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4. Growth of Functions

4.1. Growth of Functions. Given functions f and g, we wish to show how to
quantify the statement:

“g grows as fast as f”.

The growth of functions is directly related to the complexity of algorithms. We
are guided by the following principles.

• We only care about the behavior for “large” problems.
• We may ignore implementation details such as loop counter incrementation.

Discussion

When studying the complexity of an algorithm, we are concerned with the growth
in the number of operations required by the algorithm as the size of the problem
increases. In order to get a handle on its complexity, we first look for a function that
gives the number of operations in terms of the size of the problem, usually measured
by a positive integer n, to which the algorithm is applied. We then try to compare
values of this function, for large n, to the values of some known function, such as
a power function, exponential function, or logarithm function. Thus, the growth of
functions refers to the relative size of the values of two functions for large values of the
independent variable. This is one of the main areas in this course in which experience
with the concept of a limit from calculus will be of great help.

Before we begin, one comment concerning notation for logarithm functions is
in order. Most algebra and calculus texts use log x to denote log10 x (or, perhaps,
loge x), but in computer science base 2 is used more prevalently. So we shall use log x
to denote log2 x. As we shall see, in the context of this module it actually doesn’t

matter which base you use, since loga x = logb x
logb a

for any acceptable bases a and b.

Exercise 4.1.1. Prove that loga x = logb x
logb a

for arbitrary positive real numbers a

and b different from 1.

4.2. The Big-O Notation.

Definition 4.2.1. Let f and g be functions from the natural numbers to the real
numbers. Then g asymptotically dominates f , or

f is big-O of g

if there are positive constants C and k such that

|f(x)| ≤ C|g(x)| for x ≥ k.
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If f is big-O of g, then we write

f(x) is O(g(x))
or

f ∈ O(g).

Theorem 4.2.1. If lim
x→∞

|f(x)|
|g(x)|

= L, where L ≥ 0, then f ∈ O(g).

Theorem 4.2.2. If lim
x→∞

|f(x)|
|g(x)|

=∞, then f is not O(g) (f 6∈ O(g)).

Discussion

The most basic concept concerning the growth of functions is big-O. The statement
that f is big-O of g expresses the fact that for large enough x, f will be bounded
above by some constant multiple of g. Theorem 4.2.1 gives a necessary condition for
f to be big-O of g in terms of limits. The two notions aren’t equivalent since there
are examples where the definition holds, but the limit fails to exist. For the functions
we will be dealing with, however, this will not happen.

When working the problems in the module you may find it helpful to use a graph-
ing calculator or other graphing tool to graph the functions involved. For example, if
you graph the functions x2 + 10 and 3x2, then you will see that x2 + 10 ≤ 3x2 when
x ≥ 3. (Actually, when x ≥

√
5.) This seems to imply that f(x) = x2 + 10 is big-O

of g(x) = x2. This is NOT a proof, but it can give you some ideas as to what to look
for. In particular, you wouldn’t try to show that f(x) ≤ 3g(x) for x ≥ 2. It isn’t
necessary that you find the best bound, k, for x, however, as long as you find one
that works. Also, there is nothing unique about the choice of C.

Example 4.2.1. Show that x2 + 10 is O(x2).

Proof 1 (using Definition of Big-O). Let C = 3 and k = 3. Then, if x ≥ 3,

3x2 = x2 + 2x2 ≥ x2 + 2 · 32 ≥ x2 + 10. �

Proof 2 (using Definition of Big-O). Let C = 2 and k = 4. Then, if x ≥ 4,

2x2 = x2 + x2 ≥ x2 + 42 ≥ x2 + 10. �

Proof 3 (using Theorem 4.2.1). lim
x→∞

x2 + 10

x2
= lim

x→∞

(
1 +

10

x2

)
= 1 + 0 = 1.

So, by Theorem 1, x2 + 10 ∈ O(x2). �
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Exercise 4.2.1. Let a, b ∈ R+ − {1}. Prove loga x is O(logb x). Hint: recall
exercise 4.1.1.

4.3. Proofs of Theorems 4.2.1 and 4.2.2.

Proof of Theorem 4.2.1. Suppose lim
x→∞

|f(x)|
|g(x)|

= L, where L is a nonnegative

real number. Then, by the definition of limit, we can make
|f(x)|
|g(x)|

as close to L as we

wish by choosing x large enough. In particular, we can ensure that
|f(x)|
|g(x)|

is within

a distance 1 of L by choosing x ≥ k for some positive number k. That is, there is a
number k ≥ 0 such that if x ≥ k, then∣∣∣∣ |f(x)|

|g(x)|
− L

∣∣∣∣ ≤ 1.

