

（8．87）

$$
\operatorname{xp}_{z \mid W^{-x \mid \chi_{-}}} \partial \int_{q}^{e}=T
$$

pue＇fuełsuos әл！̣！sod e s！χ әләчм
$(L \cdot 8 Z)$

$$
\begin{equation*}
\cdot q>x>e \quad\left\{\frac{e-q}{|W-x| z}-I\right\} \frac{e-q}{z}=(x) f \tag{9•8Z}
\end{equation*}
$$

ЧЈฺЧМ
 （ ${ }^{\circ} 87$ ）

$$
\cdot q>x>e \quad \frac{e-q}{L}=(x) f
$$

 （ $\subset \cdot 8 z$ ）

$$
(q+e) \frac{z}{\tau}=W
$$

łu！̣od－p！̣u

$$
\begin{equation*}
\cdot \mathfrak{q p}(\mathfrak{q}) \underset{\mathrm{f}}{\mathrm{e}} \int_{\mathrm{x}}=(\mathrm{x})_{\mathcal{I}} \quad \Leftrightarrow \quad(\mathrm{x})_{\mathcal{I}}=(\mathrm{x})_{\mathrm{J}} \tag{て・8Z}
\end{equation*}
$$

$$
\begin{gathered}
‘ \mathrm{~L}=(\mathrm{q})_{\mathrm{H}} \\
\mathrm{q}>\mathrm{x}>\mathrm{e} \quad \not 0<(\mathrm{x})_{, ~} \mathrm{H} \\
0=(\mathrm{e})_{\mathrm{H}}
\end{gathered}
$$

（qI：8Z）

（e［．8Z）

$$
\begin{aligned}
& \text { q>x>e '0<(x)于 }
\end{aligned}
$$

（ $8 I^{\circ} 8$ Z $)$

$$
\cdot q>x>n \quad\left\{\frac{\mathrm{e}-\mathrm{q}}{(\mathrm{n}-\mathrm{x})_{Z}}-\mathrm{L}\right\} \frac{\mathrm{e}-\mathrm{q}}{\mathrm{z}}=(\mathrm{x})_{\mathrm{f}}
$$

 （qLI．8z）$\quad x p(x) J_{z}\left(n^{\prime}-x\right) \int_{q}^{n} z=x p(x) G \int_{q}^{n} z=$
（eLI•8て）

（91．8Z）
（GI•8Z）

$$
\begin{aligned}
& \cdot\left(\mathfrak{f}-\mathrm{n}^{\prime}\right) \boldsymbol{J}_{\tau}(\mathfrak{f}-)=\left(\mathfrak{f}-\mathrm{n}^{\prime}\right) 于_{\tau}\left(\mathfrak{n}^{\prime}-\mathfrak{z}-\mathrm{n}^{\prime}\right)=\left(\mathfrak{f}-\mathrm{n}^{\prime}\right) \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& (\mathrm{x})_{\mathrm{I}_{乙}}\left(\mathrm{n}^{\prime}-\mathrm{x}\right)=(\mathrm{x}) \mathrm{a}
\end{aligned}
$$

$$
\operatorname{sxp}(\mathrm{x}) \mathrm{Q} \int_{\mathrm{q}}^{\mathrm{n}}=\operatorname{xp}(\mathrm{x}) \mathrm{Q} \int_{\mathrm{n}}^{\mathrm{e}}
$$

 （EI•8Z）

$$
(\mathrm{e}-\mathrm{q}) \frac{\tau}{\mathfrak{\imath}}>\mathfrak{f >}>0 \quad\left(\mathfrak{q}+\mathrm{n}^{\prime}\right) \square=\left(\mathfrak{f}-\mathfrak{n}^{\prime}\right) \square
$$

$$
\begin{align*}
& \cdot \operatorname{xp}(\mathrm{x}) \mathrm{f} \int_{\mathrm{q}}^{\mathrm{N}}=\operatorname{xp}(\mathrm{x}) \mathrm{F} \int_{\mathrm{V}}^{\mathrm{e}}
\end{align*}
$$

$$
\begin{equation*}
\frac{\tau}{q+e}=n^{\prime} \tag{0I‘8Z}
\end{equation*}
$$

$$
\operatorname{xp}(x) J \int_{q}^{W}=\operatorname{xp}(x) J \int_{W}^{\mathrm{V}}
$$

$$
\begin{equation*}
{ }_{z / \mathrm{L}} \mathrm{n}_{z / \mathrm{L}} \chi=\frac{\gamma}{\underline{n}} \boldsymbol{l}=(\mathrm{n}) \xi=x \tag{cで8Z}
\end{equation*}
$$

$$
\begin{equation*}
\cdot_{z} \mathrm{x} \chi=(\mathrm{x}) \phi=\mathrm{n} \tag{モで8Z}
\end{equation*}
$$

$$
\begin{equation*}
\cdot \operatorname{xp}_{\tau^{x \gamma-}} \partial \int_{\infty}^{0} z=\mathrm{T} \tag{とで8Z}
\end{equation*}
$$

