$$
\cdot((x) \tau) \mathrm{u}_{I}=(x) \bar{\partial}
$$

$$
\text { (} x \text { әпгел реч дәұәшехед әчұ деч }
$$

$$
\cdot{ }_{8 \tau}\left(p_{0 L I}-\frac{\tau}{L}-L\right)_{\varepsilon_{L}}\left(p_{0 L I}-\frac{\tau}{L}\right)=(x) T
$$

иәчъ ‘әшозұпо рәлдәяqо

(「•І)

$$
{ }_{z n-} \partial \frac{\tau}{L}=d
$$

 -(ә]dures pue \{әрои uәәмұәq of pasoddo

 ио s ләұәишлед Кие әәиәН •Кұ!

$$
\begin{equation*}
\left.\left({ }^{(x}\right)\right)_{\mathrm{f}} \coprod_{N}^{\mathrm{I}=\mathrm{y}}=\mathrm{T} \tag{0ז‘‘£}
\end{equation*}
$$

($8 \cdot I \varepsilon$)
 os pue '(ε_{x})ғЧ Кq рә!ןdب̣ן

$$
\frac{Z}{Y}+{ }^{y} x>x>\frac{Z}{Y}-{ }^{y} x
$$

$$
\cdot(9 Z / I \hbar) U \frac{0 \tau}{\tau}=\underset{\sim}{L}
$$

$$
\begin{equation*}
0 \varepsilon \tau-\frac{p_{01-}-\frac{\tau}{\tau}-\mathrm{I}}{n_{0 L}-\partial \Omega}=(x), \check{\mathrm{O}} \tag{*}
\end{equation*}
$$

8u!̣| ${ }^{\text {dum! }}$
($\ddagger \times 1$)

0	\ll
8	9
てI	G
GE	モ
モL	ε
LOI	乙
てIE	I
入כNGกØ̈ษ̇	$\begin{gathered} \text { HLVAG } \\ \text { OO yVEX } \end{gathered}$

－ueәu ә［durs әчł рәృ［еว s！
（ $\mathrm{m} \cdot \mathrm{I} \cdot \mathrm{L}$ ）
（ $\varepsilon \cdot\llcorner\Sigma$ ）
（zI＇te）

$$
{ }^{x} x \underset{N}{\frac{1}{=}=x} \frac{N}{L}=\underline{x}
$$

әЈӘчМ
$\prime\left\{\frac{s}{\underline{x}}+(s) u_{I}\right\} N-=$ ${ }^{4} \times{\underset{N}{\mathrm{~N}}}_{\mathrm{L}-\mathrm{S}}^{\mathrm{I}=\mathrm{x}}-(\mathrm{s}) \mathrm{u}_{\mathrm{I}} \mathrm{N}-=$

$$
\left\{{ }^{N} x+T+{ }^{\varepsilon} x+{ }^{\tau} x+{ }^{\mathrm{I}} \mathrm{x}\right\} \frac{\mathrm{s}}{\mathrm{~L}}-(\mathrm{s}) \mathrm{u}_{\mathrm{I}} \mathrm{~N}-=
$$

$$
{ }_{s / N_{X-}} \partial T_{s / \varepsilon_{X-}} \partial \cdot \cdot_{s / \tau_{X}-} \partial \cdot{ }_{s / I_{X}} \partial \frac{N^{2}}{I}=
$$

（LI＇LE）

$$
s_{s / x-} \partial \frac{s}{\mathrm{~L}}=(\mathrm{x})_{\mathrm{J}}
$$

(0Z'LE)

(6I'IE)

S! рооч!!ə〉!! әчł

 ($8 I^{\circ} \mathrm{L}$)

$$
(s-\underline{x}) \frac{z^{s}}{N}=\left\{\frac{z^{s}}{\underline{x}}-\frac{s}{\mathrm{~s}}\right\} N-=(\mathrm{s}), \nearrow
$$

(91.LE)

$$
\frac{\mathrm{s}}{\varepsilon I \angle}-(\mathrm{s}) \mathrm{u}_{\mathrm{I}} \mathrm{SES}-=(\mathrm{s}) \widetilde{\mathrm{O}}
$$