In particular,

|f(x)|
|g(x)|

− L ≤ 1

|f(x)|
|g(x)|

≤ L+ 1

|f(x)| ≤ (L+ 1)|g(x)|
So, we can choose C = L+ 1. Thus f ∈ O(g). �

Proof of Theorem 4.2.2. Suppose lim
x→∞

|f(x)|
|g(x)|

=∞. This means that for every

positive number C, there is a positive number N such that

|f(x)|
|g(x)|

> C

if x ≥ N . Thus, for all positive numbers C and k there is an x ≥ k (take x greater
than the larger of k and N) such that

|f(x)|
|g(x)|

> C

or

|f(x)| > C|g(x)|.
Thus f 6∈ O(g). �
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Discussion

How do you interpret the statement f 6∈ O(g)? That is, how do you negate the
definition? Let’s apply principles of logic from Module 2.3. The definition says:

f ∈ O(g) if and only if there exist constants C and k such that, for
all x, if x ≥ k, then |f(x)| ≤ C|g(x)|.

The negation would then read:

f 6∈ O(g) if and only if for all constants C and k, there exist x such
that x ≥ k and |f(x)| > C|g(x)|.

Example 4.3.1. Show that x2 is not O(x).

Proof 1 (using the Definition of big-O). As we have just seen, the definition
requires us to show that no matter how we choose positive constants C and k, there
will be a number x ≥ k such that x2 > Cx. So, suppose C and k are arbitrary
positive constants. Choose x so that x ≥ k and x > C. Then x2 = x · x > C · x. (We
don’t have to use the absolute value symbol, since x > 0.) �

Proof 2 (using Theorem 4.2.2). lim
x→∞

x2

x
= lim

x→∞
x = ∞. So, by Theorem

4.2.2, x2 6∈ O(x). �

While it is true that most of the functions f and g that measure complexity have
domain N, they are often defined on the set of all positive real numbers, and, as we
see, this is where the calculus can come in handy.

4.4. Example 4.4.1.

Example 4.4.1. Show that 2x3 + x2 − 3x+ 2 is O(x3).

Proof 1 (using the Definition of big-O). By the triangle inequality,

|2x3 + x2 − 3x+ 2| ≤ |2x3|+ |x2|+ |3x|+ 2

= 2|x3|+ |x2|+ 3|x|+ 2.

Now, if x ≥ 2, then x2 ≤ x3, x ≤ x3, and 2 ≤ x3.

Thus
|2x3|+ |x2|+ |3x|+ 2 ≤ 2|x3|+ |x3|+ 3|x3|+ |x3| = 7|x3|
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Using these inequalities, C = 7, and k = 2, we see that f is O(x3). �

Proof 2 (using Theorem 4.2.2).

lim
x→∞

2x3 + x2 − 3x+ 2

x3

= lim
x→∞

2 + 1/x− 3/x2 + 2/x3

1
=

2

1

By Theorem 4.2.1, 2x3 + x2 − 3x+ 2 is O(x3).

�

Discussion

In the first proof in Example 4.4.1 we used the triangle inequality, which is proved
in the Appendix at the end of this module. We also need to use the fact |ab| = |a||b|.

Notice the strategy employed here. We did not try to decide what C and k were
until after using the triangle inequality. The first constant we dealt with was k. After
separating the function into the sum of absolute values we thought about what part
of this function would be the biggest for large values of x and then thought about
how large x needed to be in order for all the terms to be bounded by that largest
term. This led to the choice of k. In general, the constant C depends on the choice
of k and the two functions you are working with.

Exercise 4.4.1. Use the definition to show that 5x3 − 3x2 + 2x− 8 ∈ O(x3).

Exercise 4.4.2. Use Theorem 4.2.1 to show that 10x3 − 7x2 + 5 ∈ O(x3)

Exercise 4.4.3. Use Theorem 4.2.2 to show that x5 6∈ O(100x4).

4.5. Calculus Definition.

Definition 4.5.1. If f and g are such that

lim
n→∞

f(n)

g(n)
= 0

then we say f is little-o of g, written

f ∈ o(g).

As a corollary to Theorem 4.2.1, we have

Theorem 4.5.1. If f is o(g), then f is O(g).
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Discussion

As Theorem 4.5.1 indicates, the little-o relation is stronger than big-O. Two of
the most important examples of this relation are

(1) loga x ∈ o(x), where a is a positive number different from 1, and
(2) xn ∈ o(ax) if a > 1.

