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3. Mathematical Induction

3.1. First Principle of Mathematical Induction. Let P(n) be a predicate
with domain of discourse (over) the natural numbers N ={0,1,2,...}. If

(1) P(0), and
(2) P(n) — P(n+1)

then VnP(n).

Terminology: The hypothesis P(0) is called the basis step and the hypothesis,
P(n) — P(n+ 1), is called the induction (or inductive) step.

Discussion

The Principle of Mathematical Induction is an axiom of the system of natural
numbers that may be used to prove a quantified statement of the form VnP(n), where
the universe of discourse is the set of natural numbers. The principle of induction has
a number of equivalent forms and is based on the last of the four Peano Axioms we
alluded to in Module 3.1 Introduction to Proofs. The axiom of induction states that
if S is a set of natural numbers such that (i) 0 € S and (ii) if n € S, thenn+1 € S,
then S = N. This is a fairly complicated statement: Not only is it an “if ..., then ...”
statement, but its hypotheses also contains an “if ..., then ...” statement (if n € S,
then n+ 1 € S). When we apply the axiom to the truth set of a predicate P(n), we
arrive at the first principle of mathematical induction stated above. More generally,
we may apply the principle of induction whenever the universe of discourse is a set of
integers of the form {k,k + 1,k + 2,...} where k is some fixed integer. In this case
it would be stated as follows:

Let P(n) be a predicate over {k,k+ 1,k+2,k+3,...}, where k € Z. If

(1) P(k), and
(2) P(n) — P(n+1)

then YnP(n).

In this context the “for all n”, of course, means for all n > k.
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REMARK 3.1.1. While the principle of induction is a very useful technique for
proving propositions about the natural numbers, it isn’t always necessary. There were
a number of examples of such statements in Module 3.2 Methods of Proof that were
proved without the use of mathematical induction.

Why does the principle of induction work? This is essentially the domino effect.
Assume you have shown the premises. In other words you know P(0) is true and you
know that P(n) implies P(n + 1) for any integer n > 0.

Since you know P(0) from the basis step and P(0) — P(1) from the inductive
step, we have P(1) (by modus ponens).

Since you now know P(1) and P(1) — P(2) from the inductive step, you have
P(2).

Since you now know P(2) and P(2) — P(3) from the inductive step, you have
P(3).

And so on ad infinitum (or ad nauseum).

3.2. Using Mathematical Induction. Steps

1. Prove the basis step.
2. Prove the inductive step
(a) Assume P(n) for arbitrary n in the universe. This is called the induction
hypothesis.
(b) Prove P(n + 1) follows from the previous steps.

Discussion

Proving a theorem using induction requires two steps. First prove the basis step.
This is often easy, if not trivial. Very often the basis step is P(0), but sometimes,
when the universal set has k as its least element, the basis step is P(k). Be careful
to start at the correct place.

Next prove the inductive step. Assume the induction hypothesis P(n) is true.
You do not try to prove the induction hypothesis. Now you prove that P(n+1) follows
from P(n). In other words, you will use the truth of P(n) to show that P(n + 1)
must also be true.

Indeed, it may be possible to prove the implication P(n) — P(n+ 1) even though
the predicate P(n) is actually false for every natural number n. For example, suppose
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P(n) is the statement n = n — 1, which is certainly false for all n. Nevertheless, it is
possible to show that if you assume P(n), then you can correctly deduce P(n+ 1) by
the following simple argument:

PROOF. If n = n — 1, then, after adding 1 to both sides, n+1=(n—1)4+1 =
(n+1) — 1. Thus P(n) — P(n+1). O

It is easy at this point to think you are assuming what you have to prove (circular
reasoning). You must keep in mind, however, that when you are proving the impli-
cation P(n) — P(n + 1) in the induction step, you are not proving P(n) directly, as
the example above makes clear, so this is not a case of circular reasoning. To prove
an implication, all you need to show is that if the premaise is true then the conclusion
is true. Whether the premise is actually true at this point of an induction argument
is completely irrelevant.

EXERCISE 3.2.1. Notice in the above example that, while we proved ¥Yn|[P(n) —
P(n+ 1)], we did not prove VnP(n). Why?

3.3. Example 3.3.1.

n

EXAMPLE 3.3.1. Prove: Zz =
=0

n(n+1)

5 forn=0,1,2,3,...

= 1
PROOF. Let P(n) be the statement Zz = %

=0

1. Basis Step, n = 0:
0
Prove Zz =0(0+1)/2.

=0
0

Proof: i=0and 0(0+1)/2=0
i=0

Thus, P(0).