әләчм

$$
\begin{equation*}
\cdot \operatorname{xp}_{z^{x \gamma_{-}}} \int_{y}^{0} z=\operatorname{xp}_{z^{x \gamma_{-}}} \partial \int_{y}^{x-}=T \tag{̌て‘8乙}
\end{equation*}
$$

$$
\begin{equation*}
>I>x \gg I-\quad{ }_{z^{x \gamma-}} \partial \frac{\mathrm{T}}{\mathrm{~L}}=(\mathrm{x})_{\mathrm{J}} \tag{LZ‘8Z}
\end{equation*}
$$

$K_{\text {Iduu！}}$（ZI）pue（8）－（ \angle ）

（6I＊8Z）

$$
\begin{equation*}
\cdot \frac{e+q}{e-q} \frac{9 _}{I}=x \tag{0z‘8Z}
\end{equation*}
$$

$$
\begin{aligned}
& { }^{\prime}(\mathrm{e}-\mathrm{q}) \frac{\boxed{ })}{\mathrm{L}}= \\
& \frac{I}{i(n-q)} \frac{z^{(e-q)}}{8}-\frac{\varepsilon}{\varepsilon(n-q)} \frac{\mathrm{e}-\mathrm{q}}{\mp}=
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{xp}_{\varepsilon}\left(n^{\prime}-x\right) \int_{q}^{n} \frac{z_{z}(e-q)}{8}-x p_{\tau}\left(n^{\prime}-x\right) \int_{q}^{n} \frac{e-q}{\Xi}= \\
& x p\left\{\frac{e-q}{\left(n^{\prime}-x\right) z}-I\right\}_{z}\left(n^{\prime}-x\right) \int_{q}^{n} \frac{e-q}{I}= \\
& x p(x) f_{z}\left(n^{\prime}-x\right) \int_{q}^{n} z={ }_{z} 0
\end{aligned}
$$

$$
\begin{align*}
& \text { Bu!̣_ŋduu! } \tag{9で8Z}
\end{align*}
$$

әЈиәдəəУ

 （Lど8て）

$$
\cdot \infty>x>\infty-'_{z^{\circ \tau / z}(\mathrm{H}-x)-} \partial \frac{\mathbb{\psi Z} \wedge \rho}{\mathrm{L}}=(\mathrm{x})_{\mathcal{J}}
$$

：n＇－x Кq（0ع）u！x әәе⿱㇒冋дл s！op of әлеч

 （ $0 \varepsilon^{\circ} \cdot 8$ Z

$$
\cdot \infty>x>\infty-'_{z^{(\rho / x)^{\frac{\tau_{-}^{-}}{-}}}} \partial \frac{\mathscr{L Z}\urcorner \rho}{\mathrm{L}}=(\mathrm{x})_{\mathrm{J}}
$$

 se uo！̣ł

（8で8Z）

$$
\cdot \infty>x>\infty-\quad{ }_{i^{x \gamma-}} \partial \frac{\underline{y}}{\underline{\gamma}} \Lambda=(\mathrm{x})_{\mathrm{J}}
$$

（Lで8Z）

$$
n p \frac{\gamma / \tau}{z / L^{-} n} n_{-} \partial \int_{\infty}^{0} z=n p(n) \cdot \delta_{z^{\prime}(n) \xi_{i / \chi-}} \partial \int_{(\infty) \phi}^{(0) \phi} \tau=T
$$

$$
\begin{aligned}
& \frac{\gamma}{\boldsymbol{u}} \Lambda=\left(\frac{\tau}{\tau}\right) J \frac{\chi \rho}{\mathrm{~L}}= \\
& \mathrm{np}_{\mathrm{n}-\partial^{2} / \mathrm{I}^{-}} \mathrm{n} \int_{\infty}^{0} \frac{\gamma /}{\mathrm{L}}=
\end{aligned}
$$

$$
\cdot \frac{\mathrm{e}+\mathrm{q}}{\mathrm{e}-\mathrm{q}} \frac{\varepsilon /}{\mathrm{q}}=\mathrm{x}
$$

-(q јо әпгел

$$
\left.\begin{array}{ccc}
\mathfrak{q}>\mathrm{x}>\tau / \mathrm{q} & \text { £! } & { }_{\tau} \mathrm{q} /(\mathrm{x}-\mathrm{q}) \downarrow \tag{!!}\\
\tau / \mathrm{q}>\mathrm{x}>0 & \text { £! } & { }_{\tau} \mathrm{q} / \mathrm{x} \downarrow
\end{array}\right\}=(\mathrm{x}) \mp
$$

