MLC Module 1 Section 6 Exercises

- 1. Given $_t p_x = e^{-.02t}$, determine
 - (a) $\stackrel{o}{e}_{x}$
 - (b) e_x
- 2. Given $_t p_{\overline{xy}} = e^{-.02t}$, determine
 - (a) $\stackrel{o}{e}_{\overline{x}\overline{y}}$
 - (b) $e_{\overline{x}\overline{y}}$
- 3. Determine the value of $T_{\overline{x}\overline{y}}$ if $T_x + T_y = 40$ and $T_x T_y = 346.71$.
- 4. Given mortality for (50) follows a DML(120) model, determine
 - (a) $e_{50:\overline{10}|}^{o}$
 - (b) $e_{50:\overline{10|}}$
- 5. Given mortality for (x) follows a CF($\mu = .025$) model, determine
 - (a) $\stackrel{o}{e}_{x:\bar{5}|}$
 - (b) $e_{x:\bar{5}|}$
- 6. Given $_t p_{xy} = (1.02)^{-t}$, determine $e_{xy:\overline{20|}}$
- 7. Given $q_{80} = .05$ and $q_{81} = .10$
 - (a) determine $e_{80:\overline{2}|}$
 - (b) if $e_{80} = 6.08$, determine e_{82}

- 8. Assume the T_{30} values for five 30-year olds are: 12.7, 8.6, 26.3, 47.9, 34.5 Then, for this population of 30-year olds, determine
 - (a) e_{30}^{o}
 - (b) e_{30}
 - (c) $e_{30:\overline{10|}}^{o}$
 - (d) $e_{30:\overline{10|}}$
 - (e) $e_{30:\overline{30|}}^{o}$
 - (f) $e_{30:\overline{30|}}$
 - (g) $_{10}p_{30}$
- 9. From the previous problem, note that there are four 30-year olds that live to age 40. For this population of 40-year olds, determine
 - (a) the four T_{40} values
 - (b) $\overset{o}{e}_{40}$
 - (c) e_{40}
 - (d) $\stackrel{o}{e}_{40:\overline{20|}}$
 - (e) $e_{40:\overline{20|}}$
- 10. Use the results from the previous two problems to verify the following recursion formulas:
 - (a) $\overset{o}{e}_{30} = \overset{o}{e}_{30:\overline{10|}} + {}_{10}p_{30} \cdot \overset{o}{e}_{40}$
 - (b) $e_{30} = e_{30:\overline{10|}} + {}_{10}p_{30} \cdot e_{40}$
 - (c) $\stackrel{o}{e}_{30:\overline{30|}} = \stackrel{o}{e}_{30:\overline{10|}} + {}_{10}p_{30} \cdot \stackrel{o}{e}_{40:\overline{20|}}$
 - (d) $e_{30:\overline{30|}} = e_{30:\overline{10|}} + {}_{10}p_{30} \cdot e_{40:\overline{20|}}$