathrm{x}+{ }_{\tau}(\mathrm{x}-\mathrm{z}) \cdot \mathrm{xz}\right\} \frac{9 \mathrm{I}}{\mathcal{G I}}= \\
& \left\{\left\{z(x-z\} \frac{x p}{p} z^{x}+{ }_{z}(x-z) \cdot\left\{z^{x}\right\} \frac{x p}{p}\right\} \frac{9 I}{\mathcal{G I}}=\right. \\
& \left\{_{\tau}(x-z)_{\tau} x\right\} \frac{x p}{p} \frac{9 L}{G L}=(x)_{, ~}
\end{align*}
$$

$$
\begin{aligned}
& \left.\cdot \frac{\mathcal{S L}}{9 \mathrm{~L}}={ }_{{ }_{\varsigma} 0} 0 \frac{\mathcal{S}}{\tau}+{ }_{\ddagger} 0-{ }_{\varepsilon} 0 \cdot \frac{\varepsilon}{\tau}\right\}-{ }_{\varsigma} Z \frac{\mathcal{S}}{\tau}+{ }_{\tau} Z-{ }_{\varepsilon} Z \cdot \frac{\varepsilon}{\hbar}= \\
& { }_{\tau}^{0}{ }_{{ }^{G}} \mathrm{X} \frac{\mathcal{G}}{\bar{L}}+{ }_{\dagger} \mathrm{X}-{ }_{\varepsilon} \mathrm{X} \frac{\varepsilon}{\hbar}= \\
& x p\left\{{ }_{\varsigma} x \frac{\varsigma}{\tau}+{ }_{\ddagger} x-{ }_{\varepsilon} x \frac{\varepsilon}{\hbar}\right\} \frac{x p}{p} \int_{\tau}^{0}=
\end{aligned}
$$

$$
\begin{align*}
& \text { (} 8 \overbrace{}^{\circ} \angle 乙 \text {) วəऽ } \\
& \text { (0) } \amalg_{3} s=7 \tag{!!!!}\\
& \text { (!) } 6.97
\end{align*}
$$

$$
\begin{aligned}
& \cdot\left({ }_{z}+\varepsilon+7 G I-0 Z\right)_{\varepsilon}{ }^{\mathcal{F}}+\frac{9 L}{\mathrm{~L}}=
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{xp}\left\{{ }_{\mathcal{G}} x \frac{\mathcal{S}}{I}+{ }_{\ddagger} x-{ }_{\varepsilon} x \frac{\varepsilon}{\frac{\varepsilon}{\ddagger}}\right\} \frac{x p}{p} \int_{\ddagger}^{0} \frac{9 I}{\mathcal{G}}=
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left\{\frac{s}{x}-L-\rho\right\} \frac{T}{s / x-y^{z-0} x}=
\end{aligned}
$$

[^0]: 6.97

