
3 Fights Among Ants and Other Social Animals

The Lanchestrian models in Lecture 2 assume that the death rate suffered by a fighting
group is not directly affected by the fighting abilities of its own members—the parameter
representing a group’s fighting ability within a group does not appear in the equation for
that group’s own death rate. Rather, fighting abilities affect death rates indirectly because
powerful fighters more rapidly erode the size of the opposing group, reducing the killing
power directed toward themselves. The rationale for this assumption is that Lanchester
(1916) sought to describe the effects of weapons, such as guns or artillery, that are used
to fire on opponents. Such weapons are effective offensively but are not used directly in
defense because they rarely intercept incoming projectiles.1 Yet in fights among animals—
and in hand-to-hand human combat—defense is both direct and indirect. Opponents
grapple with one another and kill by biting, stinging, striking, dispersing chemicals or
rupturing the opponent’s skin or exoskeleton. That animals better able to inflict injury or
death on opponents are also better able to defend themselves from injury seems highly
likely. Increased size, strength, weaponry, and skill serve both functions.

Lanchester’s square law also assumes that death rates for each group do not depend
directly on the number of individuals within the group. Again, the rationale is apparent
if one considers human armies firing projectiles. A force of 10 archers may cause as many
casualties per minute when they face 100 opponents as when they face 40, as long as
they can acquire targets at the same rate. In contrast, among groups of animals for which
fighting requires close contact, death rates should depend on the size of both groups,
because both variables affect the rate of encounter.

Accordingly, to model fights among social animals, Adams and Mesterton-Gibbons
(2003) developed a more general model, allowing a group’s per capita death rate or attri-
tion rate to be affected by both its own size and its fighting abilities:
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where ζ(m,n,αn,αm) may depend in any way on the sizes and fighting abilities of the
two groups. Because αλ
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θ−1 dn, (3.1) is readily integrated to yield the state

1In his own words: “But the defense of modern arms is indirect; tersely, the enemy is prevented from
killing you by your killing him first, and the fighting is essentially collective” (Lanchester, 1956, p. 2139).
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which is more general than (2.3) or (2.13). Lanchester’s models both correspond to

ζ(m,n,αn,αm) = αnαmmn (3.3)

with λ = 1, but θ = 1 yields his linear law whereas θ = 2 yields his square law. The
alternative attritional model (2.23) corresponds to

ζ(m,n,αn,αm) = αnαmmin(m,n) (3.4)

with λ = θ = 1. Regardless of whether the model yielding the linear law is (2.11) or (2.23),
in either case we have λ = θ = 1, and so the expression on the left-hand side of (3.2a) is
simply the ratio of the cumulative number of deaths in Group 1 to the cumulative number
of deaths in Group 2, while the expression on the right-hand side is the ratio of individual
fighting abilities.

Although in principle ζ is totally arbitrary, in practice ζ(m,n,αn,αm) = αnαmmn is a
perfectly natural choice (yielding both of Lanchester’s models). Substituting from (3.3)
into (3.1) and rearranging now yields
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This arrangement helps clarify that λ− 1 captures the dependence of a group’s mortality
rate on the fighting abilities of its own members, and that 1 − θ captures the dependence
on the group’s own size. If λ > 1, then the death rate for each group is a decreasing
function of the fighting abilities of its members; and if, in particular, λ = 2, then each
group’s death rate is affected as much by its own members’ fighting abilities as by its
enemy’s. When θ < 2, each group’s death rate depends directly on its own numbers to
some degree; and if, in particular, θ = 1, then the sizes of both groups have equal effects.

In these more general circumstances, Group 1 has greater collective fighting ability if
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because then (3.2b) implies αλ
n n

θ < αλ
mmθ and (2.7) follows from (3.5) in the usual way.

Thus, the relative importance of group size and individual fighting ability depends on
the values of θ and λ, with Group 1 winning when
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The green curves in Figure 3.1 illustrate the advantage in individual fighting ability that
would be needed to overcome an opponent’s advantage in numbers for different values
of θ and λ. It now becomes possible that the fighting strengths of animal groups are more
sensitive to individual abilities than to numbers even when group attacks on individuals
are common.