These are most easily seen using a version of l’Hôpital’s rule from calculus:

l’Hôpital’s Rule. If lim
x→∞

f(x) = lim
x→∞

g(x) =∞, and if

lim
x→∞

f ′(x)

g′(x)
= L,

then

lim
x→∞

f(x)

g(x)
= L.

(f ′ and g′ denote the derivatives of f and g, respectively.)

Example 4.5.1. Show that loga x ∈ o(x), where a is a positive number different
from 1.

Proof. First observe that lim
x→∞

loga x = lim
x→∞

x = ∞. Recall that
d

dx
loga x =

1

x ln a
, where lnx = loge x. By l’Hôpital’s rule,

lim
x→∞

loga x

x
= lim

x→∞

1
x ln a

1
= 0.

�

Exercise 4.5.1. Show that (loga x)2 ∈ o(x).

Example 4.5.2. Show that, if a > 1, then x ∈ o(ax).

Proof. First observe that lim
x→∞

x = lim
x→∞

ax =∞. By l’Hôpital’s rule,

lim
x→∞

x

ax
= lim

x→∞

1

ax ln a
= 0,

since a > 1. �

Exercise 4.5.2. Show that, if a > 1, then x2 ∈ o(ax).
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Exercise 4.5.3. Use mathematical induction to show that, if a > 1, then xn ∈
o(ax) for every positive integer n.

4.6. Basic Properties of Big-O. The following theorems and facts will be
helpful in determining big-O.

Theorem 4.6.1. A polynomial of degree n is O(xn).

Fact: Theorem 4.6.1. can be extended to functions with non-integral exponents (like
x1/2).

Theorem 4.6.2. If f1 is O(g1) and f2 is O(g2), then (f1+f2) is O(max{|g1|, |g2|}).

Corollary 4.6.2.1. If f1 and f2 are both O(g), then (f1 + f2) is O(g).

Theorem 4.6.3. If f1 is O(g1) and f2 is O(g2), then (f1f2) is O(g1g2).

Theorem 4.6.4. If f1 is O(f2) and f2 is O(f3), then f1 is O(f3).

Theorem 4.6.5. If f is O(g), then (af) is O(g) for any constant a.

Discussion

Use these theorems when working the homework problems for this module.

Example 4.6.1. Find the least integer n such that (x4 +5 log x)/(x3 +1) is O(xn)

Solution: First we consider x4

x3+1
. If you think back to calculus and consider which

part of this function “takes over” when x gets large, that provides the clue that this
function should be O(x). To see this, we take the following limit;

lim
x→∞

(x4)/(x3 + 1)

x
= lim

x→∞

x3

x3 + 1
= 1.

Since that limit is 1, we have verified x4

x3+1
is O(x). Theorem 4.2.2 can be used to

show that x4

x3+1
is not O(x0) = O(1):

lim
x→∞

(x4)/(x3 + 1)

1
= lim

x→∞

x

1 + 1/x3
=∞.

Now consider 5 log x
x3+1

. Since log x is O(x), 5 log x
x3+1

is O( 5x
x3+1

), and, by taking a limit

as above, 5x
x3+1

is o(x), hence, O(x).

Since the original function is the sum of the two functions, each of which is O(x),
the sum (x4 + 5 log x)/(x3 + 1) is O(x), by Corollary 4.6.2.1.
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4.7. Proof of Theorem 4.6.3.

Proof of Theorem 4.6.3. Suppose f1, f2, g1, g2 are all functions with domain
and codomain R such that f1 is O(g1) and f2 is O(g2).

Then by definition of big-O, there are positive constants C1, k1, C2, k2 such that

∀x ≥ k1[|f1(x)| ≤ C1|g1(x)|] and ∀x ≥ k2[|f2(x)| ≤ C2|g2(x)|].

Let k = max{k1, k2} and C = C1C2. Then if x ≥ k we have

|(f1f2)(x)| = |f1(x)| · |f2(x)|

≤ C1|g1(x) · C2|g2(x)|

= C1C2|(g1g2)(x)|

= C|(g1g2)(x)|

This shows f1f2 is O(g1g2). �

4.8. Example 4.8.1.

Example 4.8.1. Suppose there are two computer algorithms such that

• Algorithm 1 has complexity n2 − n+ 1, and
• Algorithm 2 has complexity n2/2 + 3n+ 2.

