

$$
\begin{align*}
& { }_{z} \mathrm{n}^{1}-\operatorname{xp}(\mathrm{x})_{I_{z}} \times \int_{\infty}^{0}={ }_{z} 0
\end{align*}
$$

$$
\frac{\mathrm{n}}{\mathrm{o}}=\mathrm{x}
$$

$$
\cdot x p(x) f_{z}\left(\mathrm{n}^{\prime}-\mathrm{x}\right) \int_{\infty}^{0}={ }_{2} 0
$$

$$
{ }^{\prime}(\mathrm{x})_{\mathrm{f}}\left(\mathrm{n}^{\prime}-\mathrm{x}\right)=(\mathrm{x}) \mathrm{Q}
$$

(LI L Z)

 $\mathfrak{q p}(\mathfrak{f}) \mathfrak{y z} \int_{\infty}^{0}+\mathfrak{f p}(\mathfrak{f}) \mathfrak{f z} \int_{0}^{0}=\mathfrak{f p}(\mathfrak{f}) \mathfrak{f t} \int_{\infty}^{0}=\mathfrak{n}^{\prime}$

($6 \angle Z$) әлеч әм '(\angle) . .'uịsn

$$
\varepsilon>V>\frac{\tau+\theta}{\theta}
$$

($\angle \circ\llcorner Z)$
ло

$$
\begin{aligned}
& \infty>7>0 \text { f! }
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \frac{(\varepsilon+\theta)(I+\theta) \dagger \tau}{\left.\mathcal{T}_{\tau} \theta(V-6)+\theta(V L-\varsigma \downarrow)+\forall 9\right\}}=
\end{aligned}
$$

 әлеч $\partial м$ ' $\theta=\varnothing$ чд!м

 (GI: Z)

$$
\frac{(x-\mathrm{I})}{(n-\mathrm{I})\rangle}+\frac{\mathrm{I}-\infty}{(\mathrm{I}-\infty)^{2}}=7 \mathrm{p}_{n-}+\int_{x}^{0}
$$

$$
\cdot \frac{\mathrm{I}-n}{(\mathrm{I}-n)^{-}}=\underset{7 p_{n-7}}{ } \int_{\infty}^{0}
$$

$$
\left(\varepsilon\left\ulcorner^{\circ} \angle z\right)\right.
$$

 (乙İLZ) $\quad{ }_{n-7}=(\mathfrak{7}) \mathrm{n}$

 （モでムて）

S！ueวu әчł＇（0［＾9Z）

 （とでムて）

$$
\cdot \frac{(\partial)_{J_{3} s}^{s / x-} \partial_{\mathrm{I}-\mathrm{x}} \mathrm{x}}{}=(\mathrm{x})_{\mathrm{J}}
$$

－әэиециел

$$
\cdot \tau 冫\left(\frac{\tau^{(I-\theta) 9 L S}}{\tau\{(\tau+\theta) V-\theta 6\}}-\frac{(\tau-\theta) 0 \varepsilon}{\{(\tau+\theta) \forall-\theta 9\}}\right)={ }_{\tau} 0
$$

（LでんZ）

$$
\frac{(z-\theta) 0 \varepsilon}{\left.{ }_{\tau} \mathcal{\{}(\tau+\theta) \forall-\theta 9\right\}}=
$$

$$
\frac{(\tau-\theta)(\varepsilon+\theta)(I+\theta)}{\tau^{د}(V-\varepsilon) \theta}+0-\frac{(\varepsilon+\theta)(I+\theta) 0 \varepsilon}{\tau^{\mathcal{J}\left\{_{\tau} \theta(V-9)+\theta(\forall \tau-6) t+\forall \varepsilon\right\}}}=
$$

（0でムて）

$$
\cdot \not \mathrm{p}_{(\mathrm{I}-\theta)-} \int_{\infty} \frac{(\varepsilon+\theta)(\mathrm{I}+\theta)}{{ }_{\theta}(V-\varepsilon) \theta}+
$$

