Abbreviations:

NRA = Normal Retirement Age

OFP = Optional Form of Payment

ERA = Early Retirement Age

NRB = Normal Retirement Benefit

NFP = Normal Form of Payment

ERB = Early Retirement Benefit

ERF = Early Retirement Factor

1) Age | Salary | (ee) Employee Contribution \(\leq 6\% \)

\[
\begin{align*}
25 & \quad 40000 \\
26 & \quad 40000 (1.03) \\
& \vdots \\
59 & \quad 40000 (1.03)^{34} \\
& \vdots \\
64 & \quad 40000 (1.03)^{39}
\end{align*}
\]

\[
\Rightarrow \text{company match} = \frac{1}{2} (\text{ee contribution})
\]

\[
\text{ee contribution} > 6\% \\
\Rightarrow \text{company match} = 3\%
\]

(a) Sue deposits 7\% \Rightarrow \text{company match} = 3\% \Rightarrow \text{total deposit} = 10\%

DC deposits

\[
\begin{array}{cccc}
\text{yrs} & \text{age} & \text{salary} & \text{AV} \\
0 & 25 & 40000 & 1(40000)(1.03)^{34} \\
1 & 26 & 40000 (1.03) & 1(40000)(1.03)^{33} \\
\vdots & \vdots & \vdots & \vdots \\
35 & 59 & 40000 (1.03)^{34} \\
\end{array}
\]

\[
\text{Note: Sue's final year salary} = 40000 (1.03)^{34}
\]

Converting to a benefit we get

\[
\begin{align*}
AV & = B_{60} \cdot \ddot{a}_{60} \\
\Rightarrow B_{60} & = \frac{AV}{11.1454} = \frac{58,286.82}{11.1454} = 5,286.82 \\
\therefore RR & = \frac{B_{60}}{\text{final yr salary}} = 533 (53.3\%)
\end{align*}
\]
1) (b) total deposit = 10% of salary each year as in (a)

\[\text{Note: Sue's final year salary} = 40000 \times (1.03)^{39} \]

\[\text{AV} = 1(40000)(1.03)^{39} + 1(40000)(1.03)^{38}(1.06) + \ldots \ (40 \text{ terms}) \]

\[= 1(40000)(1.03)^{39} \left[1 + \frac{1.06}{1.03} + \ldots \right] = 1(40000)(1.03)^{39} S_{901}(1.03\cdot 1) \]

Converting to a benefit, we get \(\text{AV} = B_{65} \cdot \bar{A}_{65} \)

\[\Rightarrow B_{65} = \frac{\text{AV}}{9.8969} = 94,624.65 \]

\[\therefore \text{RR} = \frac{B_{65} \text{ final yr salary}}{\text{final yr salary}} = .747 \ (74.7\%) \]

(c) Sue deposits 5% \(\Rightarrow \) company match = 2.5%

\[\Rightarrow \text{total deposit} = 7.5\% \text{ of salary each year} \]

We could go through the calculations in part (b) again, but it is quicker to recognize that we'll get the answer here by multiplying the answer in part (b) by \(\frac{.075}{.1} \).

\[\therefore \text{RR} = \frac{.075}{.1} \times (.747) = .560 \ (56.0\%) \]
2) \[
\begin{array}{c|c}
\text{Age} & \text{Salary} \\
45 & 50000 \\
46 & 50000(1.04) \\
64 & 50000(1.04)^{19} = \text{Tan's final year salary}
\end{array}
\]

DC Account:

<table>
<thead>
<tr>
<th>Year</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>65</td>
</tr>
</tbody>
</table>

\[AV = X \cdot S_{30|1.09}^{65}\]

\[RR = 0.35 = \frac{\text{Annual Ret. Benefit}}{50000 \cdot (1.04)^{19}}\]

\[\Rightarrow \text{Annual Ret. Benefit} = B = 0.35 \cdot 50000 \cdot (1.04)^{19}\]

\[\text{Also } AV = X \cdot S_{30|1.09}^{65} = B \cdot \dddot{a}_{65}\]

\[\Rightarrow X \cdot S_{30|1.09}^{65} = 0.35 \cdot 50000 \cdot (1.04)^{19} \cdot 10 = B \cdot \dddot{a}_{65}\]

\[\Rightarrow X = 7206.76\]

Since the company matches dollar for dollar up to 2500, Tan needs to deposit \[X - 2500 = 4706.76\] each year.
3) As in #2, \(X = 7206.76 \). For Tom to get the maximum company match, he would have to deposit 5000, but then the total deposit would be \(5000 + 2500 = 7500 > X \).