($\ddagger \vee \cdot 8 Z)$

($\varepsilon V^{\circ} \cdot 8 Z$)

$$
\text { sə!!du! }(x) \ddagger\left(N^{-x}\right)=(x) \mathscr{S} \text { ч }
$$

$$
\tau /(e-q)-q=(q) \phi^{\prime} e=\tau /(e-q)-W=(W) \phi \text { วsneวəg } e-n+W=z /(v-q)+n=(n) \mathcal{q}=x
$$

әлеч әм ‘иеәш эо ио!!!uч̣әр әчł К̆

$$
\begin{aligned}
& \operatorname{sxp}^{(e+x-W) f(e-x)} \int_{W}^{e}= \\
& n p(e+n-W) f(e-n) \int_{W}^{\mathrm{e}}= \\
& n p(e-n+W) f(e-n) \int_{N}^{e}=
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{xp}(x) \mp(N-x) \int_{W}^{p}-= \\
& \operatorname{np}(\mathrm{n})_{\mathcal{f}}(\mathrm{N}-\mathrm{n}) \int_{\mathrm{W}}^{\mathrm{e}}-= \\
& \operatorname{np}(\mathrm{n}) \mp(\mathrm{N}-\mathrm{n}) \int_{\mathrm{e}}^{\mathrm{N}}= \\
& \operatorname{np}\{\mathrm{L}-\}(\mathrm{n})_{f}(\mathrm{n}-\mathrm{W}) \int_{\mathrm{e}}^{\mathrm{N}}= \\
& \operatorname{np}(n) S(e+(n) S-W) \mathcal{S}\left(e-(n) S_{2}\right) \int_{W}^{e}= \\
& \operatorname{xp}(e+x-W) f(e-x) \int_{W}^{v}=\quad x p(x) f(N-x) \int_{q}^{w}
\end{aligned}
$$

($29 \cdot 8$)

(99•8z)

$$
\mathrm{zp}_{z^{-}}-\int_{\theta}^{0} \int_{\theta}^{0} \frac{y \rho}{z}=(\theta) \text { มə }
$$

$$
\left\{\mathrm{zp}_{\substack{z_{z}^{z}-\Omega}} \int_{\substack{-1(N-x)}}^{0} \frac{\mu \mu}{z}+\mathrm{L}\right\} \frac{\tau}{\mathrm{L}}=
$$

$$
\mathfrak{P p}_{z^{\partial z /} / z^{(x-))}-} \int_{\mathrm{x}}^{\mathrm{n}} \frac{\underline{\mu z / \rho}}{\mathrm{L}}+\frac{\tau}{\mathrm{L}}=(\mathrm{x})_{\mathrm{I}}
$$

(モq•8z)

(zq•8z)

$$
\left.\left.{ }^{\prime}\left[x-n^{\prime} z^{\prime} n^{\prime}\right]^{\prime} y\right) \nmid u_{I}=\left[n^{\prime} x\right]^{\prime} f\right) \neq u_{I}
$$

 $\left.\left\{\left(\left[q^{\prime} \mathrm{n}^{\prime}\right]^{\prime}\right\}\right) \neq \mathrm{u}_{\mathrm{I}}+\left(\left[\mathrm{n}^{\prime} \mathrm{x}\right]^{\prime} \mathrm{I}\right) \nmid \mathrm{u}_{\mathrm{I}}\right\}-\mathrm{I}=$

$$
\begin{aligned}
& \left(x-n^{\prime}\right) \mathrm{A}-\mathrm{I}= \\
& \left(\left[x-n^{\prime} Z^{\prime} \mathrm{e}\right]^{\prime} \mathrm{f}\right) \neq \mathrm{u}-\mathrm{I}=
\end{aligned}
$$

$$
\cdot x p\left\{x p\left(s^{\prime} x\right) d \int_{\infty}^{0}\right\} \frac{s p}{p}=x p\left\{\left(s^{\prime} x\right) d\right\} \frac{s e}{e} \int_{\infty}^{0}
$$