＇（9）Suisn uo＇sny．
$\left(6 I^{\circ} \angle Z\right)$

$$
\begin{aligned}
& \infty>\text { ł>フ ๆ! } \quad\left(\frac{\mathcal{J}}{\mathrm{I}}\right) \frac{(\varepsilon+\theta)(\mathrm{I}+\theta)}{\partial(\mathrm{V}-\varepsilon) \theta}
\end{aligned}
$$

n תu！̣！
（ç：$\angle Z)$
（コと ૮て）

$$
\begin{aligned}
x p_{\partial(s / x)-} \partial_{\partial}(s / x) x \int_{\infty}^{0} \partial & =x p(x) I_{\tau} x \int_{\infty}^{0} \\
\hat{\rho}_{\partial}(s / x)-\partial_{L-}(s / x) \frac{s}{\partial} & =(x) J
\end{aligned}
$$

u！̣eqqo 7 s！！̣ әм
（モどくて）

$$
\begin{align*}
& \cdot \partial_{z} s=z_{z}{ }_{z} s-\left(L+\partial \partial_{z} s={ }_{z}\right.
\end{align*}
$$

$$
\begin{aligned}
& \cdot(\mathrm{I}+\nu) \mathrm{J}_{z} \mathrm{~s}=\mathrm{xp}(\mathrm{x}) \mathrm{I}_{z} \mathrm{x}_{\mathrm{\infty}}^{0}
\end{aligned}
$$

（zと＇LZ）

 snul

$$
\cdot(\tau+\nu) \beth_{Z+\rho} s=\operatorname{xp}_{s / \alpha-} \partial_{\tau+\rho} x \int_{\infty}^{0}
$$

$(\mathrm{I}) \mathrm{J}^{\mathrm{I}}=(\mathrm{I}+\mathrm{x})^{\mathrm{I}}$

（ $8 z^{\circ} \angle Z$ ）

（ $\angle て ゙ \angle Z)$

$$
\cdot(I+\partial) ذ_{I+} s=\operatorname{xp}_{s / x-} \partial_{0} x \int_{\infty}^{0}
$$

$$
\cdot(0) \beth_{0} s=\operatorname{xp}_{s / x_{-}} \partial_{\mathrm{I}_{-0}} x \int_{\infty}^{0}
$$

（č゚டて）

 （L゙しで）
（0才゙ $\angle 乙$ ）

$$
\left.\mathrm{I}-\frac{z^{\{ }\{(\mathrm{J} / \mathrm{I}+\mathrm{I}) \mathrm{I}\}}{(\mathrm{J} / \mathrm{Z}+\mathrm{I}) \mathrm{I}} \right\rvert\,=x
$$

łnq uo！̣nq！̣ıs！̣p euwey әчł лоғ
 （ $6 \varepsilon^{\circ} \angle Z$ ）
（ $8 \varepsilon^{\circ} \angle Z$ ）

＇səsеәләрр ләдәиелед

 （ $\angle \varepsilon^{\circ} \angle Z$ ）

$$
{ }_{\tau}\{(\mathrm{J} / \mathrm{I}+\mathrm{L}) \amalg\}_{\tau} \mathrm{S}-(\mathrm{J} / 乙+\mathrm{L}) \beth_{\tau} \mathrm{S}={ }_{\tau} \mathrm{O}
$$

$$
\begin{aligned}
& \text { 897. } 0=\frac{Z}{L} \backslash \frac{t}{I}=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { n' ‘ueәu әчł pu!̣ } \\
& \left.\begin{array}{lcc}
\infty>x>\varepsilon \text { f! } & 0 \\
\varepsilon>x>\text { I f! } & (x-\varepsilon) \frac{\varepsilon}{\mathrm{L}} \\
\mathrm{~L}>\mathrm{x}>0 \text { f! } & \mathrm{x} \frac{\varepsilon}{乙}
\end{array}\right\}=(\mathrm{x})_{\mathrm{J}}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \frac{7}{6 \mathrm{I}} \backslash \frac{8}{\mathrm{~L}}=\mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { •u 'әрои әчł (л! } \\
& \text { pue 'W ‘ue!̣pәu әчł (!!!!) }
\end{aligned}
$$

