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The classical equations of water waves are reformulated as a system of two equations,
one of which is an explicit non-local equation, for the wave height and for the
velocity potential evaluated on the free surface. Evaluation of the velocity potential
as a function of the depth is not required in order to calculate the wave height and the
velocity potential on the free surface. The non-local system yields integral relations
related to mass and centre of mass, and is shown to reduce to known asymptotic
limits in shallow and deep water. Included in these asymptotic reductions are the
Boussinesq, Benney–Luke and nonlinear Schrödinger equations. Two-dimensional
lumps with sufficient surface tension are obtained numerically. The extension of this
non-local formulation to the case of a variable bottom is also presented.

1. Introduction
The study of surface water waves is of wide interest in physics and mathematics.

There have been numerous important developments that date back to the time of
Stokes and his contemporaries in the nineteenth century. The literature is extensive
and in addition to research papers and memoirs there are many books which deal
with this subject.

One of the major difficulties in the study of water waves is the determination of the
free surface, which appears as an unknown in the basic formulation of the problem.
For two dimensional water waves, where the free surface evolves as a function of one
space dimension and time, there are various techniques which can be used to eliminate
the vertical coordinate and to reduce the problem to the evaluation of the motion
of the wave height and velocity potential on the free surface. Effective methods used
in the two dimensional water wave problem include conformal mapping and singular
integral equations which make use of complex analytic techniques (see e.g. Longuet-
Higgins & Cokelet 1976; Fornberg 1980; Dold 1992; Zakharov, Dyachenko &
Vasilyevl 2002). For the three dimensional problem, where the free surface evolves as
a function of two space dimensions and time, the situation is more difficult and one
loses the possibility of employing complex analysis.

Zakharov (1968) showed that the wave height η and velocity potential φ evaluated
on the free surface are canonically conjugate variables and formulated the water wave
equations as a Hamiltonian system. Craig & Sulem (1993) employed these variables
and introduced an elegant Dirichlet–Neumann operator G(η) associated with the
velocity potential, which eliminated the vertical coordinate from the formulation.
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The operator G(η) is obtained as a series, which is valid for small η. This formu-
lation was used in Craig & Groves (1994) to find small-amplitude/long-wave
approximations including the Boussinesq, Korteweg–deVries (KdV) and Kadomtsev–
Petviashvili (KP) equations. In Craig & Nicholls (2000) this formulation was
used to prove the existence of travelling periodic water waves. The Dirichlet–
Neumann operator methodology, which employs high-order series approximations
to a modified version of G, was also employed in Bateman, Swan & Taylor (2001)
and interesting computational investigations were carried out. A collection of some
recent mathematical developments in water waves can be found in Craig et al.
(2001).

One of the authors has recently introduced a general approach for studying
boundary value problems for linear and for integrable nonlinear PDEs (see Fokas
2000). A crucial role in this approach is played by a non-local equation, called the
global relation in Fokas (2000), as well as by the equations obtained from the global
relation using certain invariant transformations. The analysis of these equations yields
an explicit Dirichlet to Neumann map. The employment of the relevant global relation
(equation (1.10)) as well as of the proper invariant transformations (k → −k), yields
the basic non-local equation formulated in this paper.

In this study a new explicit non-local formulation of water waves for both 1+1
and 2+1 dimensions is presented. The original equations with unknown boundary
conditions are replaced by an integro-differential equation and a nonlinear partial
differential equation, both of which are formulated in a known domain. The vertical
coordinate is removed from the determining equations. These two equations can be
used to determine the wave height and the velocity potential on the free surface.
From this system well-known asymptotic equations, in both shallow and deep water
with surface tension included, are obtained and agree in the shallow water limit with
the results in Craig & Groves (1994). Furthermore, computational techniques are
developed which provide a framework for performing fully nonlinear water wave
simulations.

The non-local equation satisfying the Laplace equation, the kinematic and the
bottom boundary conditions is found to satisfy the following integral equation in
2+1 dimensions (see § 1.1):∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

ik1x1+ik2x2

{
iηt cosh[k(η + h)] + (k · ∇q)

sinh [k(η + h)]

k

}
= 0,

k1, k2 real, (I)

where η = η(x1, x2, t) is the wave height, q =φ(x1, x2, η, t) is the velocity potential

on the surface, h is the unperturbed fluid depth, k =
√

k2
1 + k2

2 and k = (k1, k2) are
‘Fourier-like’ parameters.

In 1+1 dimensions the non-local equation (I) reduces to the convenient form∫ ∞

−∞
dxeikx {iηt cosh k[η + h] + qx sinh k[η + h]} = 0, k real. (I′)

Since equations (I), (I′) are valid for all k1, k2 real and k real respectively, these
equations provide an explicit integral equation formulation of the Dirichlet to
Neumann map which represent the summation of the series analysed in Craig &
Sulem (1993). We stress the explicit, spectral and relatively simple form of the free
surface equation which is helpful in calculations (e.g. see §§ 2, 5–7).
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In terms of the variables η and q , the dynamic boundary condition takes the form
(see § 1.1)

qt +
1

2
|∇q|2 + gη − (ηt + ∇q · ∇η)2

2(1 + |∇η|2) =
σ

ρ
∇ ·
(

∇η√
1 + |∇η|2

)
(II)

where g, σ, ρ denote gravity, surface tension and density respectively. Equations (I)
and (II) (or equations (I′) and (II)) are the two equations that characterize two plus
one (or one plus one) dimensional water waves in this formulation.

Some of the results in this paper are the following:
(i) Extensions of the above free surface equations (I), (I′) to the case of varying

depth are obtained. Invariance properties related to mass and centre of mass as well
as a number of interesting integral relations, including virial-like formulae, are derived
using this formulation.

(ii) Two-plus-one-dimensional Boussinesq type systems and the two-plus-one-
dimensional Benney–Luke type (Benney & Luke 1964) equation extended to include
surface tension are obtained. The Benney–Luke equation reduces to the KP
equation for unidirectional waves. The classical one-plus-one-dimensional equations of
Boussinesq (Boussinesq 1877) and of Korteweg–deVries (KdV) (Korteweg & de Vries
1895) in shallow water are obtained as special cases.

(iii) The one-plus-one-dimensional nonlinear Schrödinger equation (cf. Zakharov
1968), which describes the dynamics of small-amplitude, quasi-monochromatic waves
with surface tension in deep water, is deduced. Thus, the non-local formulation
includes both shallow and deep water limits.

(iv) In shallow water, the non-local formulation yields higher-order nonlinear
approximations which go beyond the Boussinesq/Benney–Luke limit. The successive
approximations have increasing polynomial nonlinearity: quadratic, cubic, fourth
order, etc.

(v) The general time-dependent non-local formulation is shown to reduce properly
in the linearized limit, and allows one to compute directly the surface wave height as
well as the velocity potential on the free surface.

(vi) A numerical technique applicable to non-local systems, which is an extension
of methods used in nonlinear optics (cf. Ablowitz & Musslimani 2003, 2005), is
introduced in order to calculate localized travelling wave solutions to the Kadomtsev–
Petviashvili, Benney–Luke (see also Berger & Milewski 2000) and the fully nonlinear
non-local two-plus-one-dimensional system. These equations are found to have
travelling wave lump-soliton-type solutions, provided that sufficient surface tension is
included. Methods to obtain one-plus-one-dimensional solitary waves are discussed
in the Appendices. The computational results demonstrate that the non-local system
derived here can be effectively employed.

In recent experiments (Falcon, Laroache & Fauve 2002), one dimensional ‘depres-
sion’ solitons in fluids of small depth with sufficient surface tension have been observed
for the first time. It may also be feasible to observe travelling lump solitons, which
the above numerical results predict to exist in the two-plus-one-dimensional fully
nonlinear water wave system, in fluids which have significant surface tension effects.

1.1. A new Non-local formulation of water waves in three dimensions

We begin by considering the classical gravity water wave problem without surface
tension. Let us define the domain D by

D = {−∞ < xj < ∞, j = 1, 2, − h < y < η(x1, x2, t), t > 0},
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where h > 0. The water wave equations satisfy the following system for φ(x1, x2, y, t)
and η(x1, x2, t):

�φ = 0 in D, (1.1)

φy = 0 on y = −h, (1.2)

ηt + φx1
ηx1

+ φx2
ηx2

= φy on y = η, (1.3)

φt +
1

2
|∇φ|2 + gη =

σ

ρ
∇ ·
(

∇η√
1 + |∇η|2

)
on y = η, (1.4)

where g is acceleration due to gravity, σ and ρ denote the constant surface tension
and density respectively and h is the constant unperturbed fluid depth. Equation (1.3),
the kinematic condition, implies that fluid particles on the free surface remain on
the free surface, whereas equation (1.4), the so-called dynamic boundary condition or
Bernoulli’s equation, implies continuity of pressure across the free surface. Equation
(1.4) describes the dynamics of the velocity potential on the free surface. We assume
that η as well as the derivatives of φ vanish as x2

1 + x2
2 → ∞.