Then both are O(n2), but to indicate Algorithm 2 has a smaller leading coefficient,
and hence would be faster, we write

• Algorithm 1 has complexity n2 +O(n), and
• Algorithm 2 has complexity n2/2 +O(n).

Discussion

Example 4.8.1 illustrates the way in which the big-O notation may be used to
discuss complexity of algorithms.
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4.9. Big-Omega.

Definition 4.9.1. f is big-Omega of g, written f ∈ Ω(g), if there are positive
constants C and k such that

|f(x)| ≥ C|g(x)| for x > k.

Big-Omega is very similar to big-O. Big-Ω notation is used to indicate a lower
bound on functions for large values of the independent variable. Notice that f is Ω(g)
if and only if g is O(f). Using this fact we see the properties for big-O give similar
properties for big-Ω.

Example 4.9.1. x is Ω(log x).

Example 4.9.2. 2x3 + x2 − 3x+ 2 is Ω(x3).

Proof using the definition of Big-Ω: Let x ≥ 3. Then x2 − 3x ≥ 0 and so
x2 − 3x+ 2 ≥ 0 as well. Thus

|2x3 + x2 − 3x+ 2| = 2x3 + x2 − 3x+ 2 ≥ 2x3.

By choosing C = 2 and k = 3 in the definition of big-Ω the above work shows
2x3 + x2 − 3x+ 2 is Ω(x3). �

Exercise 4.9.1. Let a, b ∈ R+ − {1}. Prove loga x is Ω(logb x).

4.10. Big-Theta.

Definition 4.10.1. f is big-Theta of g, written f ∈ Θ(g), if f is both O(g) and
Ω(g).

Discussion

The definition given for big-Θ is equivalent to the following:

Theorem 4.10.1. f is Θ(g) if and only if f is O(g) and g is O(f).

Exercise 4.10.1. Prove Theorem 4.10.1.
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Example 4.10.1. (2x2 − 3)/(3x4 + x3 − 2x2 − 1) is Θ(x−2).

(2x2 − 3)/(3x4 + x3 − 2x2 − 1)

x−2
=

2x2 − 3

3x4 + x3 − 2x2 − 1
· x2

=
2x4 − 3x2

3x4 + x3 − 2x2 − 1

=
2− 3/x2

3 + 1/x− 2/x2 − 1/x4

lim
x→∞

(2x2 − 3)/(3x4 + x3 − 2x2 − 1)

x−2
=

2

3

You now will show through the following exercise that any two logarithm functions
have the same growth rate; hence, it doesn’t matter what (acceptable) base is used.

Exercise 4.10.2. If a and b are positive real numbers different from 1, show that
loga x ∈ Θ(logb x).

4.11. Summary. Suppose f and g are functions such that lim
x→∞

|f(x)|
|g(x)|

= L,

where 0 ≤ L ≤ ∞.

1. If L = 0, then f is o(g) (hence, O(g)), and g is Ω(f) (hence, not O(f)).
2. If L =∞, then f is Ω(g) (hence, not O(g)), and g is o(f) (hence, O(f)).
3. If 0 < L <∞, then f is Θ(g) (hence, O(g)), and g is Θ(f) (hence, O(f)).
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4.12. Appendix. Proof of the Triangle Inequality. Recall the triangle in-
equality: for all real numbers a and b,

|a+ b| ≤ |a|+ |b|.

Proof. Recall from Module 1.2 that the absolute value function f(x) = |x| is
defined by

f(x) = |x| =
{

x, if x ≥ 0,

−x, if x < 0.

We first observe that for any real numbers x and y, if y ≥ 0, then |x| ≤ y if and
only if −y ≤ x ≤ y. To see this, look at two cases:

Case 1. x ≥ 0. Then |x| = x, and so |x| ≤ y if and only if −y ≤ 0 ≤ x ≤ y, or
−y ≤ x ≤ y.

Case 2. x < 0. Then |x| = −x, and so |x| ≤ y if and only if −y ≤ 0 ≤ −x ≤ y.
Multiplying through by −1 and reversing the inequalities, we get y ≥ x ≥ −y,
or −y ≤ x ≤ y.

We now prove the triangle inequality. For arbitrary real numbers a and b, apply
the above to x = a and y = |a|, and then to x = b and y = |b|, to get inequalities

−|a| ≤ a ≤ |a|
−|b| ≤ b ≤ |b|.

Then
−|a| − |b| ≤ a+ b ≤ |a|+ |b|

or
−(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|.

Now apply the assertion above to x = a+ b and y = |a|+ |b| to get:

|a+ b| ≤ |a|+ |b|.
�


