（ $2 \cdot 6 Z)$

$$
{ }^{\prime}\left({ }^{0} \not 7\right)_{M}=\mathfrak{e}
$$

$$
\operatorname{np} \frac{\mathrm{n}}{\mathrm{~L}} \int_{K}^{\mathrm{p}} \frac{\gamma}{\mathrm{~L}}+\mathcal{\partial}=\mathrm{np} \frac{\mathrm{n} \chi}{\mathrm{~L}} \int_{\Lambda}^{\mathrm{e}}+\mathcal{\partial}=(K) \cap=\mathcal{F}
$$

$$
\begin{align*}
& \frac{\kappa \chi}{L}=\frac{\kappa p}{7 p} \\
& { }_{{ }_{L-}-}\left\{\frac{7 p}{K p}\right\}=\frac{K p}{\mathcal{F} p} \\
& \text { se (} \varepsilon \text {) әұ!ммәл иет әм оS }
\end{align*}
$$

（モ゚6乙）

$$
\cdot \kappa \chi=\frac{\not p}{K p}
$$

$$
(\mathfrak{f}) M(\mathfrak{7}) \mathrm{I}=(\mathfrak{7}), M
$$

 －usṭues．

			8¢でと	92	97
モ0ども	无	E6	\＆ 8^{8} 亿	LI	6ε
と9でも	IL	モL	L6I＇乙	6	OE
LZİも	Z9	09	98E＊L	モ	8I
8EL＇E	ても	$\varepsilon \subseteq$	0	I	9

（عI゙6Z）
sə！̣du！
 чร̊

（乙I‘6Z）

$$
\begin{aligned}
\cdot_{{ }_{\gamma \gamma-} \partial P} & =V \\
{ }_{\gamma \chi} \partial V=(\mathfrak{f}) M & =K
\end{aligned}
$$

ЧҰ!М
（LI‘6Z）
＇sрлом хәчłо иI
（01．6Z）

$$
(\mathrm{e} / \kappa) \mathrm{u} \frac{\chi}{\mathrm{~L}}+{ }^{0} \neq
$$

$$
\left\{(\mathrm{e}) \mathrm{u}_{\mathrm{I}}-(\Lambda) \mathrm{u}_{\mathrm{I}}\right\} \frac{\gamma}{\mathrm{L}}+{ }^{0} \boldsymbol{f}=
$$

$$
{ }_{1}^{\mathrm{p}}(\mathrm{n}) \mathrm{UT} \frac{\chi}{\mathrm{~L}}+{ }^{0} \mathfrak{F}=
$$

$$
\mathrm{np} \frac{\mathrm{n}}{\mathrm{~L}} \int_{\kappa}^{\mathrm{e}} \frac{\gamma}{\mathrm{~L}}+{ }^{0} \mathfrak{f}=\mathfrak{7}
$$

$$
0+\partial=n p \frac{\mathrm{n} \psi}{\mathrm{~L}} \int_{\mathrm{e}}^{\mathrm{e}}+\supset=(\mathrm{e}) \cap
$$

$$
\begin{aligned}
& 7 \chi+(\mathrm{V}) \mathrm{u}= \\
& \left.\left({ }_{x x} \partial\right) u_{I}+(\forall) u_{I}=\left({ }_{¥ x} \partial \forall\right) u_{I}=((\not))_{M}\right) u_{I}=(\Lambda) u_{I}
\end{aligned}
$$

（とで6て）

$$
\cdot\left(\frac{\{\Lambda->\rangle\} e}{K\{e->\}}\right) \mathrm{u}_{I} \frac{\gamma}{L}+{ }^{0} \mathfrak{z}=
$$

$$
\left\{\left(\frac{\mathrm{e}-\lambda_{\mathrm{I}}}{\mathrm{e}}\right) \mathrm{u}_{\mathrm{I}}-\left(\frac{\Lambda->\mathrm{I}}{K}\right) \mathrm{u}_{\mathrm{I}}\right\} \frac{\gamma}{\mathrm{L}}+{ }^{0} \mathfrak{z}=
$$

$$
{ }_{\mathrm{A}}^{\mathrm{p}}\left(\frac{\mathrm{n}-\gamma_{\mathrm{I}}}{\mathrm{n}}\right) \mathrm{u} \frac{\gamma}{\mathrm{~L}}+{ }^{0} \neq \mathfrak{F}
$$

$$
\begin{equation*}
\cdot \operatorname{np} \frac{(\mathrm{n}-\gg) \mathrm{n}}{>\mathrm{r}} \int_{\Lambda}^{\mathrm{e}} \frac{\gamma}{\mathrm{~L}}+{ }^{0} \mathfrak{f}=(K) \cap=\mathfrak{f} \tag{Lで6Z}
\end{equation*}
$$