$$
\begin{align*}
& \text { (!!) } \\
& \text { n' ‘ueəu әчł } \tag{!}\\
& \text { pu!t }
\end{align*}
$$

$$
\begin{aligned}
& \cdot \frac{9}{L} \backslash \frac{Z}{I}=x
\end{aligned}
$$

> 'u ‘әрои әчҰ (л!̣)
> pue 'N ‘ие!̣рәu әчł (!!!!)

$$
\begin{align*}
& \text { n' ‘чеәш әчł } \tag{!}
\end{align*}
$$

ueวu วЧL

$$
\left.\begin{array}{cc}
\infty>x>9 \text { f! } & 0 \\
9>x>Z \text { f! } & \mathrm{T} /(\mathrm{x}-9) \\
\tau>x>0 \text { £! } & \mathrm{T} /(\mathrm{x}-\downarrow) \mathrm{x}
\end{array}\right\}=(\mathrm{x}) \mathrm{f}
$$

$$
\underline{\varepsilon} \mathcal{L}=\mathrm{N} \text { S! uе!̣рәu әчł łечł мочS }
$$

($)$

$$
\frac{Z}{L} \backslash \frac{G}{L}=x
$$

7 puis

ӘдәЧМ

$$
(x) \& \frac{\mathrm{~T}}{\mathrm{~L}}=(\mathrm{x}) \mathrm{J}
$$

ueวu วчұ 'ri puis
ие!̣рәш әчҰ 'W pu!̣
¡uеұsuos e s!̣ T pue

иеәи әч7 'r pu!̧ (!!!!)
ие!̣pau วчł ‘N pu!̣ (!̣)
¿Т эо әпโел әчł әq 子snu 孔ечМ (!)

$$
\begin{aligned}
& \cdot \frac{\tau^{(I-\theta) 9 \varepsilon}}{{ }_{\tau}{ }^{\mathrm{J}}{ }_{2}\left\{{ }_{\tau}{ }^{\mathrm{J}} \forall(\tau+\theta)-\theta \varepsilon\right\}}-\frac{(\tau-\theta) 9}{\tau^{\mathrm{J}}\left\{_{\tau}{ }^{\mathrm{J} V(\tau+\theta)-\theta \tau\}}\right.}={ }_{\tau} \mathrm{D}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \frac{(\tau-\theta) \varepsilon}{{ }_{\tau}{ }^{\partial}\left({ }_{\tau}{ }^{\partial} V-I\right) \theta}+{ }_{\downarrow}{ }^{\partial} V \frac{9}{1}= \\
& \frac{(\tau-\theta)(I+\theta)}{\tau^{د}\left(\tau^{د} V-I\right) \theta}+0-\frac{(I+\theta) \varepsilon}{\tau^{د}\left({ }_{\tau}{ }^{2} V-I\right) \theta}+{ }_{\llcorner }{ }^{J} V \frac{9}{I}=
\end{aligned}
$$

$$
\frac{\varepsilon}{L}=x \cdot \frac{G Z}{I}={ }_{z} 0 \quad 9 \cdot \angle Z
$$

$$
\begin{align*}
& \left.89 \varpi^{\circ} 0=\frac{Z}{L} \backslash \frac{t}{L}=\boldsymbol{H} / \rho=x \quad \frac{Z}{L} \backslash \frac{\varepsilon}{I}=\frac{8 \mathrm{I}}{L}\right\rfloor=0 \tag{1}\\
& \frac{8 \mathrm{I}}{L}=\frac{8 \mathrm{I}}{2 \varepsilon-6 \varepsilon}={ }_{\tau}\left(\frac{\varepsilon}{t}\right)-\frac{9}{\varepsilon \mathrm{I}}={ }_{\tau} \mathrm{O} \Leftarrow
\end{align*}
$$