Since for every 3 total dollars deposited, Tom contributes 2 and the company contributes 1, the company match accounts for \(\frac{1}{3} \) of the total deposit and Tom’s contribution accounts for \(\frac{2}{3} \) of the total deposit.

\[\therefore \text{Tom needs to deposit } \frac{2X}{3} = \frac{2 	imes 4804.51}{3} \] each year.

4) Let \(X = \) Omar’s monthly benefit

\[\therefore 50000 \ \dd{a}_{65} = 12X \cdot \dd{a}_{65} \Rightarrow \dd{a}_{65} = \frac{9.8969}{X} \]

(a) \[\dd{a}_{65} \overset{UPP}{=} \alpha \left(\dd{a}_{65} - \beta \right) \overset{ILT}{=} (1.00028)(9.8969) - 0.46812 \]

\[\Rightarrow X = 4372.25 \]

(b) \[\dd{a}_{65} \overset{2-term}{=} \frac{\dd{a}_{65} - \frac{I}{24}}{w} \Rightarrow X = 4369.00 \]

(c) \[\dd{a}_{65} \overset{3-term}{=} \frac{\dd{a}_{65} - \frac{I}{24} - \frac{143}{1728} (\mu_{65} + s)}{w} \Rightarrow \frac{X}{2} = \frac{e^{-2 \mu_{65}}}{l_{66}} \]

\[s = \ln(1.06) = \ln(1.06) \]

\[\Rightarrow X = 4372.02 \]
5) Kim has 35 complete years of service.

(a) \(NR_B = 1800(35) = 63000 \) (payable annually in advance for life)

(b) \(LS = 63000 \cdot \ddot{a}_{65} = 63000 \cdot (9.8969) = 623,504.70 \)

(c) For 10-year C.f.L, \(63000 \cdot \ddot{a}_{65} = X \cdot \ddot{a}_{65:101} = X(\ddot{a}_{101} + 10 \ddot{a}_{65}) \)

\[
\ddot{a}_{65} = 9.8969 \quad \ddot{a}_{75} = 7.217
\]

\[
10 \ddot{E}_{65} = 7.9994 \quad \ddot{a}_{101} \text{ TVA} = 7.8017
\]

\[\Rightarrow X = 58336.53 \]

For Joint and 100% Survivor, \(63000 \ddot{a}_{65} = X \ddot{a}_{65:65} \)

\[
\ddot{a}_{65:65} = \ddot{a}_{65} + \ddot{a}_{65} - \ddot{a}_{65:65} = 2(9.8969) - 7.8552
\]

\[\Rightarrow X = 52225.95 \]

For Joint \(\frac{1}{2} \) 50% Survivor, \(63000 \ddot{a}_{65} = X \ddot{a}_{65:65} + \frac{1}{2}X(\ddot{a}_{65} - \ddot{a}_{65:65}) \)

\[
\ddot{a}_{65:65} = 7.8552
\]

\[
\ddot{a}_{65} = 9.8969
\]

\[\Rightarrow X = 57109.27 \]

For Joint \(\frac{1}{3} \) 33 1/3% Contingent, \(63000 \ddot{a}_{65} = X \ddot{a}_{65:65} + \frac{1}{3}X(\ddot{a}_{65} - \ddot{a}_{65:65}) \)

\[\Rightarrow X = 63000 \]

\(\because \) since both are same age, 65.

Remark: The Joint \(\frac{1}{2} \) 50% Survivor/Contingent terminology is not universal and not on the exam. They will explain the terminology as I did in this problem.
6) They both terminated employment with 3 yrs of service. According to Jim's plan, he is 0% vested. So for Jim, \(APV = 0 \).