（0で6Z）
$\left(6 L^{\circ} 6 Z\right)$

$$
\operatorname{np} \frac{(\mathrm{n}-\lambda) \mathrm{n} \chi}{>\mathrm{v}} \int_{\Lambda}^{\mathrm{e}}+\partial=(K) \cap=7
$$

$$
\frac{(\Lambda-\lambda) \mathcal{}(\Lambda}{\gamma}=\frac{\kappa p}{\not p}
$$

$$
\begin{equation*}
\left(\frac{\lambda}{K}-L\right) \kappa \chi=\frac{\eta p}{K p} \tag{81‘6乙}
\end{equation*}
$$

 （ LI•6Z）

$$
{ }^{\prime} \gg\left({ }^{0} \mathfrak{f}\right)_{M}
$$

 $\left(\frac{\lambda}{(\mathfrak{f}) M}-I\right) \gamma=(7), I$

 әлns！ （G1＂6て）

$$
{ }_{7 \mp \angle 990^{\circ}} \mathrm{\partial 9GZ} \cdot \mathrm{I}=(\mathfrak{7})_{M}
$$

$$
\cdot \nexists \angle \angle 90 \cdot 0+6 \angle Z Z \cdot 0=(\Lambda) u_{I}
$$

$$
\begin{aligned}
& { }_{\left({ }^{\left({ }_{q}-7\right) \chi}\right.}{ }^{\partial}=\frac{\{\Lambda-Y\} e}{K\{e-Y\}}
\end{aligned}
$$

（ $\varepsilon \varepsilon * 6 z)$

$$
\left\{\frac{\mathfrak{q}}{x p}\right\}=\frac{x p}{\mathcal{H} p}
$$

 （ $\angle \varepsilon \cdot 6 乙$ ）
（Lع＊ $6 乙)$

$$
\begin{aligned}
& \cdot \frac{\left.{ }^{\nu}\right\rangle}{{ }^{\nu} \gamma}=g \\
& \frac{x}{K} g=\left\{\frac{\not p}{x p}\right\} \frac{\not p}{\kappa p}
\end{aligned}
$$

 （ $0 \varepsilon \cdot 6$ Z）

$$
\begin{equation*}
\text { (} \mathfrak{f} \mathfrak{D}^{K^{z} x_{1}}=\frac{\mathfrak{q p}}{K p} \tag{*}
\end{equation*}
$$

әләчм
pue
（ 6 で 6 と）

$$
\text { (} 7 \text {) } \partial^{x^{L}>1}=\frac{f p}{x p}
$$

－（cz）pue（8L）wow

$$
\begin{align*}
& { }^{\prime} \mathrm{e}=\left({ }^{0} \mathfrak{7}\right) M
\end{align*}
$$

（ぁで6て）

（07＊ 6 Z
$\left(6 \varepsilon^{\circ} 6 Z\right)$

$$
{ }_{x}^{\mathrm{p}}(\mathrm{n}) \mathrm{u} I d+\mathcal{O}=\mathrm{np} \frac{\mathrm{n}}{\mathrm{~L}} \int_{\mathrm{x}}^{\mathrm{e}} \mathrm{~d}+\mathcal{O}=\mathrm{z}
$$

（ $8 \varepsilon^{\circ} 6$ 亿）

$$
\cdot \frac{x}{g}=\frac{x p}{z p}
$$

（ 2ε と 6 ）

$$
\frac{x p}{\kappa p} \frac{\Lambda}{I}=\frac{x p}{K p}\left\{(\Lambda) u_{I}\right\} \frac{\Lambda p}{p}=\frac{x p}{K p} \frac{\Lambda p}{z p}=\frac{x p}{z p}
$$