The model producing Lanchester’s square law assumes that the mortality rate of a
fighting group increases without limit as the size of the opposing force rises. This is un-
likely to be true for animals that grapple directly with one another. Animals may be better
able to kill opponents when they attack in pairs rather than singly, but if the numerical
advantage continues to rise, then there may be diminishing returns to the addition of the
third, fourth, or tenth individual to the group attacking a single foe.

We can modify (3.6) for diminishing returns to increasing numerical advantage by
substituting g(n/m) for m1−θ n, where g increases but decelerates, that is, g′ > 0, g′′ < 0.
We obtain
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with F defined by
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Note that F is decreasing and therefore invertible, and that m = cn is a solution to (3.10)
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defines a separatrix in the n-m plane between solution curves that approach n = 0 (so
that Group 1 wins) and those that approach m = 0 (so that Group 2 wins), as illustrated
by Figure 3.2. In other words, Group 1 wins if
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Figure 3.1: The advantage αm/αn in individual fighting ability that a group must have
to overcome the initial numerical advantage n0/m0 of the opposing group. Each curve
shows, for a given attrition model, the ratios of fighting abilities and numbers of individ-
uals for which the two groups will have equal strengths, as measured by per capita rates
of mortality or ability to win fully escalated contests. For each model, in the region above
the curve, Group 1 (with individual fighting ability αm and initial size m0) will win; and
in the region below the curve, Group 2 (with individual fighting ability αn and initial size
n0) will win. (a) Lanchester’s square law; (b) Michaelis-Menten model, λ = 1, A = 3; (c)
Lanchester’s linear law; (d) Michaelis-Menten model, λ = 2, A = 6; (e) Michaelis-Menten
model, λ = 2, A = 3; (f) modified Lanchester model, (3.6) with θ = 1, λ = 2. The green
curves are based on (3.8), the red curves on (3.20).
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Figure 3.2: Division of n-m plane into initial size pairs from which Group 1 wins (light
shading) and Group 2 wins (dark shading).
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whereas Group 2 wins if m0 < F−1(αλ
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n)n0 or (3.14) is reversed.

Suppose, for example, that we take

g(r) = r1−p (3.15)

where 0 < p < 1, so that F (r) = r2p−2. Then (3.13) implies that Group 1 wins if
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(reducing to the case of Lanchester’s square law for λ = 1 in the limit as p → 0).
In practice, however, we expect that returns to increasing numerical advantage are not

only diminishing but also bounded, or g(∞) < ∞. Thus a better choice for g than (3.15)
is surely the Michaelis-Menten form
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for which
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by (3.11); note that g(r) rises to an asymptotic value of K, reaching half this value when
r = A. Then (3.13)–(3.14) imply that Group 1 wins if
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The red curves in Figure 3.1 illustrate (3.20) for different values of λ and A.
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Lanchestrian models predict the relative impact of numbers and of individual killing
power on the collective fighting ability of a group and thus provide a means to link as-
sumptions about the mechanisms of fighting to predictions about the patterns of casual-
ties accruing to each group. As briefly mentioned at the end of Lecture 2, early applica-
tions of this body of theory to social animals (Franks and Partridge, 1993, 1994) identified
a key difference between two types of fights. In the first, members of one group can con-
centrate attacks on opponents, as assumed by Lanchester’s first model. In the second,
opponents engage in a series of one-on-one duels, as in the second of the two linear-law
models we described in Lecture 2. According to these models, group strength is dispro-
portionately sensitive to numbers in the first type of fight, but not in the second.

Our modified Lanchestrian models show a wider range of possible attrition patterns
for the same types of fights (Figure 3.1). We predict that the importance of group size
relative to individual fighting ability is most often lower for social animals than for the
human armies envisioned by Lanchester, because Lanchester’s models assume that death
rates during battles are not affected by a group’s own individual strengths. The relative
importance of group size and individual fighting ability depends on the values of λ and θ.
If increased strength and weaponry directly improve an animal’s ability to defend itself,
as well as to kill opponents, then λ will exceed the value of 1 assumed by Lanchester’s
models. If a group’s size affects its own rate of mortality, then θ will be smaller than
the value of 2 assumed for the square law. Furthermore, if there are diminishing returns
for bringing more individuals into attacks of many against one, then the importance of
numerical advantage is reduced. Any of these properties of group fights will diminish
the importance of group size relative to individual prowess; indeed, group strength may
be more sensitive to individual abilities than to numbers (Figure 3.1, curves e and f).
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