In what follows, we will reformulate these equations in terms of the two functions
η and q , where q is the value of φ on the free boundary (see Zakharov (1968), where
these variables were introduced and shown to be canonically conjugate coordinates),

q(x1, x2, t) = φ(x1, x2, η(x1, x2, t), t). (1.5)

The definition of q as well as equation (1.3) can be used to express the spatial
derivatives of φ on the boundary in terms of η and q . Indeed, differentiating equa-
tion (1.5) with respect to x1 and x2, we find

φx1
+ φyηx1

= qx1
, (1.6a)

φx2
+ φyηx2

= qx2
. (1.6b)

Solving equations (1.3) and (1.6) for φx1
, φx2

, φy in terms of q we find

φx1
=

(1 + η2
x2

)qx1
− ηx1

ηx2
qx2

− ηx1
ηt

1 + |∇η|2 (1.7a)

φx2
=

(1 + η2
x1

)qx2
− ηx1

ηx2
qx1

− ηx2
ηt

1 + |∇η|2 , (1.7b)

φy =
ηt + ηx1

qx1
+ ηx2

qx2

1 + |∇η|2 . (1.7c)

The dynamic boundary condition – Bernoulli’s equation
Equations (1.7) imply

|∇φ|2 =

(
1 + η2

x2

)
q2

x1
+
(
1 + η2

x1

)
q2

x2
+ η2

t − 2ηx1
ηx2

qx1
qx2

1 + |∇η|2 .

Substituting |∇φ|2 in equation (1.4) and also replacing φt by qt − ηtφy , where φy

is given by equation (1.7c), we find an equation involving q and η. Simplifying
this equation we find

qt +
1

2
|∇q|2 + gη − (ηt + ∇q · ∇η)2

2(1 + |∇η|2) =
σ

ρ
∇ ·
(

∇η√
1 + |∇η|2

)
, (1.8)

which is equation (II) in the introduction.
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The analysis of equations (1.1) – (1.3)
Let both functions φ(x1, x2, y) and ψ(x1, x2, y) satisfy Laplace’s equation (1.1). Then

φy(ψx1x1
+ ψx2x2

+ ψyy) + ψy(φx1x1
+ φx2x2

+ φyy) = 0.

This identity can be rewritten in the following form:

(φyψx1
+ ψyφx1

)x1
+ (φyψx2

+ ψyφx2
)x2

+ (φyψy − φx1
ψx1

− φx2
ψx2

)y = 0. (1.9)

We note that this identity, in contrast to the classical Green’s identity for Laplace’s
equation, involves only derivatives of φ and not φ itself.

We choose for ψ the particular solution

E(x1, x2, k1, k2) = eik1x1+ik2x2+ky, k =
(
k2

1 + k2
2

)1/2
.

Using this particular solution in equation (1.9), we find the identity

(E(ik1φy + kφx1
))x1

+ (E(ik2φy + kφx2
))x2

+ (E(kφy − ik1φx1
− ik2φx2

))y = 0.

Using the divergence theorem, this equation implies the global relation∫
∂D

E {(ik1φy + kφx1
)N1 + (ik2φy + kφx2

)N2 + (kφy − ik1φx1
− ik2φx2

)N3} dS = 0,

(1.10)

where (N1, N2, N3)
T is a vector normal to the surface ∂D, and dS is a surface

element.
On the bottom:

N1 = N2 = 0, N3 = −1, y = −h, φy = 0,

thus the integrand in (1.10) on the bottom becomes

eik1x1+ik2x2−kh(ik1φx1
+ ik2φx2

).

On the free surface:

N1 = −ηx1
, N2 = −ηx2

, N3 = 1, y = η,

thus the integrand in (1.10) on the free surface simplifies to

eik1x1+ik2x2+kη[k(φy − φx1
ηx1

− φx2
ηx2

) − ik1(φx1
+ φyηx1

) − ik2(φx2
+ φyηx2

)].

The three terms in parentheses appearing in the above expression equal ηt , qx1
, qx2

,

respectively. Thus, with decaying conditions for |∇φ| on the sides, the global relation
(1.10) becomes∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

ik1x1 + ik2x2{ekη[kηt − ik1qx1
− ik2qx2

]

+ e−kh[ik1φx1
+ ik2φx2

]}(x1, x2, −h, t) = 0 (1.11)

This equation is valid for both roots ±
√

k2
1 + k2

2 . We can eliminate the terms
at y = −h from equation (1.11) by replacing k with −k. Multiplying by ekh and
subtracting the two equations with ±k respectively yields equation (I) given in the
introduction.

Equations (I) and (II) or (1.8) are the two basic equations for the case of water
waves with surface tension. We note that the vertical coordinate y is removed in this
formulation, and the unknown boundary η is completely determined by the nonlinear
integro-differential equation (I) and the nonlinear PDE (1.8).
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We also note that for the case of periodic boundary conditions for the free surface
and velocity field, the limits of integration must be modified from an infinite domain
to a finite region in order to reflect the size of the period.

2. The case of a variable bottom
Let

y = −H̃ (x1, x2) = −h − H (x1, x2),

where h is constant, be the equation describing the bottom. Then the normals on the
bottom are given by

N1 = −Hx1
, N2 = −Hx2

, N3 = −1.

We also have on the bottom d/dt(z + H̃ ) = 0, hence

(φy + φx1
Hx1

+ φx2
Hx2

)(x1, x2, −h − H, t)) = 0. (2.1)

Taking

Φ(x1, x2, t) = φ(x1, x2, −h − H, t),

the global relation (1.10) yields∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

ik1x1+ik2x2
{
ek(η+h)[kηt − ik1qx1

− ik2qx2
] + e−kH [ik1Φx1

+ ik2Φx2
]
}

(x1, x2, −h, t) = 0, (2.2)

where we have used Φxj
= φxj

− φyHxj
, j = 1, 2, and equation (2.1). Replacing k by

−k in equation (2.2) and adding and subtracting the resulting equations yields the
following two integro-differential equations:∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

ik1x1+ik2x2

{
iηt cosh[k(η + h)] + (k · ∇q)

sinh[k(η + h)]

k

+(k · ∇Φ)
sinh[kH ]

k

}
= 0, (2.3)

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

ik1x1+ik2x2

{
iηt sinh[k(η + h)] +

(k · ∇q)

k
cosh[k(η + h)]

− (k · ∇Φ)

k
cosh[kH ]

}
= 0. (2.4)

Equations (2.3)–(2.4) and Bernoulli’s equation (1.8) are three equations for the three
unknowns η, q, Φ .

Integral relations

An immediate consequence of equations (2.3)–(2.4) is mass conservation. If we take
kj → 0, j = 1, 2, in equation (2.3) and expand, then we find a sequence of integral
relations. The first is conservation of mass for any bottom H (x1, x2):

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2 η(x1, x2, t) = 0. (2.5)
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Some of the additional integral relationships, obtained in this way, which include
centre of mass and virial-type formulae, are listed below:

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(xjη) =

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(qxj

(η + h) + HΦxj
), (2.6)

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2

(
x2

j η

2
−
(

η3

6
+

η2h

2

))
=

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(xjqxj

(η+h)+xjHΦxj
),

(2.7)∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(qxj

− Φxj
) = 0, (2.8)

where j =1, 2. When H = 0, equations (2.6)–(2.7) simplify considerably since the
velocity potential, Φ , on the bottom multiplies H . Equation (2.6) is the conservation
law associated with the motion of the centre of mass. Also, when H = 0 the right-hand
side of (2.6) can be related to the momentum of the fluid Pj , j = 1, 2, where

Pj =

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2

∫ η

−h

dy (ρφxj
),

and φxj
, j = 1, 2, correspond to the transverse velocities in the water wave equations

(1.1)–(1.4). Since the momentum is a known conserved quantity in water waves, we
find that the centre of mass equation can also be written as a conserved quantity

∂

∂t

{∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(xjη) − t

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2qxj

(η + h)

}
= 0, (2.9)

where j = 1, 2. Thus, the centre of mass increases linearly with time. We note that
the relation between the centre of mass and the momentum was found in Benjamin &
Mahony (1971). The point symmetries and conserved quantities associated with water
waves were derived and discussed in Benjamin & Olver (1982).

It is also interesting that the analogue of the centre of mass relation (2.6) can
be related asymptotically to a non-trivial conserved quantity for the Kadomtsev–
Petviashvili and Korteweg–deVries equations. This is discussed further in § 5.

Recently, the case of a variable bottom was considered in Craig et al. (2005) using
an extension of the Dirichlet–Neumann map technique mentioned earlier (Craig &
Sulem 1993). In this paper the authors find wave equations governing small-amplitude,
long waves over a periodically varying bottom. In the case of a variable bottom the
series expansion for the Dirichlet–Neumann map presented in Craig et al. (2005) is
implicit. The explicit non-local equations (2.3)–(2.4) provide the summation of all
terms in the equivalent Dirichlet–Neumann series.

It should be mentioned that there are some differences in the case of infinite depth
h → ∞. In this case equation (I) in § 1 takes the following simplified form:∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

ik1x1+ik2x2ekη

{
iηt +

(k · ∇q)

k

}
= 0. (ID)

In this case the integral relations can be obtained either by taking h → ∞ in the earlier
formulae (2.6)–(2.8) with Φxj

= 0, j = 1, 2, or taking the limit as kj → 0 in equation
(ID). In either way, we find equation (2.5) and the following relations:∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(qxj

) = 0, (2.9)
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∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(xjη) =

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(qxj

η), (2.10)

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2

(
η2

2

)
=

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(xjqxj

), (2.11)

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2

(
x2

j η

2
− η3

6

)
=

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2(xjqxj

η), (2.12)

where j =1, 2. It is interesting to note that in infinitely deep water one needs the
constraints in (2.9), otherwise rapid decay of the wave amplitude η and of ∇q as
r → ∞ do not follow. A discussion of the infinite depth case can be found in Benjamin
& Olver (1982).

In what follows we shall concentrate on the simpler case of a constant bottom
y = −h. We note that equation (2.3) reduces to equation (I) when H = 0.