$$
\begin{align*}
& \Leftarrow{ }_{\tau^{\prime}} \mathrm{H}^{\prime}-\operatorname{xp}(\mathrm{x})_{\mathrm{J}_{2}} \mathrm{x} \int_{9}^{0}={ }_{\tau} \mathrm{o} \\
& \cdot \frac{\tau}{\varepsilon 1}=9+\frac{\tau}{\tau}=\frac{t}{08}-9 \tau+\frac{\tau}{1}= \\
& \left(\frac{t}{1}-\mathrm{I}\right)-\left(\frac{t}{18}-L Z\right)+0-\frac{\tau}{\mathrm{t}}= \\
& { }_{\varepsilon}^{1}\left\{{ }_{t} x \frac{t}{\tau}-{ }_{\varepsilon} x\right\}+\left.{ }_{I}^{0}\right|_{t} x \frac{\tau}{T}= \\
& \operatorname{xp}\left\{{ }_{t} x \frac{t}{\downarrow}-{ }_{\varepsilon} x\right\} \frac{x p}{p} \int_{\varepsilon}^{1}+\operatorname{xp}\left\{{ }_{t} x \frac{\left.\frac{\tau}{I}\right\}}{} \frac{x p}{p} \int_{I}^{0}=\right. \\
& \operatorname{xp}\left({ }_{\varepsilon} \mathrm{x}-{ }_{\tau} \mathrm{x} \varepsilon\right) \int_{\varepsilon}^{1}+\operatorname{xp}_{\varepsilon} \mathrm{x} z \int_{\mathrm{I}}^{0}=\operatorname{xp}(\mathrm{x}) \boldsymbol{g}_{\tau} \mathrm{x} \int_{\varepsilon}^{0} \\
& \text { ‘К[גе!!u! } \tag{!!!}\\
& \cdot \varepsilon / \Phi=n{ }^{\circ} \mathrm{oS} \\
& \cdot t=\frac{9}{L}-\frac{\tau}{6}+\frac{\varepsilon}{\tau}= \\
& \left(\frac{\varepsilon}{\mathrm{L}}-\frac{\tau}{\varepsilon}\right)-\left(6-\frac{\tau}{L \tau}\right)+0-{ }_{\varepsilon} \mathrm{I} \cdot \frac{\varepsilon}{\tau}= \\
& { }_{\varepsilon} \left\lvert\,\left\{{ }_{\varepsilon} \mathrm{X} \frac{\varepsilon}{1}-{ }_{\tau} \mathrm{X} \frac{\tau}{\varepsilon}\right\}+{ }_{1}^{0}{ }_{\varepsilon} \mathbf{X} \frac{\varepsilon}{\tau}=\right. \\
& \operatorname{xp}\left\{{ }_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\mathrm{~L}}-{ }_{\tau} \mathrm{x} \frac{\tau}{\varepsilon}\right\} \frac{\mathrm{xp}}{\mathrm{p}} \int_{\varepsilon}^{\mathrm{I}}+\operatorname{xp}\left\{{ }_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\tau}\right\} \frac{\mathrm{xp}}{\mathrm{p}} \int_{\mathrm{I}}^{0}= \\
& x p\left({ }_{\tau} x-x \varepsilon\right) \int_{\varepsilon}^{1}+x p_{\tau} x z \int_{1}^{0}=x p(x) \Omega x \int_{\varepsilon}^{0} \\
& { }^{\circ} \mathrm{S}
\end{align*}
$$

ing

$$
\begin{aligned}
& \text { os pue ' } \varepsilon /(x) \mathcal{S}=(x)_{\jmath} \text { บวบ } L
\end{aligned}
$$