According to Tim's plan, he is 60% vested. His vested benefit is \((0.6)(5000) = 3000\), and

\[
APV_{43}^{\text{Tim}} = 3000 \cdot E_{43}^{\text{Tim}} = 3000 \cdot 22 \cdot E_{43} \cdot \hat{a}_{65}^{\text{Tim}}
\]

\[
\hat{a}_{65}^{\text{LT}} = 9.8969 \quad \text{and} \quad q_{22}E_{43} = \nu_{22} \cdot P_{\nu 3} = \nu_{22} \cdot \frac{l_{65}}{l_{43}}
\]

\[
\Rightarrow APV_{43}^{\text{Tim}} = 6725.38
\]

7) William's annual benefit amount is

\[
B = 0.02S_1 + 0.02S_2 + \cdots + 0.02S_{30}
\]

where

\[
S_k = \text{salary earned during the } k^{\text{th}} \text{ year working}
\]

\[
\therefore B = 0.02(S_1 + S_2 + \cdots + S_{30}) = 0.02 \cdot (\text{total salary earned over his working lifetime})
\]

\[
= 0.02(1,500,000) = 30,000
\]

William is paid \(30,000@\ BOY\) for life, starting at NRA.
8) (a) Cindy's accrued benefit at age 45
\[B_{45} = 0.015 \times 600,000 = 9,000 \]
If she terminates employment now, she would receive \(\frac{9,000}{12} = 750 \) at the beginning of each month for her lifetime, starting at age 65.

(b) \[\text{APV}^{AB}_{45} = 12(750) \cdot 200 \overline{a}_{45}^{(12)} = 9,000 \cdot 200 \overline{a}_{65}^{(12)} \]
\[= 9,000 \cdot 200 \overline{a}_{65}^{(12)} \cdot 200 \overline{p}_{45}^{(12)} \cdot \overline{a}_{65} = 9,000(1.04)^{20} (0.9) (11.4) \]
\[\therefore \text{APV}^{AB}_{45} = 42,142.77 \]

(c) If Cindy works to age 65, then her total salary is
\[S = 600,000 + S_{45} + S_{46} + \cdots + S_{64} \]
\[= S_{45}(1.03) + \cdots + S_{45}(1.03)^{19} \]
\[\therefore S = 600,000 + S_{45} \left(1 + 1.03 + \cdots + (1.03)^{19}\right) \]
\[= 70,000 \]
\[\therefore S = 248,092,26.21 \]
\[\Rightarrow B_{65} = 0.02 (S) = 49,618.52 \]

\[\text{APV}^{RB}_{45} = 49,618.52 \cdot 200 \overline{a}_{45}^{(12)} \text{ see above} \] 232,334.021

Note \(\text{APV}^{RB}_{45} = \frac{\text{APV}^{AB}_{45}}{9,000} (49,618.52) \)

(d) Cindy's final year salary is \(70,000(1.03)^{19} \).
\[\therefore \text{RR} = \frac{49,618.52}{70,000(1.03)^{19}} = 0.404 \ (40.4\% \)
9)

<table>
<thead>
<tr>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>40000</td>
</tr>
<tr>
<td>36</td>
<td>40000(1.05))</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>64</td>
<td>40000(1.05)^{29})</td>
</tr>
</tbody>
</table>

\[B_{65} = 0.015 \cdot S_{64} \cdot (30) \]

\[= 0.015 \cdot [40000(1.05)^{29}] \cdot (30) \]

\[\therefore B_{65} = 74090.44 \]

10) Donna's final year salary is \(Y(1 + 0.01x)^{29} \)

\[B_{65} = 0.015 \cdot [Y(1+0.01x)^{29}] \cdot (30) \]

\[\therefore RR = \frac{0.015 \cdot [Y(1+0.01x)^{29}] \cdot (30)}{Y(1+0.01x)^{29}} = 0.015 \cdot (30) = 0.45 \]

Remark: Since this is a final year salary plan, we didn't need \(Y \) or \(x \) to get an answer. Note this would be the RR for Jamie in problem \# 9.
\(x = \text{Age}\)
\[
\begin{array}{c|c}
45 & 80000 = S_{45} \\
46 & 80000(1.03) = S_{46} \\
\vdots & \\
57 & 80000(1.03)^{12} \\
58 & 80000(1.03)^{13} \\
59 & 80000(1.03)^{14} \\
\vdots & \\
62 & 80000(1.03)^{17} \\
63 & 80000(1.03)^{18} \\
64 & 80000(1.03)^{19}
\end{array}
\]

Remark: There are several ways to sum \(S_{k}, S_{k+1}, \ldots, S_{k+2}\).
E.g. \(S_{57} + S_{58} + S_{59} = ? \)

Method 1: (Just do it; it's only 3 yrs)