3. The linear limit
In the linear limit, |η| � 1, |qt | � 1, |qxj

| � 1, j = 1, 2, thus equations (I) and (1.8)
become∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

ik1x1+ik2x2

{
iηt cosh[kh]+

[(
k1

k

)
qx1

+

(
k2

k

)
qx2

]
sinh[kh]

}
= 0, (3.1)

qt + gη =
σ

ρ

(
ηx1x1

+ ηx2x2

)
. (3.2)

We define the Fourier transforms (FT) of η by

η̂ =

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

ik1x1+ik2x2η(x1, x2, t),

and similarly for the derivatives of q .
Using these definitions, equations (3.1) and (3.2) yield

iη̂t +

[(
k1

k

)
(cqx1

) +

(
k2

k

)
(cqx2

)

]
tanh[kh] = 0, (3.3)

bqt + gη̂ =
σ

ρ
[(bηx1x2

) + (bηx2x2
)]. (3.4)

The definition of the FT implies (cηx1
) = −ik1η̂, (cηx2

) = −ik2η̂, etc. Differentiating
equation (3.3) with respect to t and using equation (3.4) to express bqx1t and bqx2t

in terms of η̂, i.e. using

bqtxj
= ikj

(
g +

σ

ρ
k2

)
η̂, j = 1, 2,

we find

η̂tt +

[
kg

(
1 +

σ

gρ
k2

)
tanh[kh]

]
η̂ = 0. (3.5)

4. The non-dimensional form
It is convenient to have a non-dimensional formulation. In this respect, we first

replace all variables in equations (I) and (1.8) by prime variables and then we make
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the following substitutions:

x ′
1 = lx1, x ′

2 =
l

γ
x2, k′

1 =
k1

l
, k′

2 = γ
k2

l
, t ′ =

lt

c0

, q ′ =
gla

c0

q, η′ = aη,

where c0 =
√

gh and l, l/γ are typical length scales (e.g. wavelengths) in the x1-,
x2-directions respectively. Defining the dimensionless parameters

ε =
a

h
, µ =

h

l
,

equations (I) and (1.8) yield the following equations:∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

i(k1x1+k2x2)

{
iηt cosh[kµ(1 + εη)] + sinh[kµ(1 + εη)]

×
[

k1

kµ
qx1

+
γ 2k2

kµ
qx2

]}
= 0, (4.1)

qt + η +
ε

2

(
q2

x1
+ γ 2q2

x2

)
− 1

2
εµ2 [(ηt + ε(qx1

ηx1
+ γ 2qx2

ηx2
)]2

1 + (εµ)2
(
η2

x1
+ γ 2η2

x2

)
=

σ̃
[
µ2ηx1x1

(
1 + ε2µ2γ 2η2

x2

)
+ µ2γ 2ηx2x2

(
1 + ε2µ2η2

x1

)
− 2ε2µ4γ 2ηx1

ηx2
ηx1x2

]
[
1 + (εµ)2

(
η2

x1
+ γ 2η2

x2

)]3/2 , (4.2)

where

k =

√
k2

1 + γ 2k2
2, σ̃ =

σ

ρgh2
. (4.3)

By adding/subtracting the linear terms and by taking the Fourier transform, we
can rewrite equations (4.1) and (4.2) in an alternative form in which the linear terms
are separated. This is useful for various purposes, including for numerical evaluations
(see § 7 on computational investigations):

i cosh[kµ]η̂t + sinh[kµ]

[(
k1

kµ

)(
cqx1

)
+

(
γ 2k2

kµ

)(
cqx2

)]

=

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

i(k1x1+k2x2) {iηt (cosh[kµ] − cosh[kµ(1 + εη)])

+ (sinh[kµ] − sinh[kµ(1 + εη)])

[
k1

kµ
qx1

+
γ 2k2

kµ
qx2

]}
, (4.4)

q̂t + (1 + σ̃µ2k2)η̂ =

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

i
(

k1x1+k2x2

) {
−ε

2

(
q2

x1
+ γ 2q2

x2

)
+

1

2
εµ2δ−1[ηt + ε(qx1

ηx1
+ γ 2qx2

ηx2
)]2

+ δ−3/2σ̃
[
µ2ηx1x1

(
1 + ε2µ2γ 2η2

x2

)
+ µ2γ 2ηx2x2

(
1 + ε2µ2η2

x1

)
− 2ε2µ4γ 2ηx1

ηx2
ηx1x2

− δ3/2µ2(ηx1x1
+ γ 2ηx2x2

)
] }

(4.5)

where

δ = 1 + (εµ)2
(
η2

x1
+ γ 2η2

x2

)
.
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Equations (4.4) and (4.2) (or its integral form (4.5)), are a system of two equations
for the two unknowns, η and q . It is also worth noting that equation (4.4) can be
written in terms of the following integral equation for the function ηt :

η̂t =

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

i(k1x1+k2x2)K[η(t)]ηt + F[η(t), Q(t)], (4.6)

where

K(η) =
cosh[kµ] − cosh[kµ(1 + εη)]

cosh(kµ)
,

and

F (η, Q) =

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2e

i(k1x1+k2x2)

(
i sinh[kµ(1 + εη)]

cosh[kµ]

[
k1

kµ
qx1

+
γ 2k2

kµ
qx2

])
.

This integral equation provides the summation of the Dirichlet–Neumann series
operator discussed in Craig & Sulem (1993), Craig & Nicholls (2000) and Bateman
et al. (2001). Equations (4.6) and (4.2) (or (4.5)), are the closed system of water wave
equations. Equation (4.6) is formulated as an integral equation for ηt . Equation (4.5)
determines q̂t as a quadratically nonlinear function of ηt .

5. Two dimensional Boussinesq, Benney–Luke and KP equations
In this section, starting from the non-local formulation, we derive the Boussinesq,

Benney–Luke and KP equations with surface tension. We include surface tension
because later we will address the question of finding lump-type solutions to the water
wave equations. We take |ε| � 1, |µ| � 1, use the expansions

cosh[kµ(1 + εη)] ∼ 1 +
µ2

2
k2, sinh[kµ(1 + εη)] ∼ µk +

µ3

6
k3 + εµηk,

and we use integration by parts, as well as properties of the Fourier transform

kj → i∂xj , j = 1, 2.

Then after some algebra we find that to within O(ε, µ2), equations (4.1) and (4.2) yield
the following Boussinesq-type equations, where for convenience we replace x1, x2 by
x, y: (

1 − µ2

2
�̃

)
ηt +

(
�̃ − µ2

6
�̃2

)
q + ε

(
ηxqx + γ 2ηyqy

)
+ εη�̃q = 0, (5.1)

η = −qt − ε

2

(
q2

x + γ 2q2
y

)
+ σ̃µ2�̃η, (5.2)

where

�̃ = ∂2
x + γ 2∂2

y . (5.3)

Equation (5.2) implies

η ∼ −(1 + σ̃µ2�̃)qt − ε

2

(
q2

x + γ 2q2
y

)
.

Substituting this expression in equation (5.1) we find

[
1 +
(
σ̃ − 1

2

)
µ2�̃

]
qtt −

(
�̃ − µ2

6
�̃2

)
q + ε

(
2qxqxt + 2γ 2qyqyt + qt�̃q

)
= 0. (5.4)



New non-local formulation of water waves 323

Using the leading-order approximation, qtt ∼ �̃q, equation (5.4) implies the following
equation, valid to O(ε, µ2):

qtt − �̃q +
(
σ̃ − 1

3

)
µ2�̃2q + ε(∂t |∇̃q|2 + qt�̃q) = 0, (5.5)

where |∇̃q|2 =
(
q2

x + γ 2q2
y

)
.

An asymptotically equivalent equation to (5.5) was derived by Benney & Luke
(1964) in terms of the velocity potential φ in the case of zero surface tension (σ̃ = 0).
We note that q ∼ φ + O(εµ2), which allows us to establish the relationship between
the Benney–Luke equation for φ and the above equation (5.5) for q .

If we take

γ = O(µ), ε = O(µ2),

then further simplifications can be made. In this case, (5.5) becomes

qtt − qxx +
(
σ̃ − 1

3

)
µ2qxxxx − γ 2qyy + ε (2qxqxt + qtqxx) = 0. (5.6)

Let

ξ = x − t, T = εt,

thus

∂t = −∂ξ + ε∂T , ∂x = ∂ξ .

Then, equation (5.5) simplifies to

2εq
T ξ

+
(

1
3

− σ̃
)
µ2qξξξξ + γ 2qyy + 3εqξqξξ = 0.

Letting w = qξ , ε = µ2 = γ 2, and taking a derivative with respect to ξ , this equation
becomes

2wT ξ +
(

1
3

− σ̃
)
wξξξξ + wyy + (3wwξ )ξ = 0, (5.7)

which is the well known Kadomtsev–Petviashvili (KP) equation (Kadomtsev &
Petviashvili 1970). For convenience we put the KP equation (5.7) in standard form by
making the following transformations:

w = −2 sgn
(
σ̃ − 1

3

)
l21u, ξ → l1x, y → 1√

3
y,

T = −
2 sgn

(
σ̃ − 1

3

)
τ

l1
, l1 =

∣∣σ̃ − 1
3

∣∣1/4;
⎫⎬
⎭ (5.8)

then u satisfies the standard KP equation

uτx + uxxxx − 3 sgn
(
σ̃ − 1

3

)
uyy + 6(uux)x = 0. (5.9)

We note that the KdV equation is a reduction of KP by considering the y-independent
solutions.

