
3. PREDICATES AND QUANTIFIERS 45

3. Predicates and Quantifiers

3.1. Predicates and Quantifiers.

Definition 3.1.1. A predicate or propositional function is a description of
the property (or properties) a variable or subject may have. A proposition may be
created from a propositional function by either assigning a value to the variable or by
quantification.

Definition 3.1.2. The independent variable of a propositional function must have
a universe of discourse, which is a set from which the variable can take values.

Discussion

Recall from the introduction to logic that the sentence “x + 2 = 2x” is not a
proposition, but if we assign a value for x then it becomes a proposition. The phrase
“x+ 2 = 2x” can be treated as a function for which the input is a value of x and the
output is a proposition.

Another way we could turn this sentence into a proposition is to quantify its
variable. For example, “for every real number x, x+ 2 = 2x” is a proposition (which
is, in fact, false, since it fails to be true for the number x = 0).

This is the idea behind propositional functions or predicates. As stated above a
predicate is a property or attribute assigned to elements of a particular set, called the
universe of discourse. For example, the predicate “x + 2 = 2x”, where the universe
for the variable x is the set of all real numbers, is a property that some, but not all,
real numbers possess.

In general, the set of all x in the universe of discourse having the attribute P (x)
is called the truth set of P . That is, the truth set of P is

{x ∈ U |P (x)}.

3.2. Example of a Propositional Function.

Example 3.2.1. The propositional function P (x) is given by “x > 0” and the
universe of discourse for x is the set of integers. To create a proposition from P , we
may assign a value for x. For example,

• setting x = −3, we get P (−3): “−3 > 0”, which is false.
• setting x = 2, we get P (2): “2 > 0”, which is true.
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Discussion

In this example we created propositions by choosing particular values for x.

Here are two more examples:

Example 3.2.2. Suppose P (x) is the sentence “x has fur” and the universe of
discourse for x is the set of all animals. In this example P (x) is a true statement if
x is a cat. It is false, though, if x is an alligator.

Example 3.2.3. Suppose Q(y) is the predicate “y holds a world record,” and
the universe of discourse for y is the set of all competitive swimmers. Notice that
the universe of discourse must be defined for predicates. This would be a different
predicate if the universe of discourse is changed to the set of all competitive runners.

Moral: Be very careful in your homework to specify the universe of discourse pre-
cisely!

3.3. Quantifiers. A quantifier turns a propositional function into a proposition
without assigning specific values for the variable. There are primarily two quantifiers,
the

universal quantifier

and the

existential quantifier.

Definition 3.3.1. The universal quantification of P (x) is the proposition

“P (x) is true for all values x in the universe of discourse.”

Notation: “For all x P (x)” or “For every x P (x)” is written

∀xP (x).

Definition 3.3.2. The existential quantification of P (x) is the proposition

“There exists an element x in the universe of discourse such that P (x) is true.”

Notation: “There exists x such that P (x)” or “There is at least one x such that
P (x)” is written

∃xP (x).

Discussion
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As an alternative to assigning particular values to the variable in a propositional
function, we can turn it into a proposition by quantifying its variable. Here we see
the two primary ways in which this can be done, the universal quantifier and the
existential quantifier.

In each instance we have created a proposition from a propositional function by
binding its variable.

3.4. Example 3.4.1.

Example 3.4.1. Suppose P (x) is the predicate x + 2 = 2x, and the universe of
discourse for x is the set {1, 2, 3}. Then...

• ∀xP (x) is the proposition “For every x in {1, 2, 3} x+ 2 = 2x.” This propo-
sition is false.
• ∃xP (x) is the proposition “There exists x in {1, 2, 3} such that x+ 2 = 2x.”

This proposition is true.

Exercise 3.4.1. Let P (n,m) be the predicate mn > 0, where the domain for m
and n is the set of integers. Which of the following statements are true?

(1) P (−3, 2)
(2) ∀mP (0,m)
(3) ∃nP (n,−3)

3.5. Converting from English.

Example 3.5.1. Assume

F (x): x is a fox.

S(x): x is sly.

T (x): x is trustworthy.

and the universe of discourse for all three functions is the set of all animals.

• Everything is a fox: ∀xF (x)
• All foxes are sly: ∀x[F (x)→ S(x)]
• If any fox is sly, then it is not

trustworthy:
∀x[(F (x) ∧ S(x)→ ¬T (x)]⇔ ¬∃x[F (x) ∧ S(x) ∧ T (x)]

Discussion
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Notice that in this example the last proposition may be written symbolically in
the two ways given. Think about the how you could show they are the same using
the logical equivalences in Module 2.2.