$$
\begin{aligned}
& \text { Кq (} \infty^{\prime} 0 \text {] uo } .8 \text { әu!̣əด } \\
& \text { (!) } \quad G^{\circ} \angle Z
\end{aligned}
$$

$$
\left.{ }^{\prime} \mathcal{C}^{\circ} 0=\frac{9}{L} \backslash \frac{Z}{\mathrm{~L}}=\mathrm{n} / \mathrm{o}=\mathrm{x} \Leftarrow \frac{9}{L}\right\rfloor=0
$$

$$
\left.\begin{array}{cc}
\infty>x>\varsigma ~ f! & 0 \\
\varsigma>x>\text { I I! } & x-\varsigma \\
I>x>0 \text { J! } & x \downarrow
\end{array}\right\}=(x) 马
$$

$$
\begin{equation*}
\text { Кq [} \left.\infty^{\prime} 0\right] \text { uo ©̊ әu!̣əə } \tag{!}
\end{equation*}
$$

$$
\frac{Z}{I}=x \cdot \frac{G Z}{I}={ }_{\tau} 0 \quad L \angle Z
$$

$$
\begin{align*}
& \text { әsneวəg } \tag{!!!!}\\
& \frac{9}{L}=\frac{9}{\hbar \tau-I \varepsilon}=t-\frac{0 \varepsilon}{\mathcal{S G I}}={ }_{\tau}{ }^{n}{ }^{\prime}-\operatorname{xp}(x) \delta_{\tau} x \int_{\varsigma}^{0} \frac{0 I}{I}={ }_{\tau} \Omega \\
& \cdot \frac{\varepsilon}{\varsigma \subseteq 1}=\frac{\tau \mathrm{I}}{\mathrm{LI}}-\frac{\tau \mathrm{I}}{\varsigma \tau 9}+0-\mathrm{I}=
\end{align*}
$$

$$
\begin{aligned}
& x p\left\{{ }_{t} x \frac{t}{\tau}-{ }_{\varepsilon} x \frac{\varepsilon}{\varsigma}\right\} \frac{x p}{p} \int_{\varsigma}^{1}+x p\left\{_{t} x\right\} \frac{x p}{p} \int_{I}^{0}= \\
& \operatorname{xp}\left({ }_{\varepsilon} x-{ }_{\tau} x \varsigma\right) \int_{\varsigma}^{1}+\operatorname{xp}_{\varepsilon} x+\int_{I}^{0}=\operatorname{xp}(x) g_{\tau} x \int_{\varsigma}^{0} \\
& { }^{6} \text { Kıе } \\
& \text { os } \\
& \tau=0 I / 0 Z=n{ }^{\prime} O S \\
& \cdot 0 \tau=\frac{9}{\varepsilon 1}-\frac{9}{\varsigma \tau 1}+0-\frac{\varepsilon}{\hbar}= \\
& { }_{\varsigma}^{1}\left\{\left\{{ }_{\varepsilon} \mathrm{X} \frac{\varepsilon}{1}-{ }_{\tau} \mathrm{X} \frac{\tau}{\varsigma}\right\}+{ }_{1}{ }_{\{ } \mathrm{X} \frac{\varepsilon}{\frac{\varepsilon}{\dagger}}=\right. \\
& \operatorname{xp}\left\{{ }_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\mathrm{~L}}-{ }_{\tau} \mathrm{x} \frac{\tau}{\varsigma}\right\} \frac{\mathrm{xp}}{\mathrm{p}} \int_{\varsigma}^{1}+\operatorname{xp}\left\{{ }_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\eta}\right\} \frac{\mathrm{xp}}{\mathrm{p}} \int_{\mathrm{I}}^{0}= \\
& x p\left({ }_{\tau} x-x \varsigma\right) \int_{\varsigma}^{1}+x_{\tau} x+\int_{1}^{0}=x p(x) \delta x \int_{\varsigma}^{0}
\end{aligned}
$$

$$
\cdot \csc 0=\frac{\tau}{6 \mathrm{I}} \backslash \frac{8}{\mathrm{I}}=\frac{\varepsilon}{8} \div \frac{\tau}{6 \mathrm{I}} \backslash \frac{\varepsilon}{\mathrm{I}}=\mathrm{n} / \rho=\mathrm{x} \Leftarrow \frac{\tau}{\underline{6 \mathrm{I}}}\left\langle\frac{\varepsilon}{\mathrm{I}}=\frac{8 \mathrm{I}}{\underline{6 \mathrm{I}}}\right|=0
$$