The KP equation is well known to have lump-type soliton solutions (cf. Ablowitz
& Clarkson 1991) for

(
σ̃ − 1

3

)
> 0. The 1-lump solution is given by the formula

u = 16
−4(x ′ − 2kRy ′)2 + 16k2

I y
′2 + 1/k2

I[
4(x ′ − 2kRy ′)2 + 16k2

I y
′2 + 1/k2

I

]2 , (5.10)

where

x ′ = x − cxτ − x0, y ′ = y − cyτ − y0, cx = 12
(
k2

R + k2
I

)
, cy = 12kR; (5.11)

the velocity satisfies the condition

cx >
c2
y

12
. (5.12)
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This has implications regarding the existence of a 1-lump solution for the Benney–
Luke (BL) equation when (σ̃ − 1

3
) > 0 (see also the discussion in the computational

section, § 7). In terms of the original water wave variables, we have

x ′ =
1

l1

(
ξ +

cxl
2
1T

2

)
=

1

l1

[
x −

(
1 − l21εcx

2

)
t

]
, (5.13a)

y ′ =
√

3

(
x2 +

cyl1T

2
√

3

)
=

√
3

(
y +

l1εcyt

2
√

3

)
. (5.13b)

Taking vx = 1−εc̃x and vy = εc̃y , it follows that if c̃x and c̃y are defined by c̃x = cxl
2
1/2

and c̃y = cyl1/(2
√

3), then

c̃x >
c̃2
y

2
, (5.14)

which is consistent with equation (5.12).
Comparing the derivation of the KP equation (in terms of u) with the derivation

of the BL equation (in terms of q) it follows that that q and u are related by

qx = w = −2 sgn(σ̃ − 1
3
)
∣∣σ̃ − 1

3

∣∣1/2u. (5.15)

Thus travelling waves for KP and BL equations are directly related, provided
that their velocities are related via c̃x = cxl

2
1/2 and c̃y = cyl1/(2

√
3). An explicit lump

formula for q is obtained by integrating equations (5.10) and (5.15) with respect to x

to find

q = −32
(
σ̃ − 1

3

)1/2

[
(x ′ − 2kRy ′)

4(x ′ − 2kRy ′)2 + 16k2
I y

′2 + 1/k2
I

]
. (5.16)

The above equations imply that as r → ∞, u ∼ O(1/r2), q ∼ O(1/r), where
r2 = x ′2 + y ′2.

Next, we will briefly discuss the centre of mass integral relation in the context of
the KP and the KdV equations in terms of one of their (less well-known) conserved
quantities. Writing equation (2.6) when H =0 in a convenient non-dimensional form
(or alternatively taking kj → 0; j = 1, 2 in (4.1)), we find

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
xη dx dy =

∫ ∞

−∞

∫ ∞

−∞
qx(1 + εη) dx dy. (5.17)

Using the coordinates ξ, T , as well as conservation of mass ∂/∂t
∫ ∞

−∞
∫ ∞

−∞ η dξ dy = 0,

the left-hand side of (5.17) takes the form

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
ξη dξ dy = ε

∂

∂T

∫ ∞

−∞

∫ ∞

−∞
ξη dξ dy +

∫ ∞

−∞

∫ ∞

−∞
η dξ dy. (5.18)

Using (5.2) in the ξ, T variables and dropping O(ε2) terms, it follows that

η ∼ qξ − εqT − ε

2
(qξ )

2 + σ̃µ2qξξξ .

Assuming (as is standard when dealing with KP conservation laws) that
∫ ξ

−∞ w dξ ′ → 0
rapidly as |ξ | → ∞, and integrating by parts, we find∫ ∞

−∞

∫ ∞

−∞
η dξ dy ∼

∫ ∞

−∞

∫ ∞

−∞

(
w + εξwT − ε

2
w2
)

dξ dy.
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Then, using the KP equation (5.7), and another integration by parts, we obtain∫ ∞

−∞

∫ ∞

−∞
η dξ dy ∼

∫ ∞

−∞

∫ ∞

−∞

(
w +

ε

2
w2
)

dξ dy.

Therefore, from (5.18) and η ∼ qξ , the left-hand side of (5.17) becomes

∂

∂t

∫ ∞

−∞
x

∫ ∞

−∞
η dx dy ∼ ε

∂

∂T

∫ ∞

−∞
ξw dξ dy +

∫ ∞

−∞

(
w +

ε

4
w2
)

dξ dy. (5.19)

On the other hand, the right-hand side of (5.17) is given by∫ ∞

−∞

∫ ∞

−∞
qx(1 + εη) dx dy ∼

∫ ∞

−∞

∫ ∞

−∞
(w + εw2) dξ dy. (5.20)

Therefore, equating the right-hand sides of equations (5.19) and (5.20) we find the
integral relation

∂

∂T

∫ ∞

−∞

∫ ∞

−∞
ξw dξ dy =

3

4

∫ ∞

−∞

∫ ∞

−∞
w2 dξ dy. (5.21)

This equation can also be verified directly using the KP equation (5.7). In terms of the
KP equation (5.9) in ‘standard’ variables, the above integral relation can be rewritten
(using the change of variables (5.8)) in terms of the following conservation law:

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
(xu − 3tu2) dx dy = 0. (5.22)

Equation (5.22) gives the motion of the centre of mass of the solution u in terms of
the constant of motion

∫ ∞
−∞ u2 dx.

If we consider the reduction of the KP equation to the KdV equation by taking
∂/∂y → 0, then the same analysis applies and the KdV equation has conservation law
identical to (5.21)–(5.22) except that the integration over y is omitted.

Thus, the centre of mass integral relation (5.17) which is derived from the non-local
free surface equation, agrees asymptotically with a conservation law obtained directly
from the KP/KdV equations.

We mention that in Craig & Groves (1994) the series expansion of the Dirichlet–
Neumann map was used to derive small-amplitude/long-wave equations for the
Boussinesq and KP equations without surface tension.

6. The deep water limit
The goal of this section is to derive from the non-local formulation the small-

amplitude, slowly varying envelope equation in deep water for quasi-monochromatic
waves. This gives rise to the nonlinear Schrodinger (NLS) equation, which agrees
with results obtained directly from the water wave equations (Zakharov 1968).

The (1+1) non-local integral equation (I′) of § 1 can be written as∫ ∞

−∞
e−ikx

{
e−k(η+h)(iηt + qx) + ek(η+h)(iηt − qx)

}
dx = 0,

where we have replaced k by −k.
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Taking the limit h → ∞, and dropping exponentially small terms, we find

k > 0,

∫ ∞

−∞
e−ikxekη(iηt − qx) dx = 0; k < 0,

∫ ∞

−∞
e−ikxe−kη(iηt + qx) dx = 0.

For convenience we replace η and q by εη and εq , and for the small-amplitude
limit we take ε � 1. The above equation, as well as Bernoulli’s equation (4.2) in 1+1
dimensions, become ∫ ∞

−∞
dxe−ikxeε|k|η[iηt − ( sgn(k))qx] = 0, (6.1)

qt + gη − σ

ρ

ηxx

(1 + ε2η2
x)

3/2
+

1

2
εq2

x − ε

2

(
ηt + εηxqx

)2
1 + ε2η2

x

= 0. (6.2)

Alternatively we can obtain equation (6.1) as a reduction from the two-plus-one-
dimensional deep water equation (ID) in § 2. Expanding up to O(ε2), these equations
become ∫ ∞

−∞
dxe−ikx

[
1 + ε|k|η + ε2|k|2 η2

2
+ · · ·

]
[iηt − ( sgn(k))qx] = 0,

qt + gη − σ

ρ

(
1 − 3

2
ε2η2

x

)
ηxx + 1

2
εq2

x − ε

2

(
η2

t + 2εηtηxqx

)
+ · · · = 0.

Differentiating the second equation with respect to x and letting qx = Q, we find∫ ∞

−∞
dxe−ikx

[
1 + ε|k|η + ε2|k|2 η2

2
+ · · ·

]
[iηt − (sgn(k))Q] = 0, (6.3)

Qt + gηx − σ

ρ
∂x

[
ηxx − 3

2
ε2η2

xηxx

]
+ εQQx − ε

2
∂x

[
η2

t + 2εηtηxQ
]
+ · · · = 0. (6.4)

We now look for solutions in terms of a quasi-monochromatic wave expansion. This
takes the form of a Fourier-like series of slowly varying envelopes, multiplied by
rapidly varying carrier waves. The first few terms are given by

η = η1e
iθ + η̄1e

−iθ + ε(η0 + η2e
2iθ + η̄2e

−2iθ ) + · · · , (6.5)

Q = Q1e
iθ + Q̄1e

−iθ + ε(Q0 + Q2e
2iθ + Q̄2e

−2iθ ) + · · · , (6.6)

where

ηj = ηj (X, T ), Qj = Qj (X, T ), j = 0, 1, 2 · · · , X = εx, T = εt, θ = k0x−w0t.

We then substitute the above expansions (6.5) and (6.6) into equations (6.3) and
(6.4). The analysis of these types of quasi-monochromatic wave expansions in
differential equations, such as Bernoulli’s equation (6.4), is well understood. However
the occurrence of the non-local terms requires some additional mathematical analysis.
Substituting equations (6.5) and (6.6) into the non-local equation (6.3) leads to a
sequence of integrals of the form:∫ ∞

−∞
dx e−ikxFm(X = εx)eimθ , m = 0, 1, 2 . . . .