Method 2: \(S_{57} + S_{58} + S_{59} \\
= S_{57}(1 + 1.03 + (1.03)^2) \\
= S_{57} \cdot \frac{1}{1 - 1.03}
\]

Method 3: \(S_{57} + S_{58} + S_{59} = S_{57} + S_{58} + S_{59} \\
= S_{59}(1 + \frac{1}{1.03} + \frac{1}{(1.03)^2}) = S_{59}(1 + 2 + 3) \\
= S_{59} \cdot \frac{1}{1 - 1.03}
\]

\(\text{(a)} \) Termination at age 60 \(\Rightarrow \) 15 yrs of service

\[\text{final 3-year average salary} = \frac{1}{3}(S_{57} + S_{58} + S_{59}) \]

\[= 117516.92 \]

\[\therefore B_{60} = 0.02(100000)(15) + 0.03(17516.92)(15) = 37882.61 \]

\(\text{Note: This is an annual \#, Lou actually would receive} \]

\[\frac{37882.61}{12} \text{ at the beginning of each month, starting at age 65}. \]

\(\text{(b)} \) Retirement at age 65 \(\Rightarrow \) 20 yrs of service

\[\text{final 3-year average salary} = \frac{1}{3}(S_{62} + S_{63} + S_{64}) = 136234.31 \]

\[\therefore B_{65} = 0.02(100000)(20) + 0.03(36234.31)(20) = 61740.59 \]

\(\text{(C)} \) \(APV_{65} = 61740.59 \cdot \ddot{a}_{65}^{(12)} = 753235.20 \)
12) Since Lou retires at age 60, his age 65 benefit is $B_{60} \text{ see } #11(a) = 37882.61$. We must reduce this amount by the ERF if he starts his benefit at age 60. Since ERB's are determined by actuarial equivalence, we have $B_{60} \times \ddot{A}_{60}^{(12)} \overset{11}{=} X \times \ddot{A}_{60}$ where $X =$ annual retirement benefit starting at age 60 (still payable monthly) but both sides are APV_{60} of retirement benefit

\[\text{LHS} = APV_{60}^{AB} \]
\[\text{RHS} = APV_{60}^{ERB} \]

\[\therefore (37882.61) \cdot 5E_{60} \cdot \ddot{A}_{65}^{(12)} = X \ddot{A}_{60} \]
\[5E_{60} = 2^{5} \cdot 5P_{60} = (1.04)^{5} \cdot (95) \]
\[\ddot{A}_{65}^{(12)} \overset{11}{=} 12.2 \]
\[\ddot{A}_{60} = 13.6 \]

\[\implies X = 26534.92 \text{ (annual ERF)} \]

\[\implies \text{Lou's monthly ERF} = \frac{26534.92}{12} = 2211.24 \]
\[
\begin{array}{c|c}
\text{Age} & \text{Salary} \\
35 & 60000 \\
36 & 60000(1.04) \\
\vdots & \vdots \\
60 & 60000(1.04)^{25} \\
61 & 60000(1.04)^{26} \\
62 & 60000(1.04)^{27} \\
63 & 60000(1.04)^{28} \\
64 & 60000(1.04)^{29} \\
\end{array}
\]
\[
\{ \text{Avg} = 173,268.35 \} = \text{Don's final 5-year average salary}
\]

Note: Don's final 5-year average salary

\[
= (1.04)^{-5} \cdot \text{Ron's final 5-year average salary}
\]

\[
= 142,413.95
\]

(a) \(B_{60}^{Ron} = .02 (142,413.95) (25) = 71,206.98 \) (payable at age 65)

\[
\text{Pension reduction factor} = .06(5) = .3 \Rightarrow \text{ERF} = .7
\]

\[
\therefore \text{ERB}_{60}^{Ron} = .7 (71,206.98) = 49,844.89 \text{ annually},
\]

or \(\frac{49,844.89}{12} = 4,153.74 \text{ monthly} \)

(b) \(B_{65}^{Don} = .02 (173,268.35) (30) = 10,396.01 \text{ annually},
\]

or \(\frac{10,396.01}{12} = 866.33 \text{ monthly} \)

(c) \(APV_{60}^{Ron \ RB} = 49,844.89 \cdot a^{12}_{60} = 6,778,90.50 \)

(d) \(APV_{65}^{Don \ RB} = 10,396.01 \cdot a^{12}_{65} = 1,268,324.32 \)