(GI'LE)

$$
80 \varepsilon \cdot I=\frac{G \mp G}{\varepsilon I L}=
$$

（9でIL）

 （č＇LE）

$$
z^{s / z^{x-}} \frac{{ }^{\mathrm{o}} \mathrm{~S}}{\mathrm{~S}} \mathrm{xD}=(\mathrm{x}) \mathrm{f}
$$

рәнор

（モでIC）

$$
{ }_{2}^{x} \times \prod_{z \tau}^{\mathrm{x}=\gamma} \frac{\mathrm{N}}{\mathrm{~L}}{ }^{l}=s
$$

（とでİ）

$\cdot \frac{z^{s}}{\varpi I}-(\mathrm{s})$ UI五 $-8 \mp 970 \mp=(\mathrm{s})$ Ø

$$
{ }^{\boldsymbol{Z} I}={ }_{\tau} \mathcal{S} L^{\prime} \mathrm{I} \times I+{ }_{\tau} \mathcal{S}^{\circ} \mathrm{I} \times I+{ }_{\tau} \mathcal{S} Z^{\prime} \mathrm{I} \times I+{ }_{z} 0^{\circ} \mathrm{I} \times \mathcal{E}
$$

（LZ＇LE）

久РNヨПОВУА
uw s ci．
uuv \mathfrak{c}° I
unu sZ＇I
ưU 0•I
SOIGVY
ε
L
τ
τ
久วNAПØ̈ษี
uw sLio uuv c．0 $^{\circ}$
ư SLE＊ 0
uu sで0
SOIGVy

Kqn

($8 Z^{\circ} \mathrm{I}$)

 әчң '乙 әлns!!

 -(0Z)-(6L) јо әәег】 u!
($\left.\angle Z^{\prime} L \varepsilon\right)$
（モع•โモ）

$$
\frac{s}{\underline{x}} N-(s) u_{I} N^{\rho}-((0) J) u_{I N}-\left({ }^{N} x T^{\varepsilon} x^{\tau} x^{I} x\right) u_{I}([-\nu)=
$$

$$
s_{s / \underline{x}_{N^{-}} \partial{ }_{N^{2-}} S_{N^{-}}\{(0) I\}_{I-0}\left(N_{X} T^{\varepsilon} x^{\tau} x^{I} x\right)=}
$$

рооч！！ə＞！！pue
（ $\left.\swarrow \varepsilon^{*} โ \varepsilon\right)$

$$
\frac{(0) \amalg_{0} s}{s / x_{-} \partial_{\mathrm{L}-\mathrm{o}} \mathrm{x}}=(\mathrm{x}) \mathrm{J}
$$

Кq рәu！̣әр •ғр•d

$$
9 \text { ә.ns!⿺𠃊 u! pəusep uмous s! }
$$

（ $0 \varepsilon^{\circ} \cdot \Sigma$ ）

I	$96 ¢ 9^{\circ} 0$	ε	LL8で0－
I	SSO70	L	LE69 ${ }^{-}$
I	Lعとで0	研	8086 ${ }^{-}$
ε	0	$乙$	ع98E ${ }^{\text {［ }}$
久วNAПӦษН	（S⿵IGVU）${ }_{\text {I }}$	久ОNGПӦサА	（SחIGVY）uI

（ $6 \varepsilon^{\circ} \mathrm{IE}$ ）

ло $\mathrm{s}=\mathrm{s}$ pue 2

 （ $8 \varepsilon^{*} \cdot \mathrm{IE}$ ）

（ $\left.\angle \varepsilon^{*} \cdot \mathrm{IE}\right)$

 （9ع＇LE）

$$
\therefore x \times \underset{N}{\underset{N}{\mathrm{~L}}=\frac{\mathrm{N}}{\mathrm{~J}}} \frac{0}{\mathrm{x}}=(0) M
$$

$$
\begin{aligned}
& \{s v-\underline{x}\} \frac{z^{s}}{N}= \\
& \left\{z_{-} s-\right\} \underline{x} N-\frac{s}{L} N-= \\
& \left.\left\{{ }_{\text {L- }}\right\}\right\} \frac{\mathrm{se}}{e} \underline{x}_{N}-\{(\mathrm{s}) \mathrm{uI}\} \frac{\mathrm{s} \varrho}{e} \mathrm{~N}^{2}-=
\end{aligned}
$$