By the Riemann–Lesbeque lemma, all such integrals are exponentially small except for
the term associated with k = mk0 (we assume that all functions ηj , Qj , j = 0, 1, 2 . . . ,

are rapidly decaying and infinitely smooth). Owing to the arbitrariness of the functions
ηj , Qj , j = 0, 1, 2 . . . , we take Fm =0.
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Then, equations (6.3) and (6.4) transform to the following equations, in terms of
the multiscale variables t, T = εt , x, X = εx (keeping terms of order ε):∫ ∞

−∞
dx e−ikx

[
1 + ε|k|η + ε2|k|2 η2

2
+ · · ·

]
[i(ηt + εηT ) − ( sgn(k))Q] = 0, (6.7)

Qt + εQT + g(ηx + εηX) − σ

ρ

[(
1 − 3

2
ε2ηx

2
)
(∂x + ε∂X)3η − 3ε2η2

xxηx

]
+ εQ(Qx + εQX) − ε[(ηt + εηT )(ηxt + ε(ηtX + ηxT ) + ε(ηtηxQ)x] + · · · = 0. (6.8)

To illustrate ideas and fix notation, we derive the leading-order contributions from
the above equations:∫ ∞

−∞
dx e−ikx[(ω0η1e

iθ + c.c.) − sgn(k)(Q1e
iθ + c.c.) + · · ·] = 0, (6.9)

(
−iω0Q1e

iθ + c.c.
)

+ g(ik0η1e
iθ + c.c.) − σ

ρ
((ik0)

3η1e
iθ + c.c.) + · · · = 0, (6.10)

where c.c. denotes complex conjugate. From equation (6.10) we find

Q1 =
gk0

ω0

(1 + σ̂ k0
2)η1, (6.11)

where σ̂ = σ/ρg. Letting k = k0 in equation (6.9), and using equation (6.11), we obtain∫ ∞

−∞
dx

{
η1

[
ω − sgn(k)

(
gk

ω

)(
1 + σ̂ k2

)]}
= 0,

which in turn implies the dispersion relation for water waves in deep water,

ω2 = gk sgn(k)(1 + σ̂ k2). (6.12)

Repeating this procedure for the second-harmonic terms e2iθ , we find (from (6.8)
and (6.7) respectively)

2ωQ2 = 2kg(1 + 4k2σ̂ )η2 + ω2kη1
2 + kQ1

2, (6.13)

2ωη2 = sgn(k)Q2 − 2ω|k|η1
2 + 2kη1Q1. (6.14)

From the mean terms at ei0, we find that Q0 = O(ε), η0 =O(ε), i.e the mean terms
can be neglected to this order of approximation. We can solve for Q2, η2 from
equations (6.13) and (6.14). To the order of approximation we are considering, we
can use equation (6.11) to replace Q1 by η1,

Q2 =
1 + k2σ̂

1 − 2k2σ̂
2ωkη1

2, (6.15)

η2 =
1 + k2σ̂

1 − 2k2σ̂
|k|η1

2. (6.16)

We next calculate the fundamental-harmonic terms eiθ . After using equations (6.15)
and (6.16), we find from equation (6.8)

Q1 = (c1 + εL1 + ε2L2)η1 + k2 sgn(k)
1 − 1

2
k2σ̂

1 + k2σ̂
|η1|2η1, (6.17)
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where

L1 =
c1

iω
∂T + c2∂X,

L2 =
c2

iω
∂X∂T − c1

ω2
∂T

2 + c3∂X
2,

c1 =
gk(1 + σ̂ k2)

ω
, c2 =

g(1 + 3σ̂ k2)

iω
, c3 = −3gkσ̂

ω
.

Substituting Q2, η2, and the above formula for Q1, into the non-local equation (6.7),
we find that η1 satisfies the following nonlinear Schrödinger equation:

i(∂T + vg∂X)η1 + ε
ω′′(k)

2
∂X

2η1 + εM |η1|2η1 = 0, (6.18)

where

vg = ω′(k) = g sgn(k)
1 + 3k2σ̂

2ω
,

is the group velocity and

M = −ωk2(8 + k2σ̂ + 2(k2σ̂ )2)

4(1 + k2σ̂ )(1 − 2k2σ̂ )
, (6.19)

ω′′(k) = −ω[1 − 6k2σ̂ − 3(k2σ̂ )2]

4k2(1 + k2σ̂ )
. (6.20)

Finally by defining the new variables τ = εT , ξ =X − vgT , we find the nonlinear
Schrödinger equation in a more standard form, without the small parameter appearing
in the equation. This equation, which governs quasi-monochromatic, deep water waves
with surface tension (see also Zakharov 1968), is

i∂τη1 +
ω′′(k)

2
∂ξ

2η1 + M |η1|2η1 = 0. (6.21)

A similar analysis can be carried out for quasi-monochromatic waves in finite depth
and for three-dimensional water waves. The calculations are much more tedious; that
study is outside the scope of this paper.

7. Computational studies – 2+ 1 dimensional lumps
In this section we develop computational fixed point methods for finding travelling

wave solutions for the 2 + 1 dimensional water wave equations. These techniques
are an extension of methods used in nonlinear optics (cf. Ablowitz & Musslimani
2003, 2005) and are used to find lump-soliton-type solutions of the Kadomtsev–
Petviashvili, Benney–Luke, and fully nonlinear two plus one dimensional water wave
equations. Methods to obtain one-plus-one-dimensional solitary waves are discussed
in Appendix B.

We begin by first considering the case of lump-type travelling waves which obey the
Benney–Luke (BL) equation with surface tension, i.e. equation (5.5). For convenience
we repeat (5.5):

qtt − �̃q + µ2
(
σ̃ − 1

3

)
�̃2q + ε(|∇̃q|2)t + ε(qt�̃q) = 0. (7.1)

In order to find travelling wave solutions, we assume a travelling wave moving in an
arbitrary x–y direction

q(x, y, t) = q(x − vxt, y − γ 2vyt) = q(x ′, y ′).
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Substituting this ansatz into the BL equation, we find

v2
xqx ′x ′ + 2vxvyγ

2qx ′y ′ + v2
yγ

4qy ′y ′ − (qx ′x ′ + γ 2qy ′y ′)

+ µ2
(
σ̃ − 1

3

)
(qx ′x ′x ′x ′ + 2γ 2qx ′x ′y ′y ′ + γ 4qy ′y ′y ′y ′)

= ε[(vx∂x ′ + γ 2vy∂y ′)
(
q2

x ′ + γ 2q2
y ′

)
+ ((vx∂x ′ + γ 2vy∂y ′)q)(qx ′x ′ + γ 2qy ′y ′)]. (7.2)

Solutions to the above equation are obtained using the spectral renormalization
method (Ablowitz & Musslimani 2005). The essence of the method is to transform
the underlying equation governing the solitary wave into Fourier space and to find
nonlinear non-local integral equation(s), coupled to an algebraic equation(s). The
algebraic equation is solved by standard techniques and the integral equation is
solved iteratively. The coupling prevents the numerical scheme from diverging.

To develop the iteration scheme, we take the Fourier transform of (7.2), where the
Fourier transform of q , denoted by q̂ , is given by

q̂ =

∫∫
e−ikx−ilyq(x, y, t) dx dy.

The function q̂ satisfies the equation

q̂ = ε
i(vxk + γ 2vyl)(

cq2
x ′ + γ 2cq2

y ′) + vx(2qx ′qx ′x ′ + γ 2
2qx ′qy ′y ′) + γ 2vy(2qy ′qx ′x ′ + γ 2

2qy ′qy ′y ′)

D
≡ K[q̂], (7.3)

where

D = k2(1 − v2
x) + γ 2l2

(
1 − γ 2v2

y

)
− 2γ 2vxvykl +

(
σ̃ − 1

3

)
µ2
(
k2 + γ 2l2

)2
. (7.4)

We remark that when γ 2 = ε and vx = 1 − εc̃x, vy = c̃y , |ε| � 1, then we see that D > 0,
provided c̃x > c̃2

y/2. This inequality agrees with equation (5.14) obtained from the
exact lump solution of the KP equation (5.10). By employing the change of variables
q =αp, we construct the following iteration scheme for n= 0, 1, 2 · · · :

p̂n+1 = αnK[p̂n], (7.5)

with

αn =

∫∫
|p̂n|2 dk dl∫∫

p̂∗
nK[p̂n] dk dl

. (7.6)

The iteration scheme is supplemented by initial functions for p0. In practice, the
schemes are relatively insensitive to the choice of the initial functions; e.g. hyperbolic
secant or Gaussian profiles are adequate in the case of decaying solutions.

A convenient check of these results is to compare the results of the BL (variable
q) equation with the known lump solution results of KP (variable u – see equations
(5.9) and (5.10), where cx, cy are the x-y KP velocities respectively). From § 6, we have
the following formulae for the KP lump solution at the origin (recall σ̃ > 1/3):

u(0, 0) = 16k2
I =

4

3

(
cx −

c2
y

12

)
, (7.7)

qx = Q = −2(σ̃ − 1
3
)1/2u,
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where the BL velocities (vx, vy),

vx = 1 − εc̃x, γ
2vy = γ 2c̃y, (7.8)

are connected to KP velocities (cx, cy), by

c̃x =
cx

2

(
σ̃ − 1

3

)1/2
, c̃y =

cy

2
√

3

(
σ̃ − 1

3

)1/4
. (7.9)

The same numerical method used to find the travelling wave solution for the BL
equation also works for KP. The KP equation also provides a check of the numerical
method used herein since it admits an explicit lump solution. Looking for a travelling
wave solution of the KP equation (5.9) of the form u = u(x ′, y ′) with (σ̃ − 1

3
) > 0 and

x ′ = x − cxτ, y
′ = y − cyτ , we obtain the equation

−cxux ′x ′ − cyux ′y ′ + ux ′x ′x ′x ′ − 3uy ′y ′ + 3(u2)x ′x ′ = 0. (7.10)

Taking the Fourier transform of equation (7.10), using the standard Fourier notation

û =

∫∫
e−ikx−ilyu(x, y, t) dx dy,

we find that û satisfies

û =
3k2

D1

û2 ≡ G[û], (7.11)

where

D1 = cxk
2 + cykl + k4 + 3l2 = k2

(
cx − 1

12
c2
y

)
+ 3

(
l +

kcy

6

)2

+ k4.