2. Induction Step: Let n € N. At this step we are fixing an arbitrary integer n > 0
and making the following assumption for this fixed n. We then show the statement
P(n+ 1) must also be true. In general, we assume the induction hypothesis for an

integer at least as large as the integer used in the basis case.
n

(i) Assume P(n): Zz =n(n+ 1)/2, for some integer n > 0.
i=0
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i1) Use the induction hy othesis to prove
p p
n+1

Zz‘ =(n+1D((n+1)+1)/2

1=0
Proof: Write out the sum on the left hand side of the statement to be proven.
n+1

i =0+14+243+-+n+(n+1)
1=0
=0+1+2+3+---+n)+(n+1)

= (i)) +(n+1)

1=0

> equal by the induction hypothesis
—_—

n(n+1)
2

+(n+1)

n4+n+2n+2 n>+3n+2

(n+1)((n+1)+1)

2
o 1
By the principle of mathematical induction it follows that Zz = @
i=0
for all natural numbers n.
O

Discussion

Example 3.3.1 is a classic example of a proof by mathematical induction. In this
example the predicate P(n) is the statement

n

D i=n(n+1)/2.

1=0
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[Recall the “Sigma-notation”: Z a; = ap+ ape1 + -+ ay]
i=k

It may be helpful to state a few cases of the predicate so you get a feeling for
whether you believe it’s true and for the differences that occur when you change n.
But keep in mind that exhibiting a few cases does not constitute a proof. Here are a
few cases for Example 3.3.1. Notice what happens to the summation (left-hand side)
as you increase n.

P2): > i=0+1+2=202+1)/2.
P(3): > i=0+1+2+3=3(3+1)/2

=0

In the basis step of an induction proof, you only need to prove the first statement
above, but not the rest.

In the induction step you assume the induction hypothesis, P(n), for some arbi-
trary integer n > 0. Write it out so you know what you have to work with. Then
write out P(n+ 1) so you can see what you need to prove. It will be easier to see how
to proceed if you write both of these down. (A common mistake students make is to

n

think of P(n) as a particular expression (say, P(n) = Z i) instead of as a sentence:
i=0

- 1
E 1= n(n——l—)) Once you have written down the induction hypothesis and what
=0

2
you need to prove, look for a way to express part of P(n + 1) using P(n). In this
n+1 n
example we use the summation notation Zai = (Z a;) + an+1. This is a typical
i=0 i=0
n+1

step when proving a summation formula of this type. After rewriting Zz this way,
i=0



3. MATHEMATICAL INDUCTION 88

n

we can apply the induction hypothesis to substitute n(n + 1)/2 for Z i. Note that

=0
you should use the induction hypothesis at some point in the proof. Otherwise, it is
not really an induction proof.

EXERCISE 3.3.1. Prove: § (20 —1)=1+3+5+---+(2n— 1) = n?, for all
=1
n>1.

- 1 n

EXERCISE 3.3.2. Prove: — =
izl ifi+1) n+1

EXERCISE 3.3.3. Prove » 3281 =3(2" - 1)
k=1
3.4. Example 3.4.1.
EXAMPLE 3.4.1. Prove: 5n +5 < n? for all integers n > 6.

PROOF. Let P(n) be the statement 5n + 5 < n?.

1. Basis Step, n = 6: Since 5(6) + 5 = 35 and 6* = 36 this is clear. Thus, P(6).

2. Induction Step: Assume P(n): 5n + 5 < n?, for some integer n > 6. Use the
induction hypothesis to prove 5(n + 1) +5 < (n + 1)2.
First rewrite 5(n 4 1) + 5 so that it uses 5n + 5:

5(n+1)+5=(5n+5)+5.
By the induction hypothesis we know
(5n +5) +5 < n?+5.
Now we need to show
n?+5<(n+1)?=n*+2n+1.
To see this we note that when n > 2,
2n+1>2-241=5
(and so this is also valid for n > 6).
Thus, when n > 6,
5n+1)+5 =Bn+5)+5
(bn+5)+5 <n®*+5
n>+5 <n’+2n+1
n*+2n+1 = (n+1)>%
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Which shows 5(n + 1) +5 < (n + 1)%. By the principle of mathematical induction it
follows that 5n + 5 < n? for all integers n > 6.

U

Discussion

In Example 3.4.1, the predicate, P(n), is 5n+5 < n?, and the universe of discourse
is the set of integers n > 6. Notice that the basis step is to prove P(6). You might
also observe that the statement P(5) is false, so that we can’t start the induction any
sooner.

