Name: \qquad
Test 2
Show sufficient work and clearly mark your answers. Each problem is worth 10 points.

1. A perpetuity immediate has quarterly payments that repeat each year. For each year, the first payment is 1 , the second is 5 , the third is 3 , and the fourth is 7 . Determine the present value of this perpetuity using a nominal discount rate of 12% compounded quarterly.
(A) 122.50
(B) 125.00
(C) 127.50
(D) 130.00
(E) 132.50
2. Determine the present value of a perpetuity due with annual payments of 250 , using an annual effective interest rate of 6% for the first 10 years, 5% for the following 10 years, and 4% thereafter.
(A) 5060
(B) 5145
(C) 5225
(D) 5310
(E) 5405
3. A 10 -year annuity immediate has bi-monthly (every two months) payments of 100 during the first year. The second year's bi-monthly payments are 150 , the third year's bi-monthly payments are 200, and so on, with each year's level bi-monthly payments being 50 more than the previous year's payments. Determine the present value of this annuity immediately before the first payment, using a 6% annual effective interest rate.
(A) Less than 13600
(B) Greater than or equal to 13600 , but less than 13700
(C) Greater than or equal to 13700 , but less than 13800
(D) Greater than or equal to 13800 , but less than 13900
(E) Greater than or equal to 13900
4. Joe will receive 20 annual payments of 25000 , with the first payment on his $65^{\text {th }}$ birthday. Determine the present value, on Joe's $40^{\text {th }}$ birthday, of this deferred annuity, using an 8% annual effective interest rate.
(A) 35840
(B) 38710
(C) 44480
(D) 52660
(E) 56870
5. Perpetuity A is a perpetuity due with monthly payments and an initial payment of 7 . Subsequent payments are 3 more than their preceding payments. Perpetuity B is a perpetuity immediate with level monthly payments of X. Using the same annual effective interest rate, i, the present value of Perpetuity A is 5207 and the present value of Perpetuity B is 5760 . Determine X.
(A) 100
(B) 121
(C) 144
(D) 169
(E) 196
6. An annuity with semiannual payments has an initial payment of 1 . Each subsequent payment is 1 more than its preceding payment until reaching a payment of 25 .
Following the payment of 25 , the next seven payments are each equal to 26. Following the last payment of 26 , payments decrease by 1 each semiannual period until reaching a final payment of 1 . Determine the accumulated value of the annuity immediately after the last payment, using an annual effective interest rate of 10%.
(A) 3520
(B) 3580
(C) 3640
(D) 3700
(E) 3760
7. A 20-year geometric annuity immediate with annual payments has an initial payment of 20. The sum of the payments is 739.6785 . Determine the present value of the annuity using a 5% annual effective interest rate.
(A) 415
(B) 420
(C) 425
(D) 430
(E) 435
8. Using an annual effective interest rate of i, the accumulated value of an n-year annuity due with annual payments of 2 is 73.04 , and the accumulated value of a $2 n$-year annuity due with annual payments of 15 is 2996.46 . Determine the present value of a $3 n$-year annuity immediate with annual payments of 30 using i.
(A) 280
(B) 290
(C) 300
(D) 310
(E) 320
9. A perpetuity due with annual payments has an initial payment of 1 . Subsequent payments increase by 1 until reaching a payment of 20 , at which time subsequent payments decrease by 1 until reaching a payment of 10 . Payments then remain level at 10 . Determine which expression represents the present value of the perpetuity, where d is the annual effective discount rate and v is the annual discount factor.
I. $(I \ddot{a})_{\overline{20 \mid}}+(D \ddot{a})_{\overline{9} \mid} \cdot v^{20}+\frac{10}{d} \cdot v^{20}$
II. $(I \ddot{a})_{\overline{19 \mid}}+(D \ddot{a})_{\overline{10 \mid}} \cdot v^{19}+\frac{10}{d} \cdot v^{19}$
III. $\left(\ddot{a}_{\overline{20 \mid}}\right)^{2}+(I \ddot{a})_{\overline{10 \mid}} \cdot v^{30}$
(A) I. and II.
(B) II. and III.
(C) I. and III.
(D) All of I., II., and III.
(E) None of the above
10. A 3-year annuity immediate with monthly payments has an initial payment of 200 . Subsequent monthly payments are $x \%$ more than each preceding payment. Given that the amount of the $14^{\text {th }}$ payment is 481.969 , determine the present value of the annuity using a 9%, compounded monthly, interest rate.
(A) 23750
(B) 24005
(C) 24255
(D) 24550
(E) 24735