Note that D1 > 0 when (cx − 1
12

c2
y) > 0, which follows from the known result for KP

lumps (see (5.12)).
By employing the change of variables u = αv, we construct the following iteration

scheme with n= 0, 1, 2 . . . :

v̂n+1 = αnG[v̂n], (7.12)

with

αn =

∫∫
|v̂n|2 dk dl∫∫

v̂∗
nG[v̂n] dk dl

. (7.13)

In figure 1 we present a typical example of a wave profile associated with the KP and
BL equations; plotted are the y =0, x = 0 profiles respectively, when cx = 3, cy =0. The
exact solution is obtained from equation (5.10), and the numerical results are found
using the method introduced in this section. The numerical solution associated with
KP cannot be distinguished from the theoretical solution in the graph; the numerical
scheme correctly reproduces the known KP lump-soliton solution. We have plotted
the wave profiles at y = 0, x = 0 resp. corresponding to the associated ‘KP’ function

u = − qx

2(σ̃ − 1
3
)1/2

. (7.14)

The figure shows that KP is a good approximation to BL in this range of parameters.
Figure 2 shows a nearly linear relationship between u and cx (note in figure 2,

vx =1−εc̃x, vy = 0; see (7.9) for the relationship between cx and c̃x). Comparison with
KP theory is given by the solid line. Even at µ = 0.5, the KP solution provides a good
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Figure 1. Wave profile at (a) y = 0 and (b) x = 0 for the BL (5.5) and KP equations (5.9)
with σ̃ = 2/3, cx =3, cy = 0.
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Figure 2. u(0, 0) = umax vs. cx for various values of µ. This figure shows that the KP theory
is a good approximation to the BL equation in this range of parameters.

approximation to the BL lump solution though we see that there is some deviation
at large values of cx .

Next, we look for two-dimensional travelling wave lumps associated with the full
two-plus-one-dimensional water wave equations. First, for convenience of standard
notation, we slightly modify equation (4.4) by redefining: k1 = −k, k2 = −l, x1 = x,

x2 = y and κ =
√

k2 + γ 2l2. This yields

i cosh [κµ]η̂t − sinh[κµ]

[(
k

κµ

)
(bqx) +

(
γ 2l

κµ

)
(bqy)

]

=

∫∫
dx dy e−i(kx+ly) {iηt (cosh[κµ] − cosh[κµ(1 + εη)])

− (sinh[κµ] − sinh[κµ(1 + εη)])

[
k

κµ
qx +

γ 2l

κµ
qy

]}
, (7.15)



332 M. J. Ablowitz, A. S. Fokas and Z. H. Musslimani

where we now define the Fourier transforms of η as

η̂ =

∫∫
e−ikx−ilyη(x, y, t) dx dy,

and similarly for the Fourier transform of the derivatives of q . We treat (4.5) similarly
and go to travelling wave coordinates, x ′ − vxt, y

′ = y − vyt and then we drop the
primes:

−cosh(κµ)(vxk + vyl)η̂ +
sinh(κµ)iκ

µ
q̂

=

∫∫
dx dy e−i(kx+ly)(−i)(vx∂x + vy∂y)η[cosh[κµ(1 + εη)] − cosh(κµ)]

+

∫∫
dx dy e−i(kx+ly)

[
sinh(κµ) − sinh[κµ(1 + εη)]

κµ

]
[kqx + γ 2lqy] = R1f , (7.16)

− (vx∂x + vy∂y)q + η = −ε

2

(
q2

x + γ 2q2
y

)
+

εµ2

2δ
[−(vx∂x + vy∂y)η + εqxηx + εγ 2qyηy]

2

+
σ̃

δ3/2
[µ2ηxx

(
1 + (εµγ )2η2

y

)
+ (µγ )2ηyy

(
1 + (εµ)2η2

x

)
− 2(εµ2γ )2ηxηyηxy], (7.17)

where

δ = 1 + (εµ)2(η2
x + γ 2η2

y).

We rewrite the above equation by putting all linear dispersive terms on the left-hand
side and taking the Fourier transform; as with the BL equation we assume q has a
well-defined Fourier transform. This yields

− i(vxk + vyl)q̂ + (1 + σ̃µ2κ2)η̂

=

∫∫
dx dy e−i(kx+ly)

{
−ε

2

(
q2

x + γ 2q2
y

)
+

εµ2

2δ
[−(vx∂x + vy∂y)η + εqxηx + εγ 2qyηy]

2

× σ̃

δ3/2
[µ2ηxx

(
1 + (εµγ )2η2

y

)
+ (µγ )2ηyy

(
1 + (εµ)2η2

x

)
− 2(εµ2γ )2ηxηyηxy

− δ3/2(µ2ηxx + (µγ )2ηyy)]
}

= R2f . (7.18)

Hence η̂, q̂ are given by

η̂ =

(vxk + vyl)R1f +
sinh(κµ)κ

µ
R2f

Jww

= R3f ,

q̂ =
(1 + σ̃µ2κ2)R1f + cosh(κµ)(vxk + vyl)R2f

iJww

= R4f ,

where

Jww = (1 + σ̃µ2κ2)
sinh(κµ)κ

µ
− cosh(κµ)(vxk + vyl)

2.

The spectral renormalization numerical technique proceeds by making use of the
following change of variables:

η = αψ, q = βP.

This yields

ψ̂ =
R3f

α
, P̂ =

R4f

β
.
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In order to find equations for α and β we multiply the above equations by ψ̂∗ and
P̂ ∗ respectively, and integrate in k. This yields the following algebraic system satisfied
by α and β:

F (α, β) = ||P̂ ||2, G(α, β) = ||ψ̂ ||2,
where

F (α, β) =
1

β

∫∫
P̂ ∗R4f [βP̂ , αψ̂] dk dl,

G(α, β) =
1

α

∫∫
ψ̂∗R3f [βP̂ , αψ̂] dk dl.

The iteration scheme then takes the form

bψn+1 =
R3f [βnP̂n, αnψ̂n]

αn

, bPn+1 =
R4f [βnP̂n, αnψ̂n]

βn

,

with

F (αn, βn) = ||P̂n||2, G(αn, βn) = ||ψ̂n||2, (7.19)

where n= 0, 1, 2 . . ., and at each iteration step we solve for αn, βn from the above
system of equations for F, G. The iteration scheme is supplemented by initial functions
for P0, ψ0. As mentioned earlier, the schemes are relatively insensitive to the choice of
the initial functions; e.g. hyperbolic secant or Gaussian profiles are adequate in the
case of decaying solutions. In order to establish a connection with the BL equation,
we assume that vx = 1−εc̃x and vy = γ 2c̃y . When ε = γ 2 =µ2 � 1, the condition (5.10),
cx > 1

12
c2
y , ensures that Jww > 0.

We also note that higher-order nonlinear approximations to full water waves can
be obtained. Such approximations are useful when we find fixed-point solutions to
the full water wave equations. A quadratic nonlinear approximation is obtained from
the full water wave equations by expanding the hyperbolic functions sinh[κµ(1 +
εη)], cosh[κµ(1+ εη)] for small ε, µ, and keeping only quadratic nonlinear terms. We
find from the above equations the following quadratic and quintic approximations.

Quadratic:

− cosh[κµ](vxk + vyl)η̂ +
iκ

µ
sinh[κµ]q̂ =

∫∫
dx dye−i(kx+ly)

{
−i(vxηx + vyηy)

× sinh[κµ]κµεη − κµεη cosh[κµ]

[
k

κµ
qx +

γ 2l

κµ
qy

]}
= R1Q, (7.20)

− i(vxk + vyl)q̂ + (1 + σ̃µ2κ2)η̂

=

∫∫
dx dye−i(kx+ly)

[
− ε

2

(
q2

x + γ 2q2
y

)
+

εµ2

2
(vxηx + vyηy)

2

]
= R2Q. (7.21)

Quintic:

−cosh[κµ](vxk + vyl)η̂ +
iκ

µ
sinh[κµ]q̂

=

∫∫
dx dye−i(kx+ly)

{
−i(vxηx + vyηy)

[
sinh[κµ]κµεη + cosh[κµ]

(κµεη)2

2

+ sinh[κµ]
(κµεη)3

6

]
−
[

k

κµ
qx +

γ 2l

κµ
qy

] [
cosh[κµ]κµεη + sinh[κµ]

(κµεη)2

2

+ cosh[κµ]
(κµεη)3

6

]}
= R1QQ, (7.22)
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Figure 3. Wave profile at (a) y = 0 and (b) x = 0 for the full water wave equations (7.16)
and (7.18) with σ̃ =2/3. The function u is plotted using (7.14) and the velocities are
vx =1 − εc̃x, vy = 0 with cx = 4.0 using the relationship (7.9). This figure demonstrates that
Benney–Luke/KP equations are good approximations to the full water wave equations. The
inset shows an enlarged view of the peak of the wave, highlighting the difference in maximum
amplitudes.

− i(vxk + vyl)q̂ + (1 + σ̃µ2κ2)η̂

=

∫∫
dx dy e−i(kx+ly)

{
−ε

2

(
q2

x + γ 2q2
y

)

+
εµ2

2
[−(vxηx + vyηy) + ε(qxηx + γ 2qyηy)]

2 − ε(εµ2)2

2

(
η2

x + γ 2η2
y

)
(vxηx + vyηy)

2

+ σ̃
[
(εµ2γ )2

(
ηxxη

2
y + ηyyη

2
x − 2ηxηyηxy

)
− 3

2
(εµ2)2

(
η2

x + γ 2η2
y

)
(ηxx + γ 2ηyy)

]}

= R2QQ. (7.23)

The procedure to find a fixed point of the quadratic–quintic systems is similar with
that for full water waves with Rf replaced by RQ, RQQ, respectively; hence we do not
explicitly give it in detail.