 Кq＇L әлns！
 әлns！

 （q）9 әлns！！
（Gt＇LE）

$$
\left\{(x) u_{I}\right\} \frac{x p}{p}\left((x) u_{I}\right)^{\mathcal{B}}=(x)_{J}
$$

（无 $1 \subset$ ）

Кq иәл！̣̊

（ $\varepsilon \mathrm{t}^{\circ} \cdot \mathrm{L}$ ）

$$
\angle Z G \cdot 0={ }_{\tau}\left(0 I G \cdot 0+\left({ }^{y} x\right) u_{I}\right) \frac{\mathrm{I}=\mathrm{x}}{\bar{Z}} \frac{\tau \tau}{\mathrm{~L}}{ }^{\prime}=S
$$

spiəب̣ иоџ̣е

（で・LE）

（Lซ＇IE）

$$
\begin{aligned}
& { }_{z}\left(\underline{n}-{ }^{x} n\right) \underset{N}{\underset{N}{I}=x} \frac{N}{L}={ }_{i} S
\end{aligned}
$$

әэие！̣ел әјdues pue
（0モ・IE）

$$
\prime\left\{\left(\frac{z \wedge S}{\underline{n}-(x) u \underline{I}}\right) \nLeftarrow \partial+\mathrm{L}\right\} \frac{\tau}{\mathrm{z}}=K
$$

-7sə88ns p[nom uo!̣!̣qu! se 'LI/EL = d s! ofnq

(GV•IE)

$$
\left\{\frac{z^{\circ} \mathrm{Z}}{z^{\mathrm{s}}}-\left(\frac{\mathscr{\mu Z} \wedge \rho}{\mathrm{I}}\right) \mathrm{uI}_{\mathrm{I}}\right\} \mathrm{N}=\left(\mathrm{o}^{\prime} \underline{x}\right) \widetilde{\mathrm{O}}
$$

s! unuṃxeu әчł эо әпโел иәчł
($\ddagger V^{\bullet} I \varepsilon$)

$$
{ }_{z}\left(\underline{x}-{ }^{y} x\right) \stackrel{I=x}{\frac{I}{N}} \frac{N}{L}={ }_{z} s
$$

Кq әчң рәиџəәр

$\left(\varepsilon V^{\cdot} \cdot \varepsilon\right)$

әлеч әм '(0г) Su!̣s uO
(LV•IE)

$$
\begin{aligned}
& '\{n-\underline{x}\} \frac{z^{0}}{N}=
\end{aligned}
$$

$$
\cdot_{x_{8 I F} \cdot 96 L-} \partial_{\varepsilon 0 L 0 \angle \tau} x_{9 \varepsilon} 0 L \times Z \varepsilon 90 \angle \cdot I=(x)_{J}
$$

($8 V^{\cdot} \cdot I \varepsilon$)

$$
\cdot_{2}\left(\underline{x}-{ }^{\gamma} x\right) \frac{\underline{L}=x}{N} \frac{N}{L}{ }^{l}=2
$$

pue
($\angle V^{\cdot} \cdot I \varepsilon$)

$$
{ }^{x} \times \underset{N}{\mathrm{~L}=\mathrm{y}} \frac{\mathrm{~N}}{\mathrm{~L}}=\underset{v}{\mathrm{n}}
$$

(9V•IE)

$$
\begin{aligned}
& \cdot\left\{{ }_{z} \rho-{ }_{z} \mathrm{~s}\right\} \frac{\varepsilon^{\rho}}{\mathrm{N}}= \\
& \left\{\left\{{ }_{\varepsilon-}{ }^{\circ} \mathrm{oz}-\right\} \frac{\mathrm{z}}{\tau^{\mathrm{s}}}-\frac{\rho}{\mathrm{L}}-\right\} \mathrm{N}= \\
& \left\{\left\{z_{-} \rho\right\} \frac{\rho e}{e} \frac{z}{{ }_{z} s}-\left\{\left(\frac{\mu z / \rho}{I}\right) u_{I}\right\} \frac{\rho e}{e}\right\} N=
\end{aligned}
$$