In this example we are proving an inequality instead of an equality. This actually
allows you more “fudge room”, but sometimes that extra freedom can make it a bit
more difficult to see what to do next. In this example, the hardest part, conceptually,
is recognize that we need another inequality, 5 < 2n+ 1, which holds whenever n > 2.
A good approach to showing f(n+1) < g(n+ 1) is to start with f(n+ 1), think of a
way express f(n + 1) in terms of f(n) so that you can use the induction hypothesis,
then find ways to get to g(n + 1) using further equalities or inequalities (that go in
the right direction!).

In the induction step we use the fact that if you know a < b, then a +5 < b+ 5.
The induction hypothesis gives us an inequality. Then we add 5 to both sides of that
inequality prove P(n + 1).

REMARK 3.4.1. In proving an identity or inequality, you don’t always have to
start with the left side and work toward the right. In Example 3.4.1 you might try to
complete the induction step by starting with (n + 1)* and showing that it is greater
than or equal to 5(n + 1) + 5. The steps would go as follows:

(n+1)? =n?’+2n+1
n*+2n+1 > (5n+5)+2n+1 by the induction hypothesis
bn+b5)+2n+1 =5n+1)+2n+1
5n+1)+2n+1 >5(n+1)+5 ifn>2

With this approach the place where the induction hypothesis comes in as well as the
fact that we need the inequality 2n + 1 > 5 for n > 2 are, perhaps, a little more
transparent.

EXERCISE 3.4.1. Prove: 2n+ 1 < 2", for all n > 3. FEstablish the induction step
in two ways, as suggested in the remark above. [Hint: 2" + 2" = 2. 2" = 2"+ ]
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EXERCISE 3.4.2. Prove: n?>+3 < 2", for alln > 5. [Hint: Look for a place to use
the inequality in the exercise above in the induction step.]

3.5. Example 3.5.1.

EXAMPLE 3.5.1. Prove: A set with n elements, n > 0, has exactly 2" subsets.

PROOF. Let P(n) be the statement “A set with n elements has 2" subsets.”

1. Basis Step, n = 0: The only set with 0 elements is the empty set, (), which has
exactly one subset, namely, (). We also have 2° = 1, therefore a set with 0 elements
has exactly 2° subsets. Thus P(0).

2. Induction Step: Let n € N. Assume P(n): every set with n elements has 2"
subsets. Use the induction hypothesis to prove a set with n 4+ 1 elements has 27!
subsets.

Suppose A is a set with n + 1 elements, say, A = {a1,a2,...,a,,a,11}. Let
B be the subset {ay,as,...,a,} of A. Since B has n elements, we can apply the
induction hypothesis to B, which says that B has exactly 2" subsets. Each subset
S of B corresponds to exactly two subsets of A, namely, S and S U {a,1}. But
every subset of A is of one of these two forms; hence, A has exactly twice as many
subsets as B. Thus, A has exactly 2 - 2" = 2"+ subsets.

By the principle of mathematical induction it follows that a set with n elements
has exactly 2" subsets for all n > 0. OJ

Discussion

EXERCISE 3.5.1. Let A ={a,b,c,d,e} and B ={a,b,c,d}. List all the subsets of
A in one column and all the subsets of B in another column. Draw a line connecting
every subset of A to a subset from B to demonstrate the 2 to 1 correspondence used
in the previous proof. Note that an example such as this does not prove the previous
Theorem, but it does help to illustrate the tools used.

Induction is used in a variety of situations. In Example 3.5.1 induction is used to
establish a formula for the number of subsets of a set with n elements. In this case
we are not trying to prove an equality in the sense of establishing an identity, as with
the summation examples. The induction step involves more “pure reasoning” than
algebraic manipulation. We have to devise a strategy to count the number of subsets
of a set with n 4 1 elements, given that we know a formula for the number of subsets
of a set with n elements. Having devised a strategy, we then need to show that the
formula works for a set with n + 1 elements as well. Once you begin to be proficient
in constructing inductive proofs of this type, you are well on your way to a complete
understanding of the induction process.
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(n—1)
2

EXERCISE 3.5.2. Prove: For alln > 0, a set with n elements has n subsets

with exactly two elements. [Hint: In order to complete the induction step try to devise
a strateqy similar to the one used in the example in FExample 3.5.1. It is interesting
to observe that the formula works for sets with fewer than 2 elements.]