 əsneวag

$$
\cdot \frac{\tau}{5+\tau}=\frac{t}{16 \tau}-\frac{t}{5 \tau 9}+0-\frac{\tau}{18}=
$$

$$
{ }_{\varsigma}^{\varepsilon}\left\{{ }_{\square} x \frac{t}{\varepsilon}-{ }_{\varepsilon} x \varsigma\right\}+\left.{ }_{\varepsilon}^{0}\right|_{t} x \frac{\tau}{\tau}=
$$

$$
\operatorname{xp}\left\{{ }_{t} x \frac{t}{\varepsilon}-{ }_{\varepsilon} x \varsigma\right\} \frac{x p}{p} \int_{s}^{\varepsilon}+\operatorname{xp}\left\{{ }_{t} x \frac{\tau}{\tau}\right\} \frac{x p}{p} \int_{\varepsilon}^{0}=
$$

$$
\operatorname{xp}\left({ }_{\varepsilon} \mathrm{x} \varepsilon-{ }_{\tau} \mathrm{xGI}\right) \int_{\varsigma}^{\varepsilon}+\mathrm{xp}_{\varepsilon} \mathrm{x} \tau \int_{\varepsilon}^{0}=x p(x) \mathcal{g}_{\tau} x \int_{\varsigma}^{0}
$$

‘К[леן!!̣u!S

$$
\varepsilon / 8=G I / 0 \emptyset=\mathrm{n} \text { OS }
$$

$$
0 t=\frac{\tau}{18}-\frac{\tau}{\varsigma \tau 1}+0-8 \mathrm{I}=
$$

$$
{ }_{\S}^{\varepsilon}\left\{{ }_{\varepsilon} \mathrm{x}-{ }_{\tau} \mathrm{x} \frac{\tau}{\varsigma!}\right\}+{ }_{{ }_{\varepsilon}}^{0}{ }_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\tau}=
$$

$$
\operatorname{xp}\left\{{ }_{\varepsilon} x-{ }_{\tau} x \frac{\tau}{\varsigma \mid}\right\} \frac{x p}{p} \int_{\varsigma}^{\varepsilon}+\operatorname{xp}\left\{{ }_{\varepsilon} x \frac{\varepsilon}{\tau}\right\} \frac{x p}{p} \int_{\varepsilon}^{0}=
$$

$$
x p\left({ }_{\tau} \mathrm{x} \varepsilon-\mathrm{x} \mathrm{\varsigma I}\right) \int_{\varsigma}^{\varepsilon}+\mathrm{xp}_{\tau} \mathrm{x} \tau \int_{\varepsilon}^{0}=\operatorname{xp}(x) \delta x \int_{\varsigma}^{0}
$$

$$
\left.\begin{array}{cc}
\infty>x>\varsigma ~ f! & 0 \\
\varsigma>x>\varepsilon \text { I! } & x \varepsilon-\varsigma I \\
\varepsilon>x>0 \text { I! } & x 乙
\end{array}\right\}=(x) \Omega
$$