3.6. Additional Definitions.

• An assertion involving predicates is valid if it is true for every element in
the universe of discourse.
• An assertion involving predicates is satisfiable if there is a universe and an

interpretation for which the assertion is true. Otherwise it is unsatisfiable.
• The scope of a quantifier is the part of an assertion in which the variable is

bound by the quantifier.

Discussion

You would not be asked to state the definitions of the terminology given, but you
would be expected to know what is meant if you are asked a question like “Which of
the following assertions are satisfiable?”

3.7. Examples.

Example 3.7.1.

If the universe of discourse is U = {1, 2, 3}, then

(1) ∀xP (x)⇔ P (1) ∧ P (2) ∧ P (3)
(2) ∃xP (x)⇔ P (1) ∨ P (2) ∨ P (3)

Suppose the universe of discourse U is the set of real numbers.

(1) If P (x) is the predicate x2 > 0, then ∀xP (x) is false, since P (0) is false.
(2) If P (x) is the predicate x2 − 3x − 4 = 0, then ∃xP (x) is true, since P (−1)

is true.
(3) If P (x) is the predicate x2 + x+ 1 = 0, then ∃xP (x) is false, since there are

no real solutions to the equation x2 + x+ 1 = 0.
(4) If P (x) is the predicate “If x 6= 0, then x2 ≥ 1’, then ∀xP (x) is false, since

P (0.5) is false.

Exercise 3.7.1. In each of the cases above give the truth value for the statement
if each of the ∀ and ∃ quantifiers are reversed.
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3.8. Multiple Quantifiers. Multiple quantifiers are read from left to right.

Example 3.8.1. Suppose P (x, y) is “xy = 1”, the universe of discourse for x
is the set of positive integers, and the universe of discourse for y is the set of real
numbers.

(1) ∀x∀yP (x, y) may be read “For every positive integer x and for every real
number y, xy = 1. This proposition is false.

(2) ∀x∃yP (x, y) may be read “For every positive integer x there is a real number
y such that xy = 1. This proposition is true.

(3) ∃y∀xP (x, y) may be read “There exists a real number y such that, for every
positive integer x, xy = 1. This proposition is false.

Discussion

Study the syntax used in these examples. It takes a little practice to make it come
out right.

3.9. Ordering Quantifiers. The order of quantifiers is important; they may
not commute.

For example,

(1) ∀x∀yP (x, y)⇔ ∀y∀xP (x, y), and
(2) ∃x∃yP (x, y)⇔ ∃y∃xP (x, y),

but
(3) ∀x∃yP (x, y) 6⇔ ∃y∀xP (x, y).

Discussion

The lesson here is that you have to pay careful attention to the order of the
quantifiers. The only cases in which commutativity holds are the cases in which both
quantifiers are the same. In the one case in which equivalence does not hold,

∀x∃yP (x, y) 6⇔ ∃y∀xP (x, y),

there is an implication in one direction. Notice that if ∃y∀xP (x, y) is true, then there
is an element c in the universe of discourse for y such that P (x, c) is true for all x in
the universe of discourse for x. Thus, for all x there exists a y, namely c, such that
P (x, y). That is, ∀x∃yP (x, y). Thus,

∃y∀xP (x, y)⇒ ∀x∃yP (x, y).

Notice predicates use function notation and recall that the variable in function
notation is really a place holder. The statement ∀x∃yP (x, y) means the same as
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∀s∃tP (s, t). Now if this seems clear, go a step further and notice this will also mean
the same as ∀y∃xP (y, x). When the domain of discourse for a variable is defined it
is in fact defining the domain for the place that variable is holding at that time.

Here are some additional examples:

Example 3.9.1. P (x, y) is “x is a citizen of y.” Q(x, y) is “x lives in y.” The
universe of discourse of x is the set of all people and the universe of discourse for y
is the set of US states.

(1) All people who live in Florida are citizens of Florida.

∀x(Q(x, F lorida)→ P (x, F lorida))

(2) Every state has a citizen that does not live in that state.

∀y∃x(P (x, y) ∧ ¬Q(x, y))

Example 3.9.2. Suppose R(x, y) is the predicate “x understands y,” the universe
of discourse for x is the set of students in your discrete class, and the universe of
discourse for y is the set of examples in these lecture notes. Pay attention to the
differences in the following propositions.

(1) ∃x∀yR(x, y) is the proposition “There exists a student in this class who un-
derstands every example in these lecture notes.”

(2) ∀y∃xR(x, y) is the proposition “For every example in these lecture notes there
is a student in the class who understands that example.”

(3) ∀x∃yR(x, y) is the proposition “Every student in this class understands at
least one example in these notes.”