Here is another type of problem from number theory that is amenable to induction.

EXAMPLE 3.5.2. Prove: For every natural number n, n(n* +5) is a multiple of 6
(i.e. n(n®+5) equals 6 times some integer).

PROOF. Let P(n) be the statement n(n® + 5) is a multiple of 6.

1. Basis Step, n =0: 0(0>+5) = 0=0-6. Thus P(0).

2. Induction Step: Suppose n € N, and suppose n(n®+5) is divisible by 6. Show that
this implies (n + 1)((n + 1)? + 5) is divisible by 6. In order to use the inductive
hypothesis, we need to extract the expression n(n? + 5) out of the expression
(n+1)((n+1)* +5).

(n+1)((n+1)24+5) =n((n+1)*+5)+1-((n+1)*+5)
=nn*+2n+145)+ (n*+2n+1+5)
=n(n*+5)+n2n+1)+ (n* 4+ 2n +6)
=nn?+5)+2n*+n+n*+2n+6
=n(n*+5)+3n*+3n+6
=n(n®*+5)+3n(n+1)+6

By the induction hypothesis, the first term on the right-hand side, n(n?+ 5), is a
multiple of 6. Notice that n and n + 1 are consecutive integers; hence, one of them
is even. Thus, n(n + 1) is a multiple of 2, and so 3n(n + 1) is a multiple of 6. If we
write n(n® + 5) = 6k and 3n(n + 1) = 64, then

(n+1)((n+1)+5)=n(n*+5)+3nn+1)+6=06k+60+6=06(k+(+1)

so (n+1)((n+1)?+5) is a multiple of 6. Thus, we have shown P(n) — P(n+1).

By the principle of mathematical induction, n(n? + 5) is a multiple of 6 for every
n > 0. L]

You may have noticed that in order to make the inductive step work in most of
the examples and exercises we have seen so far, the restriction placed on n is actually
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used, either implicitly or explicitly, whereas in the previous example it was not. (At
no place in the inductive step above did we need the assumption that n > 0.) This
leaves open the possibility that n(n? 4 5) is a multiple of 6 for (some/all?) integers
n < 0 as well. Checking some cases, we see for

n=—1: n(n?>+5)=(-1)((=1)>+5) = —6 is a multiple of 6,

n=—2:n(n®>+5)=(-2)((-2)?+5) = —18 is a multiple of 6,
n=—3: n(n®*+5) = (=3)((—3)? + 5) = —42 is a multiple of 6,
n = —4: n(n®+5) = (—4)((—4)? + 5) = —84 is a multiple of 6.

EXERCISE 3.5.3. Use mathematical induction to prove that n(n*+5) is a multiple
of 6 for alln < 0. [Hint: You will have to find the appropriate predicate P(k).]

EXERCISE 3.5.4. Prove 5*"~! + 1 is divisible by 6 for n € Z7.

EXERCISE 3.5.5. Prove a — b is a factor of a® — b". Hint: a**t — b**1 = q(a* —
V) + b (a —b).

EXERCISE 3.5.6. The following is an incorrect “proof” that any group of n horses
are the same color. What is the error in the proof?

PROOF. The basis case is certainly true since any group of 1 horse is the same
color. Now, let n € Z' and assume any group of n horses are the same color. We
need to show any group of n + 1 horses is the same color. Let {hy, ha, ..., h,1} be
a set of n 4+ 1 horses. The set {hy, ha,...,h,} is a set of n horses and so these horses
are the same color. Moreover, the set {hs, hs,...,h,11} is a set of n horses, so they
are all the same color. Therefore the set of horses {hy, hs,...h, 1} must all be the
same color.

O

3.6. The Second Principle of Mathematical Induction. Let k£ be an inte-
ger, and let P(n) be a predicate whose universe of discourse is the set of integers
{k,k+1,k+2,...}. Suppose

1. P(k), and
2. P(j) for k < j < n implies P(n+ 1).

Then VnP(n).

Discussion



3. MATHEMATICAL INDUCTION 93

The second principle of induction differs from the first only in the form of the
induction hypothesis. Here we assume not just P(n), but P(j) for all the integers j
between k and n (inclusive). We use this assumption to show P(n+1). This method
of induction is also called strong mathematical induction. It is used in computer
science in a variety of settings such as proving recursive formulas and estimating the
number of operations involved in so-called “divide-and-conquer” procedures.

EXERCISE 3.6.1. Prove the first principle of mathematical induction is equivalent
to the second principle of mathematical induction.