$$
\begin{aligned}
& \cdot \frac{\varsigma}{8 \tau 9}=Z I-80 I+\frac{\varsigma}{8 t}= \\
& \left\{_{\ddagger} Z \cdot \frac{\hbar}{\tau}-{ }_{\varepsilon} Z \cdot Z\right\}-{ }_{\ddagger} 9 \cdot \frac{\hbar}{\tau}-{ }_{\varepsilon} 9 \cdot Z+{ }_{\S} Z \cdot \frac{\varsigma}{\tau}-{ }_{\dagger} Z= \\
& { }_{9}^{\tau}\left\{{ }_{\tau} x \frac{\hbar}{\tau}-{ }_{\varepsilon} \mathrm{x} Z\right\}+{ }_{Z}^{0}{ }_{{ }_{\mathrm{g}}} \mathrm{x} \frac{\mathfrak{g}}{\mathrm{~L}}-{ }_{\dagger} \mathrm{x}=
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{xp}\left({ }_{\varepsilon} \mathrm{x}-{ }_{\tau} \mathrm{x} 9\right) \int_{9}^{\tau}+\operatorname{xp}\left\{{ }_{\boldsymbol{t}} \mathrm{x}-{ }_{\varepsilon} \mathrm{x} \bar{\tau}\right\} \int_{\tau}^{0}=\operatorname{xp}(\mathrm{x}) \delta_{\tau} \mathrm{x} \int_{9}^{0} \\
& { }^{\prime} \text { Кгет!u! } \tag{!!!}\\
& \cdot \frac{\tau}{g}=\frac{\varepsilon}{001} \frac{0 t}{\varepsilon}=n^{\prime} \text { OS } \\
& \cdot \frac{\varepsilon}{001}=\frac{\varepsilon}{8 \tau}-9 \varepsilon+\frac{\varepsilon}{0 \tau}= \\
& \left\{{ }_{\varepsilon} Z \cdot \frac{\varepsilon}{L}-{ }_{\tau} Z \cdot \varepsilon\right\}-{ }_{\varepsilon} 9 \cdot \frac{\varepsilon}{L}-{ }_{\tau} 9 \cdot \varepsilon+{ }_{\mp} Z \cdot \frac{\hbar}{L}-{ }_{\varepsilon} Z \cdot \frac{\varepsilon}{\ddagger}= \\
& { }_{9}^{\tau}\left\{\left\{_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\tau}-{ }_{\tau} \mathrm{x} \varepsilon\right\}+{ }_{\tau}^{0}{ }_{\dagger} \mathrm{x} \frac{\hbar}{\tau}-{ }_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\hbar}=\right. \\
& \operatorname{xp}\left\{{ }_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\mathrm{~L}}-{ }_{\tau} \mathrm{x} \varepsilon\right\} \frac{\mathrm{xp}}{\mathrm{p}} \int_{9}^{\tau}+\operatorname{xp}\left\{{ }_{\ddagger} \mathrm{x} \frac{\tilde{\tau}}{\mathrm{~L}}-{ }_{\varepsilon} \mathrm{x} \frac{\varepsilon}{\frac{\varepsilon}{\eta}}\right\} \frac{\mathrm{xp}}{\mathrm{p}} \int_{\tau}^{0}= \\
& x p\left({ }_{\tau} x-x 9\right) \int_{9}^{\tau}+\operatorname{xp}\left\{{ }_{\varepsilon} x-{ }_{\tau} x \mp\right\} \int_{\tau}^{0}=x p(x) \Omega x \int_{9}^{0} \\
& \text { łng }
\end{align*}
$$