In figures 3 and 4 solutions of the full water wave equations are depicted. Numerical
solutions are obtained employing the method described earlier; theoretical values are
calculated from (5.10). In figure 3, the wave profiles at y =0, x = 0 respectively,
corresponding to the associated ‘KP’ function u obtained from (7.14), are also given.
The dotted lines lie on top of the theoretical result hence are difficult to discern. The
solutions of the quadratic and quintic approximations are similar to those found for
the full water waves, hence they are not given here. It is outside the scope of this
paper to find lump solitary waves of the highest amplitude.

8. Conclusions
In this paper, a coupled system of non-local nonlinear equations on a fixed domain

is derived which governs the classical free boundary equations of water waves in 2+1
dimensions with constant depth. The extension of this system to the case of varying
depth is also obtained. These compact equations are explicit and in spectral form
which is useful in calculations as described in § § 2, 5–7. In addition, integral relations
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Figure 4. u(0, 0) = umax vs. cx the full water wave equations (7.16) and (7.18) for various values
of µ using the same parameters as figure 3. This figure also shows that the Benney–Luke/KP
equations are good approximations to full water waves for µ= 0.1.

are deduced which include conservation of mass and centre of mass and virial-like
formulae.

These equations are shown to admit shallow water/long wave, and deep water
asymptotic equations, which include the Boussinesq and Benney–Luke equations for
long waves and the nonlinear Schrodinger equation in deep water.

A numerical technique is introduced for computing solitary-lump solutions for the
Benney–Luke and the non-local 2 + 1-dimensional water wave equations. The Fourier
nature of the equations is useful in the computational evaluation of lump solitary
waves.

This work was partially supported by NSF grant DMS 0303756, and by the EPSRC.
We thank Douglas Baldwin for pointing out the conservation law (A 11) and Andrew
Docherty for computational support.

Appendix A. The ‘1+1’ long-wave reduction
In this Appendix we consider the long-wave reduction where all variables are

assumed to be independent of x2. The 1 + 1-dimensional limits are obtained from the
Boussinesq and the KP equations by letting γ = 0 in the long-wave equations derived
in § 5. We will subsequently use these equations to compare the numerical results
obtained from the full 1 + 1-dimensional water wave equations.

Equations (5.1) and (5.2) imply that the 1 +1-dimensional Boussinesq system is
given by the equations(

1 − µ2

2
∂xx

)
ηt +

(
∂xx − µ2

6
∂xxxx

)
q + ε (ηxqx + ηqxx) = 0,

η = −qt − ε

2
(qx)

2 + σ̃µ2ηxx.

It is worth noting that the above system is equivalent to the classical equations of
Boussinesq. Indeed, defining Q = qx, the above equations yield(

1 − µ2

2
∂xx

)
ηt +

(
∂x − µ2

6
∂xxx

)
Q + ε(Qη)x = 0, (A 1)
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ηx = −Qt − ε

2
(Q2)x + σ̃µ2ηxxx. (A 2)

Letting Q = Q̃ − µ2 1
3
Q̃xx + . . . , equations (A1)–(A2) yield (to this order of approxi-

mation),

ηt + Q̃x + ε(Q̃η)x =0, (A 3)

Q̃t + ηx + εQ̃Q̃x − µ2σ̃ ηxxx − µ2

3
Q̃xxt = 0. (A 4)

We use Q̃t ∼ −ηx and ηxx ∼ ηtt , which results in the following modification of
equation (A4):

Q̃t + ηx + εQ̃Q̃x − µ2
(
σ̃ − 1

3

)
ηxtt = 0. (A 5)

Equations (A3) and (A5) are the classical Boussinesq equations in normalized
form, with surface tension included. We also note that these equations yield the one
dimensional form of the Benney–Luke equation (5.5), with the addition of surface
tension,

qtt − qxx + µ2
(
σ̃ − 1

3

)
qxxxx + ε(∂tq

2
x + qtqxx) = 0. (A 6)

From either the Boussinesq equations (A3)–(A.5), or equation (A6), we can derive
the Korteweg–deVries (KdV) equation. In (A6) we take µ2 = ε, ξ = x − t, T = εt

and q = q(ξ, T ; ε). Then letting w = Q = qξ , we find

2wT +
(

1
3

− σ̃
)
wξξξ + 3wwξ = 0. (A 7)

Equation (A7) has a solitary wave solution of the form

w = Q = qξ = Asech 2[β(ξ − c1T )], c1 =
A

2
= 2
(

1
3

− σ̃
)
β2. (A 8)

Note also that ξ − c1T = x − ct , where c = 1 + εc1.
The change of coordinates given by equation (5.8) yields the KdV equation in

standard form

uτ + uxxx + 6uux = 0, (A 9)

for which the soliton solution is given by

u = 2κ2 sech 2[κ(x − 4κ2τ − x0)].

Finally, we remind the reader of the conservation relationship (5.21) that also
follows asymptotically from the 1 +1-dimensional reduction of equation (2.6),

∂

∂T

∫ ∞

−∞
ξw dξ =

3

4

∫ ∞

−∞
w2 dξ. (A 10)

Equation (A10) can also be verified by using the KdV equation (A7). In terms of
the KdV equation (A9) in ‘standard’ variables, the above integral relation can be
rewritten (using the change of variables (5.8)) in terms of the following conservation
law:

∂

∂t

∫ ∞

−∞
(xu − 3tu2) dx = 0. (A 11)

Equation (A11) gives the motion of the centre of mass of the solution u in terms of the
constant of motion

∫ ∞
−∞ u2 dx. Thus, the centre of mass integral relation (A10)–(A11)

which is derived from the non-local free surface equation agrees asymptotically with
a conservation law obtained from the KdV equation.
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Appendix B. Solitary waves in 1+1 dimensions – computational studies
In this Appendix we discuss computational fixed-point methods for finding

travelling wave solutions for the 1 + 1-dimensional water wave equations. They are
employed to find travelling wave solutions of Boussinesq type, and the fully nonlinear
1 + 1-dimensional water wave equations associated with equation (I′) given in the
introduction. The Boussinesq system is a limiting case of the water wave equations,
and the solitary wave results obtained from the full 1+1 system properly reduce to
the Boussinesq solitary waves.

The 1+1 non-local equation governing Laplace’s equation (1.1) and the boundary
conditions (1.2)–(1.3) is equation (I′). If we replace x1 by x and take the 1+1 reduction
in Bernoulli’s equation (1.8), we find the following equations:∫ ∞

−∞
dx eikx {iηt cosh k[η + h] + qx sinh k[η + h]} = 0,

qt +
1

2
q2

x − 1

2

(ηt + ηxqx)
2

1 + η2
x

+ gη =
σ

ρ

ηxx(
1 + η2

x

)3/2 .

If we introduce non-dimensional quantities, as in § 5, and if for convenience we replace
k with −k, we find∫ ∞

−∞
dx e−ikx

{
iηt cosh[kµ(1 + εη)] − qx

µ
sinh[kµ(1 + εη)]

}
= 0, (B 1)

qt + η +
ε

2
q2

x =
εµ2

2

(ηt + εqxηx)
2

1 + ε2µ2η2
x

+
σ̃µ2ηxx[

1 + ε2µ2η2
x

]3/2 , (B 2)

where σ̃ = σ/ρgh2.

We modify (B 1) and (B 2) by adding/subtracting the linear terms, taking the
derivative and Fourier transform of (B 2) and taking Q = qx . This yields

iη̂t cosh[kµ] + Q̂
sinh[kµ]

µ
=

∫ ∞

−∞
dx e−ikx

{
iηt (cosh[kµ] − cosh[kµ(1 + εη)])

− Q

µ
(sinh[kµ(1 + εη)] − sinh[kµ])

}
= 0,

Q̂t + ikη̂ = ik

∫ ∞

−∞
dxe−ikx

[
−εQ2

2
+

εµ2

2

(ηt + εQηx)
2

1 + ε2µ2η2
x

+
σ̃µ2ηxx(

1 + ε2µ2η2
x

)3/2
]

.

Letting ξ = x − ct , thus ηt = −cηξ , qx = qξ =Q, qt = −cQ, yields

− c cosh(µk)η̂(k)+
sinh(µk)

µk
Q̂(k) =

ic

k

∫ ∞

−∞
dξe−ikξ {cosh(µk)−cosh[µk(1+εη)]}ηξ

+
1

µk

∫ ∞

−∞
dξe−ikξ {sinh(µk) − sinh[µk(1 + εη)]}Q(ξ ), (B 3)

− cQ̂(k) + (1 + σ̃µ2k2)η̂(k) = −1

2

∫ ∞

−∞
dξe−ikξ

[
εQ2 − εµ2c2η2

ξ + 2c(εµ)2Qη2
ξ

1 + (εµ)2η2
ξ

]

+ σ̃µ2

∫ ∞

−∞
dξ

e−ikξηξξ (1 − (1 + (εµ)2η2
ξ )

3/2)(
1 + (εµ)2η2

ξ

)3/2 , (B 4)
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where hats denote the Fourier transform, i.e.