$(К) \mathrm{u}_{\mathrm{I}}=\mathrm{z}$
 ＇sMoIIOf se pəəวолd

$$
\frac{x}{K} y=\frac{x p}{K p}
$$

（モど6Z）

$$
\frac{\ddot{x}}{\bar{K}} y=\frac{x p}{7 p} \frac{q p}{K p}
$$

$$
\begin{aligned}
& \cdot{ }_{\mathrm{g}} \mathrm{x} \frac{\mathrm{~d}^{\mathrm{e}}}{(\mathrm{O}) \mathrm{dx} \partial}= \\
& \left.\left({ }_{g}\{(\mathrm{e} / \mathrm{x}\}) \mathrm{U}\right) \mathrm{dxə}(\supset) \mathrm{dxə}=\left({ }_{\mathrm{g}}(\mathrm{e} / \mathrm{x}\}\right) \mathrm{uI}+\supset\right) \mathrm{dxə}=К
\end{aligned}
$$

$$
\begin{align*}
& \cdot\left(\frac{\mathrm{e}}{\mathrm{x}}\right) \mathrm{uI}_{\mathrm{I}}+\partial=\left(\frac{\mathrm{e}}{\mathrm{x}}\right) \mathrm{uI}_{\mathrm{I}}+\mathcal{O}=(К) \mathrm{u}_{\mathrm{I}} \tag{0才゙6Z}
\end{align*}
$$

$$
\begin{aligned}
& { }^{\prime}\left\{(\mathrm{e}) \mathrm{u}_{\mathrm{I}}-(\mathrm{x}) \mathrm{u}_{\mathrm{I}}\right\} \mathrm{d}+\mathrm{D}=
\end{aligned}
$$

 $\prime(\forall\{\underline{\varepsilon} \wedge \mp \tau\})$ ur $\frac{\gamma}{\mathrm{L}}=7$
 $\cdot\left\{\left(\frac{>}{(\mathfrak{f}) M}-I\right) \frac{>}{(\mathfrak{f}) M 9}-I\right\}\left\{\frac{>}{(\mathfrak{f}) M}-I\right\}(\mathfrak{f}) M_{\varepsilon} \gamma=(\mathfrak{f})_{\ldots} M$

$$
\cdot(\angle 乙)-(\succsim 乙) \text { Ку!̣ә } \Lambda \quad \text { โ6乙 }
$$

＇ε әs！̣лахя шощ

$$
\cdot \frac{{ }_{* \chi-} \partial V+I}{I-{ }_{* *-} \partial V}=\frac{I+{ }_{* * Y-} \partial V}{Z}-I=(* \neq) M \frac{X}{\tau}-I
$$

$$
\frac{{ }_{* * *-} \partial V+I}{* *-\partial V}=\frac{I+{ }_{* * \gamma-} \partial V}{I}-I=\frac{Y I}{(* 7) M}-I
$$

pue ‘əโq！̣sodu！

$$
\cdot\left(\frac{>}{(\mathfrak{f}) M}-I\right)(\mathfrak{f}) M x=(\mathfrak{f}), M
$$

$$
\begin{aligned}
& '\left\{\frac{X}{(\mathfrak{f}) M Z}-I\right\}\left(\frac{X}{(\mathfrak{f}) M}-I\right)(\mathfrak{f}) M_{z} \chi= \\
& \left\{\frac{\lambda}{(\mathfrak{f}) M Z}-I\right\}(\mathcal{f}), M \chi= \\
& \left\{(\mathfrak{f}), M(\mathfrak{7}) M \frac{X}{L}-\left(\frac{X}{(\mathfrak{f}) M}-I\right) \cdot(\mathfrak{f}), M\right\} v= \\
& \left\{\left((\mathfrak{f}), M \frac{X}{L}-0\right) \cdot(\mathfrak{f}) M+\left(\frac{X}{(\mathfrak{f}) M}-I\right) \cdot(\mathfrak{f}), M\right\} \chi=
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(\frac{\lambda}{(\mathfrak{f}) M}-I\right)(\mathfrak{f}) M\right\} \frac{\mathfrak{z p}}{p} \tau=\{(\mathfrak{z}), M\} \frac{\mathfrak{p}}{p}=(\mathfrak{f}){ }_{\mu} M
\end{aligned}
$$