$$
\begin{align*}
& \frac{\varepsilon}{0 t}=8+0-\frac{\varepsilon}{91}= \tag{!!!}\\
& \left\{{ }_{\tau}(\tau-9) \frac{\tau}{\top}-\right\}-{ }_{\tau}(9-9) \frac{\tau}{\top}-{ }_{\varepsilon} \tau \cdot \frac{\varepsilon}{T}-{ }_{\tau} \tau \cdot \tau= \\
& { }_{9}^{\tau}\left\{\left.\left\{_{\tau}(x-9) \frac{\tau}{\frac{\tau}{1}}-\right\}+{ }_{{ }_{\tau}}^{0} \right\rvert\, \frac{\varepsilon}{\frac{\varepsilon}{1}}-{ }_{\tau} \mathrm{x} \tau=\right. \\
& \operatorname{xp}\left\{_{\tau}(x-9) \frac{\tau}{1}-\right\} \frac{x p}{p} \int_{9}^{\tau}+\operatorname{xp}\left\{{ }_{\varepsilon} x \frac{\varepsilon}{T}-{ }_{\tau} x \tau\right\} \frac{x p}{p} \int_{\tau}^{0}= \\
& x p(x-9) \int_{9}^{\tau}+\operatorname{xp}\left\{{ }_{\tau} x-x t\right\} \int_{\tau}^{0}=x p(x) g \int_{9}^{0}=x p(x) g \int_{\infty}^{0}=\mathrm{T}
\end{align*}
$$

$$
\begin{aligned}
& \left.\begin{array}{lc}
\infty>x>9 \text { f! } & 0 \\
9>x>\tau \text { f! } & (x-9) \\
\tau>x>0 \text { f! } & (x-\downarrow) x
\end{array}\right\}=(x) 马
\end{aligned}
$$

（！）$て!\llcorner 乙$

$$
\begin{aligned}
& \cdot_{\tau}(\mathfrak{7}-9) \frac{08}{\varepsilon}-\mathrm{I}= \\
& \left\{\left\{_{\tau}(\tau-9) \frac{\tau}{\mathrm{T}}-\right\}-{ }_{\tau}(\mathfrak{l}-9) \frac{\tau}{\mathrm{T}}-\right\} \frac{0 t}{\varepsilon}+\frac{\varsigma}{\tau}={ }_{\downarrow}^{\tau}\left\{\left\{_{\tau}(x-9) \frac{\tau}{\mathrm{T}}-\right\} \frac{0 t}{\varepsilon}+\frac{\varsigma}{\tau}=\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { ‘9 > 子 } \\
& (7-9) \frac{0 才}{z^{7}}=\left({ }_{\varepsilon}+\frac{\varepsilon}{\tau}-{ }_{z} \neq z\right) \frac{0 币}{\varepsilon}=
\end{aligned}
$$

$$
\begin{align*}
& \text { บəบL そラł>0 əsoddns } \\
& \angle \mathrm{IC} \cdot 0=\mathrm{GZ} / \angle 9 \mathrm{~L} \Lambda=\mathrm{n} / \rho=\mathrm{I} \quad \Leftarrow \angle 9 \mathrm{~L} \Lambda \frac{0 \mathrm{I}}{\mathrm{~L}}=\rho \\
& \angle 9 \cdot \mathrm{I}=\frac{00 \mathrm{~L}}{\varsigma Z 9-Z 6 L}={ }_{\tau}\left(\frac{Z}{G}\right)-\frac{\varsigma Z}{86 I}={ }_{\tau} 0 \Leftarrow
\end{align*}
$$

$$
\begin{aligned}
& \Leftarrow{ }_{z} \mathrm{H}^{\mathrm{H}}-\operatorname{xp}(\mathrm{x})_{\mathrm{I}_{2}} \mathrm{x} \int_{9}^{0}={ }_{z} 0
\end{aligned}
$$

$$
\begin{align*}
& \text { woxy (! }
\end{align*}
$$

$$
\begin{align*}
& \tau / \varepsilon=n \tag{!!!!}\\
& \varepsilon / \pm=W
\end{align*}
$$

$$
\begin{align*}
& \tau / I=\varnothing L / L-L / \Phi=(\tau)_{H}-(\varepsilon)_{H}
\end{align*}
$$

$$
\begin{align*}
& \angle / 6 I=N \\
& \text { } 7 / L I=W \tag{!!!}
\end{align*}
$$

$$
\begin{align*}
& \text { (!) } \quad \mathrm{I}[\angle Z \tag{!!}
\end{align*}
$$