(4) ∃y∀xR(x, y) is the proposition “There is an example in these notes that every
student in this class understands.”

Exercise 3.9.1. Each of the propositions in Example 3.9.2 has a slightly different
meaning. To illustrate this, set up the following diagrams: Write the five letters
A,B,C,D,E on one side of a page, and put the numbers 1 through 6 on the other
side. The letters represent students in the class and the numbers represent examples.
For each of the propositions above draw the minimal number of lines connecting people
to examples so as to construct a diagram representing a scenario in which the given
proposition is true.

Notice that for any chosen pair of propositions above, you can draw diagrams that
would represent situations where the two propositions have opposite truth values.

Exercise 3.9.2. Give a scenario where parts 1 and 2 in Example 3.9.2 have
opposite truth values.
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Exercise 3.9.3. Let P (x, y) be the predicate 2x + y = xy, where the domain of
discourse for x is {u ∈ Z|u 6= 1} and for y is {u ∈ Z|u 6= 2}. Determine the truth
value of each statement. Show work or briefly explain.

(1) P (−1, 1)
(2) ∃xP (x, 0)
(3) ∃yP (4, y)
(4) ∀yP (2, y)
(5) ∀x∃yP (x, y)
(6) ∃y∀xP (x, y)
(7) ∀x∀y[((P (x, y)) ∧ (x > 0))→ (y > 1)]

3.10. Unique Existential.

Definition 3.10.1. The unique existential quantification of P (x) is the
proposition “There exists a unique element x in the universe of discourse such that
P (x) is true.”

Notation: “There exists unique x such that P (x)” or “There is exactly one x P (x)”
is written

∃!xP (x).

Discussion

Continuing with Example 3.9.2, the proposition ∀x∃!yR(x, y) is the proposition
“Every student in this class understands exactly one example in these notes (but not
necessarily the same example for all students).”

Exercise 3.10.1. Let P (n,m) be the predicate mn ≥ 0, where the domain for m
and n is the set of integers. Which of the following statements are true?

(1) ∃!n∀mP (n,m)
(2) ∀n∃!mP (n,m)
(3) ∃!mP (2,m)

Exercise 3.10.2. Repeat Exercise 3.9.1 for the four propositions ∀x∃!yR(x, y),
∃!y∀xR(x, y), ∃!x∀yR(x, y), and ∀y∃!xR(x, y).

Remember: A predicate is not a proposition until all variables have been bound
either by quantification or by assignment of a value!
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3.11. De Morgan’s Laws for Quantifiers.

• ¬∀xP (x)⇔ ∃x¬P (x)
• ¬∃xP (x)⇔ ∀x¬P (x)

Discussion

The negation of a quantified statement are obtained from the De Morgan’s Laws
in Module 2.1.

So the negation of the proposition “Every fish in the sea has gills,” is the propo-
sition “there is at least one fish in the sea that does not have gills.”

If there is more than one quantifier, then the negation operator should be passed
from left to right across one quantifier at a time, using the appropriate De Morgan’s
Law at each step. Continuing further with Example 3.9.2, suppose we wish to negate
the proposition “Every student in this class understands at least one example in these
notes.” Apply De Morgan’s Laws to negate the symbolic form of the proposition:

¬(∀x∃yR(x, y)) ⇔ ∃x(¬∃yR(x, y))

⇔ ∃x∀y¬R(x, y)

The first proposition could be read “It is not the case that every student in this
class understands at least one example in these notes.” The goal, however, is to find
an expression for the negation in which the verb in each predicate in the scope of the
quantifiers is negated, and this is the intent in any exercise, quiz, or test problem that
asks you to “negate the proposition ... .” Thus, a correct response to the instruction to
negate the proposition “Every student in this class understands at least one example
in these notes” is the proposition “There is at least one student in this class that does
not understand any of the examples in these notes.”

Exercise 3.11.1. Negate the rest of the statements in Example 3.9.2.

It is easy to see why each of these rules of negation is just another form of De Mor-
gan’s Law, if you assume that the universe of discourse is finite: U = {x1, x2, ..., xn}.
For example,

∀xP (x)⇔ P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)

so that
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¬∀xP (x) ⇔ ¬[P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)]

⇔ [¬P (x1) ∨ ¬P (x1) ∨ · · · ∨ ¬P (x1)]

⇔ ∃x¬P (x)

If U is an arbitrary universe of discouse, we must argue a little differently: Suppose
¬∀xP (x) is true. Then ∀xP (x) is false. This is true if and only if there is some c in
U such that P (c) is false. This is true if and only if there is some c in U such that
¬P (c) is true. But this is true if and only if ∃x¬P (x).