EXAMPLE 3.6.1. Prove: Every integer n > 2 can be expressed as a product of one
or more prime numbers. A prime number is defined to be an integer greater than one
that is only divisible by itself and one.

PRrROOF. Recall that a prime number is an integer > 2 that is only divisible by
itself and 1. (The number 1 is not considered to be prime.)

Let P(n) be the predicate “n can be expressed as a product of prime numbers.”

1. Basis Step, n = 2: Since 2 is prime, 2 can be expressed as a product of prime
numbers in a trivial way (just one factor). Thus, P(2) is true.

2. Induction Step: Let n be an integer with n > 2. Suppose that every integer j,

2 < j < n, can be expressed as a product of prime numbers.

The integer n + 1 is either a prime number or it is not.

Case 1. If n 4+ 1 is a prime number, then it is a product of prime numbers in a
trivial way.

Case 2. If n + 1 is not a prime number, then n + 1 = a - b where a and b are
positive integers, both different from n + 1 and 1. Thus, 2 < a < n and
2 < b < n. By the induction hypothesis, a and b can each be expressed
as a product of prime numbers, say a = pips,---p, and b = q1q2 - - qs.
Sincen+1=a-b=pips, - -Prq1q2---qs, n + 1 can also be expressed as
a product of prime numbers, namely, the product of primes that multiply
to give a times the product of primes that multiply to give b.

By the second principle of mathematical induction, every n > 2 can be expressed
as a product of prime numbers. O

Discussion

In this example, the first principle of induction would be virtually impossible to
apply, since the integer n is not a factor of n + 1 when n > 2. That is, knowing the
factors of n doesn’t tell us anything about the factors of n + 1.
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3.7. Well-Ordered Sets.

DEFINITION 3.7.1. A set S is well-ordered if every non-empty subset has a least
element.

Well-ordering Principle. The set N of natural numbers forms a well-ordered set.

Discussion

As we prove below, the principle of induction is equivalent to the well-ordering
principle.

EXAMPLE 3.7.1. The set S of integers greater than —5 is a well-ordered set.

EXAMPLE 3.7.2. The set P of rational numbers greater than or equal to zero is
not a well-ordered set.

EXAMPLE 3.7.3. [0, 1] is not well-ordered. The subset (0, 1] does not have a least
element in the set. (You may have to think about this for a moment.)

EXAMPLE 3.7.4. The set Z of integers is not well-ordered, since 7, itself, does not
have a least element.

Study the proof of the following theorem carefully. Although it uses methods of
proof discussed in Module 3.2, its level of abstraction may make it a bit difficult to
absorb at first.

THEOREM 3.7.1. The second principle of mathematical induction is equivalent to
the well-ordering principle.

ProoF. We must show that each principle implies the other.

1. Suppose N satisfies the principle of mathematical induction, and suppose that A
is a nonempty subset of N. We will give a proof by contradiction that A has a
least element. Suppose A does not have a least element. Let P(n) be the predicate
n & A. Then

(i) 0 ¢ A. Otherwise, 0 would be the least element of A. Thus P(0).

(ii) Let n € N. Suppose P(k) for 0 < k <n. Then 0,...,n &€ A. If n+ 1 were
in A, then n + 1 would be the least element of A. Thus, n+ 1 ¢ A, and so
P(n 4+ 1). This proves that P(0) A--- A P(n) — P(n+1).

By the First Principle of Mathematical Induction, VnP(n) = Vn[n ¢ A]. But this

means that A is empty, a contradiction. Thus N is well-ordered.

2. Suppose N is well-ordered, and suppose P(n) is a predicate over N that satisfies
the hypotheses of the First Principle of Mathematical Induction. That is,

(i) P(0), and
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(ii) P(O)A---AP(n) — P(n+1).

We will prove ¥nP(n) by contradiction. Suppose =VnP(n). Let A be the set
of all n € N such that P(n) is false (i.e., =P(n)) Then A is nonempty, since
=VYnP(n) < In—P(n). Since N is well-ordered and A is a nonempty subset of N,
A has a least element k. In other words, if P(n) fails to be true for all n, then
there is a smallest natural number k for which P(k) is false. By (i), k # 0, hence,
k > 0, which implies £ — 1 is a natural number. Since k — 1 < k, and k is the
least element of A, k — 1 ¢ A, so that P(k — 1). But by (ii) P(k — 1) implies
P(k), or k ¢ A, which contradicts k € A. Therefore, YnP(n), and so N satisfies
the principle of mathematical induction.

O



