MAP5217 Calculus of Variations Spring 2017

Second Assignment

Due at 1:25 p.m. on Monday, March 6, 2017

1. Use the corner conditions to carefully deduce a unique admissible broken extremal
for the problem of minimizing
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subject to y(0) = 0 and y(2) = 1. [10]
2. For the problem of minimizing
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subject to y(0) = 0 and y(b) = sinh(b), find all b > 0 such that an admissible extremal
satisfies both Legendre’s and Jacobi’s necessary condition. [10]
3. For the problem of minimizing
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subject to z(0) = 1 and z(2) = 3:
(a) Find the unique admissible extremal.
(b) Show that it satisfies Weierstrass’s necessary condition directly, that is, use
(10.24)-(10.25), not (10.27). [10]
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subject to (0) = 1 and z(2) = 3:
(a) Find the unique admissible extremal.
(b) Show that it satisfies Weierstrass’s necessary condition directly, that is, use
(10.24)-(10.25), not (10.27). [10]

5. For the problem of minimizing

4. For the problem of minimizing
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subject to y(a) = avand y(b) = 3,
(a) Find a condition that determines when a simple broken extremal exists.
(b) Verify that the condition holds whena = 0 = o, b = 2and 8 = 1. Find all
simple broken extremals for this particular case. [10]

[Perfect score: 5 x 10 = 50]

No credit for simply knowing the answer already from Assignment 1.