The argument for the other equivalence is similar.

Exercise 3.11.2. Suppose S(x, y) is the predicate “x saw y,” L(x, y) is the predi-
cate “x liked y,” and C(y) is the predicate “y is a comedy.” The universe of discourse
of x is the set of people and the universe of discourse for y is the set of movies. Write
the following in proper English. Do not use variables in your answers.

(1) ∀y¬S(Margaret, y)
(2) ∃y∀xL(x, y)
(3) ∃x∀y[C(y)→ S(x, y)]
(4) Give the negation for part 3 in symbolic form with the negation symbol to the

right of all quantifiers.
(5) state the negation of part 3 in English without using the phrase ”it is not the

case.”

Exercise 3.11.3. Suppose the universe of discourse for x is the set of all FSU
students, the universe of discourse for y is the set of courses offered at FSU, A(y) is
the predicate “y is an advanced course,” F (x) is “x is a freshman,” T (x, y) is “x is
taking y,” and P (x, y) is “x passed y.” Use quantifiers to express the statements

(1) No student is taking every advanced course.
(2) Every freshman passed calculus.
(3) Some advanced course(s) is(are) being taken by no students.
(4) Some freshmen are only taking advanced courses.
(5) No freshman has taken and passed linear algebra.

Here is a formidable example from the calculus. Suppose a and L are fixed real
numbers, and f is a real-valued function of the real variable x. Recall the rigorous
definition of what it means to say “the limit of f(x) as x tends to a is L”:

lim
x→a

f(x) = L ⇔

for every ε > 0 there exists δ > 0 such that, for every x,



3. PREDICATES AND QUANTIFIERS 54

if 0 < |x− a| < δ, then |f(x)− L| < ε.

Here, the universe of discourse for the variables ε, δ, and x is understood to be the
set of all real numbers.

What does it mean to say that lim
x→a

f(x) 6= L? In order to figure this out, it is

useful to convert this proposition into a symbolic proposition. So, let P (ε, δ, x) be
the predicate “0 < |x − a| < δ” and let Q(ε, δ, x) be the predicate “|f(x) − L| < ε.”
(It is perfectly OK to list a variable in the argument of a predicate even though it
doesn’t actually appear!) We can simplify the proposition somewhat by restricting
the universe of discourse for the variables ε and δ to be the set of positive real numbers.
The definition then becomes

∀ε∃δ∀x[P (ε, δ, x)→ Q(ε, δ, x)].

Use De Morgan’s Law to negate:

¬[∀ε∃δ∀x[P (ε, δ, x)→ Q(ε, δ, x)]]⇔ ∃ε∀δ∃x[P (ε, δ, x) ∧ ¬Q(ε, δ, x)],

and convert back into words:

There exists ε > 0 such that, for every δ > 0 there exists x such that,
0 < |x− a| < δ and |f(x)− L| ≥ ε.

3.12. Distributing Quantifiers over Operators.

(1) ∀x[P (x) ∧Q(x)]⇔ ∀xP (x) ∧ ∀xQ(x), but

(2) ∀x[P (x) ∨Q(x)] 6⇔ ∀xP (x) ∨ ∀xQ(x).

(3) ∃x[P (x) ∨Q(x)]⇔ ∃xP (x) ∨ ∃xQ(x), but

(4) ∃x[P (x) ∧Q(x)] 6⇔ ∃xP (x) ∧ ∃xQ(x).

Discussion

Here we see that in only half of the four basic cases does a quantifier distribute
over an operator, in the sense that doing so produces an equivalent proposition.

Exercise 3.12.1. In each of the two cases in which the statements are not equiv-
alent, there is an implication in one direction. Which direction? In order to help you
analyze these two cases, consider the predicates P (x) = [x ≥ 0] and Q(x) = [x < 0],
where the universe of discourse is the set of all real numbers.

Exercise 3.12.2. Write using predicates and quantifiers.

(1) For every m,n ∈ N there exists p ∈ N such that m < p and p < n.
(2) For all nonnegative real numbers a, b, and c, if a2 + b2 = c2, then a+ b ≥ c.
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(3) There does not exist a positive real number a such that a+
1

a
< 2.

(4) Every student in this class likes mathematics.
(5) No student in this class likes mathematics.
(6) All students in this class that are CS majors are going to take a 4000 level

math course.

Exercise 3.12.3. Give the negation of each statement in example 3.12.2 using
predicates and quantifiers with the negation to the right of all quantifiers.

Exercise 3.12.4. Give the negation of each statement in example 3.12.2 using an
English sentence.