（0しつ・8て）

$$
\cdot \operatorname{xp}\left\{\left(s^{\prime} x\right) d\right\} \frac{s e^{0}}{e} \int_{\infty}^{0} s=\operatorname{xp}_{s / x-} \frac{\partial}{} \frac{z^{s}}{x} \int_{\infty}^{0} s=x_{s / x-} \partial \frac{s}{x} \int_{\infty}^{0}=n^{\prime}
$$

$$
\begin{equation*}
{ }_{s / x-} \partial \frac{z^{s}}{x}={ }_{\left(s^{\prime} x\right) v^{2}} \partial \frac{s \varrho}{\sigma \varrho}=\left\{\left(s^{\prime} x\right) v^{\partial}\right\} \frac{s \varrho}{\varrho}=\left\{\left(s^{\prime} x\right)_{d}\right\} \frac{s \varrho}{\varrho} \tag{6コ・8z}
\end{equation*}
$$

әлеч әм ‘(8ว)-(9ว) pue (כף) worf ‘snчL

$$
\begin{equation*}
\cdot \frac{z^{s}}{x}=\left({ }_{\tau^{-}} s-\right) x-=\left({ }_{L^{-}} s\right) \frac{s p}{p} x-=\left(\frac{s}{\tau}\right) \frac{s p}{p} x-=\left(\frac{s}{x}-\right) \frac{s e}{e}=\frac{s e}{v e} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\cdot \frac{s}{x}-=\left(s^{\prime} x\right) \mho \tag{L}
\end{equation*}
$$

$$
\begin{equation*}
\cdot_{\left(s^{\prime} x\right) v^{2}} \frac{\mathrm{~s} \varrho}{\sigma \varrho}=\left\{\left(s^{\prime} x\right) v^{\partial}\right\} \frac{\mathrm{s} \varrho}{\varrho} \tag{9コ・8z}
\end{equation*}
$$

әлеч

$$
\cdot_{(\mathrm{s}) v^{2}} \partial \frac{\mathrm{sp}}{\sigma p}=\left\{(\mathrm{s})_{v} \partial\right\} \frac{\mathrm{sp}}{\mathrm{p}}
$$

$$
\begin{equation*}
s_{s / x-} \partial=\left(s^{\prime} x\right)_{d} \tag{†つ・8乙}
\end{equation*}
$$

$$
\begin{equation*}
\cdot \operatorname{xp}_{s / x-} \partial \frac{s^{\prime}}{x} \int_{\infty}^{0}=n^{\prime} \tag{६ว•8乙}
\end{equation*}
$$

 $\cdot \mathrm{s}=\operatorname{xp}_{\mathrm{s} / \mathrm{X}-} \partial \int_{\infty}^{0}$
（しつ・8て）

$$
\begin{aligned}
& { }_{s / x-} \frac{s}{\mathrm{~L}}=(\mathrm{x})_{\mathrm{f}}
\end{aligned}
$$

$$
\begin{equation*}
\cdot \mathrm{I}=\frac{\mathrm{s}}{\mathrm{~s}}=\frac{\mathrm{n}}{\mathrm{~d}}=\mathrm{x} \tag{Izว‘४z}
\end{equation*}
$$

pue

$$
\begin{equation*}
s_{s / x-} \partial \frac{z^{s}}{x}=\left\{s / x-\text { \} } \frac{s e}{e}\right. \tag{LID•8Z}
\end{equation*}
$$

әлеч әм（6ว）worf fng •（GID）Su！̣s uo

$$
\cdot_{z} s=x p_{s / x_{-}} \partial x \int_{\infty}^{0}
$$

$$
\begin{equation*}
' x_{s / x-} \partial \frac{s}{x} \int_{\infty}^{0}=s \tag{モIว•8乙}
\end{equation*}
$$

（てI•）pue（と・）worـ
（とเว•8て）
（てIつ・8て）

$$
\left\{x_{s / x-} \partial \int_{\infty}^{0}\right\} \frac{s p}{p} s=\left\{x p\left(s^{\prime} x\right)_{d} \int_{\infty}^{0}\right\} \frac{s p}{p} s=n^{\prime}
$$

$$
\begin{align*}
& \cdot s z=x_{s / x-\partial} \frac{\tau^{s}}{z^{x}} \int_{\infty}^{0} \\
& \text { sə!̣duı (91つ) snપi } \tag{8Iつ・8Z}
\end{align*}
$$

$$
\begin{align*}
& \text { •9 } / \mathrm{L}=\mathrm{n} / \mathrm{O}=\mathrm{x} \tag{!!!}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{z} / \mathrm{q}=\mathrm{u}=\mathrm{n}^{\prime} \tag{!!}
\end{equation*}
$$

$$
\begin{align*}
& \cdot \frac{L \mathcal{L}}{\mathrm{~L}}=x \cdot \frac{L}{\mathrm{~L}}={ }_{2} \mathrm{O} \\
& \cdot \frac{\mathrm{G} \rho}{\mathrm{I}}=x \cdot \frac{\mathrm{G}}{\mathrm{~L}}={ }_{2} \mathrm{O} \tag{で8乙}
\end{align*}
$$