η̂ =

∫ ∞

−∞
e−ikxη(x, t) dx,

and similarly for Q̂.
First, let us consider the limiting cases for which ε = µ2, and ε → 0. By expanding

the cosh[µk(1 + εη)] and sinh[µk(1 + εη)] functions in powers of ε, we find

cosh[µk(1 + εη)] = cosh(µk) + εµkη sinh(µk) +
(εµkη)2

2
cosh(µk)

+
(εµkη)3

6
sinh(µk) + · · · , (B 5)

sinh[µk(1 + εη)] = sinh(µk) + εµkη cosh(µk) +
(εµkη)2

2
sinh(µk)

+
(εµkη)3

6
cosh(µk) + · · · (B 6)

Substituting (B 5) and (B 6) into (B 3) and (B 4), we can develop successively higher
nonlinear approximations to the water wave equations.

B.1. Quadratic nonlinear approximation-Boussinesq type

In this section we keep only quadratic nonlinear terms:

−cη̂(k) + b(k)Q̂(k) = −εcηQ +
kcεµ tanh(µk)

2
bη2, (B 7)

−cQ̂(k) + (1 + µ2k2σ̃ )η̂(k) = −ε

2
cQ2 +

c2εµ2

2
bη2
ξ , (B 8)

where b(k) = tanh(µk)/(µk).
These equations are also consistent with the above Boussinesq system when µ, ε

are asymptotically small. In order to find a family of solutions to (B 7) and (B 8), we
employ the spectral renormalization iteration scheme.

First, we solve for η̂ and Q̂, to find

Q̂(k) =
1

J

(
ε(1 + µ2k2σ̃ )cηQ +

cεcQ2

2
− (1 + µ2k2σ̃ )ckεµ tanh(µk)bη2

2
−

c3εµ2bη2
ξ

2

)
,

(B 9)

η̂(k) =
1

J

(
cεcηQ +

b(k)εcQ2

2
− c2kεµ tanh(µk)bη2

2
−

c2b(k)εµ2bη2
ξ

2

)
, (B 10)

where

J = J (k) = c2 − (1 + µ2k2σ̃ )b(k).

Following the same procedure as in § 7 we make the following change of variables:

η̂(k) = αψ̂(k), Q̂(k) = βP̂ (k), (B 11)

where α and β are constants independent of k to be determined by an algebraic
system found below.
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Substituting (B 11) into (B 9) and (B 10), we find

P̂ (k) =
1

J

(
ε(1 + µ2k2σ̃ )αbψP

+
cεβcP 2

2
− (1 + µ2k2σ̃ )ckεµ tanh(µk)

2

α2cψ2

β
− c3εµ2

2

α2cψ2
ξ

β

)
, (B 12)

ψ̂(k) =
1

J

(
cεβbψP +

b(k)ε

2

β2cP 2

α
− c2kεµ tanh(µk)αcψ2

2
−

c2b(k)εµ2αcψ2
ξ

2

)
. (B 13)

Next, multiplying (B 12) by P̂ ∗ and (B 13) by ψ̂∗, and integrating with respect to k we
find a coupled algebraic system satisfied by α and β . For clarity we give this system
explicitly:

a1α + a2β − (a3 + a4)
α2

β
= ||P̂ ||2, (B 14)

b1β + b2

β2

α
− (b3 + b4)α = ||ψ̂ ||2, (B 15)

where the L2 norm is given by ||P̂ ||2 =
∫

dk|P̂ |2 and

a1 =

∫
dkP̂ ∗ε(1 + µ2k2σ̃ )

bψP

J
, a2 =

∫
dkP̂ ∗ cεcP 2

2J
,

a3 =

∫
dkP̂ ∗ ckεµ tanh(µk)(1 + µ2k2σ̃ )cψ2

2J
, a4 =

∫
dkP̂ ∗ c3εµ2cψ2

ξ

2J
,

b1 =

∫
dkφ̂∗cε

bψP

J
, b2 =

∫
dkψ̂∗ b(k)εcP 2

2J
,

b3 =

∫
dkψ̂∗ c2kεµ tanh(µk)cψ2

2J
, b4 =

∫
dkψ̂∗ c2b(k)εµ2cψ2

ξ

2J
.

We then iterate (B 12), (B 13), (B 14), (B 15), as follows:

P̂ n+1(k) =
1

J

⎛
⎝ε(1 + σ̃µ2k2)αn

1ψnPn

+
cεβn

cP 2
n

2
− ckεµ tanh(µk)(1 + σ̃µ2k2)

2

α2
n
cψ2

n

βn

− c3εµ2

2

α2
n
bψn

2
ξ

βn

⎞
⎠, (B 16)

ψ̂n+1(k) =
1

J

⎛
⎝cεβn

1ψnPn +
b(k)ε

2

β2
n
cP 2

n

αn

− c2kεµ tanh(µk)αn
cψ2

n

2
−

c2b(k)εµ2αn
bψn

2
ξ

2

⎞
⎠,

(B 17)

a1nαn + a2nβn − (a3n + a4n)
α2

n

βn

= ||P̂n||2, (B 18)

b1nβn + b2n

β2
n

αn

− (b3n + b4n)αn = ||ψ̂n||2, (B 19)
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Figure 5. Surface amplitude profile for σ̃ = 2/3 and various values of µ, c1 = 2, obtained
from (B 7) and (B 8); theoretical values are from (A8).
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Figure 6. Maximum amplitude vs. c1 for various values of µ, σ̃ =2/3, obtained from (B 7)
and (B 8); theoretical values are from (A8).

for n=0, 1, 2 . . . . The iteration scheme is supplemented by initial functions for P0, Q0.
As mentioned before, the schemes are relatively insensitive to the choice of the initial
functions; e.g. hyperbolic secant or Gaussian profiles are usually adequate in the case
of decaying solutions. We compare the results with those obtained by the asymptotic
analysis presented earlier – see (A 8).

In figure 5 we show typical examples of the amplitude profile η = η(x) for several
values of the small parameter µ for a given wave speed c1 = 2 and surface tension
σ̃ = 2/3 respectively. Figure 6 shows the maximum amplitude of η vs. c1 for various
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values of the small parameter µ (note: here we take c = 1 − εc1 and µ2 = ε) and
surface tension σ̃ =2/3 respectively.

B.2. One-dimensional travelling wave solutions obtained from the full water
wave equations

In this section we obtain numerical solutions from the full one-plus-one-dimensional
non-local water wave equations and compare with the Boussinesq-type equations. We
apply the same ideas outlined before, i.e. we substitute (B 11) into (B 3) and (B 4), to
find

P̂ (k) =
(1 + σ̃µ2k2)µkR1[βP, αψ] + cµk cosh(µk)R2[βP, αψ]

β{(1 + σ̃µ2k2) sinh(µk) − c2µk cosh(µk)} , (B 20)

ψ̂(k) =
cµkR1[βP, αψ] + sinh(µk)R2[βP, αψ]

α{(1 + σ̃µ2k2) sinh(µk) − µkc2 cosh(µk)} , (B 21)

where

R1 =
ic

k

∫ ∞

−∞
dξe−ikξ {cosh(µk) − cosh[µk(1 + εη)]}ηξ

+
1

µk

∫ ∞

−∞
dξe−ikξ {sinh(µk) − sinh[µk(1 + εη)]}Q(ξ ), (B 22)

R2 = −1

2

∫ ∞

−∞
dξe−ikξ

[
εQ2 − εµ2c2η2

ξ + 2c(εµ)2Qη2
ξ

1 + (εµ)2η2
ξ

]

+ σ̃µ2

∫ ∞

−∞
dξ

e−ikξηξξ

[
1 − (εµ)2η2

ξ

)3/2](
1 + (εµ)2η2

ξ

)3/2 . (B 23)

The iteration scheme is given by

P̂ n+1(k) =
(1 + σ̃µ2k2)µkR1[βnPn, αnψn] + cµk cosh(µk)R2[βnPn, αnψn]

βn{(1 + σ̃µ2k2) sinh(µk) − c2µk cosh(µk)} , (B 24)

ψ̂n+1(k) =
cµkR1[βnPn, αnψn] + sinh(µk)R2[βnPn, αnψn]

αn{(1 + σ̃µ2k2) sinh(µk) − µkc2 cosh(µk)} , (B 25)

where αn and βn satisfy the nonlinear system∫
(1 + σ̃µ2k2)µkR1[βnPn, αnψn] + cµk cosh(µk)R2[βnPn, αnψn]

βn{(1 + σ̃µ2k2) sinh(µk) − c2µk cosh(µk)} P̂n

∗
(k) dk

=

∫
|P̂n|2(k) dk, (B 26)∫

cµkR1[βnPn, αnψn] + sinh(µk)R2[βnPn, αnψn]

αn{(1 + σ̃µ2k2) sinh(µk) − µkc2 cosh(µk)} ψ̂∗
n(k) dk =

∫
|ψ̂n|2(k) dk, (B 27)

for n= 0, 1, 2 . . . . In figure 7 we show typical examples of the amplitude profile
η = η(x) for several values of the parameter µ for a given wave speed c1 = 2 and
surface tension σ̃ = 2/3, respectively obtained from (B 3) and (B 4). Figure 8 shows
the maximum amplitude of η vs. c1 for various values of the small parameter µ

(as in §B.1 we take c = 1 − εc1 and µ2 = ε) and surface tension σ̃ =2/3 respectively.
The comparisons between the curves depicting maximum amplitude of η vs. c1, show
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Figure 7. Surface amplitude profile for σ̃ = 2/3 and various values of µ, c1 = 2, obtained
from (B 3) and (B 4); theoretical values are obtained from (A8).
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Figure 8. Maximum amplitude vs. c1 for σ̃ = 2/3 and various values of µ, obtained from
(B 3) and (B 4); theoretical values are obtained from (A8).

distinct differences between the quadratically nonlinear case in figure 6 and the full
water wave case in figure 8.
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