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2. Graph Terminology

2.1. Undirected Graphs.

Definitions 2.1.1. Suppose G = (V,E) is an undirected graph.

(1) Two vertices u, v ∈ V are adjacent or neighbors if there is an edge e
between u and v.
• The edge e connects u and v.
• The vertices u and v are endpoints of e.

(2) The degree of a vertex v, denoted deg(v), is the number of edges for which
it is an endpoint. A loop contributes twice in an undirected graph.
• If deg(v) = 0, then v is called isolated.
• If deg(v) = 1, then v is called pendant.

Example 2.1.1. V = {v1, v2, v3, v4} and E = {e1, e2, e3, e4}.

v1

v2

v3
v4

e1

e2

e3

e4

(1) v2 and v3 are adjacent.
(2) deg(v1) = 2
(3) deg(v2) = 2
(4) deg(v3) = 3
(5) deg(v4) = 1

Discussion

Notice that in computing the degree of a vertex in an undirected graph a loop
contributes two to the degree. In this example, none of the vertices is isolated, but
v4 is pendant. In particular, the vertex v1 is not isolated since its degree is 2.
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2.2. The Handshaking Theorem.

Theorem 2.2.1. (The Handshaking Theorem) Let G = (V,E) be an undi-
rected graph. Then

2|E| =
∑
v∈V

deg(v)

Proof. Each edge contributes twice to the sum of the degrees of all vertices. �

Discussion

Theorem 2.2.1 is one of the most basic and useful combinatorial formulas associ-
ated to a graph. It lets us conclude some facts about the numbers of vertices and the
possible degrees of the vertices. Notice the immediate corollary.

Corollary 2.2.1.1. The sum of the degrees of the vertices in any graph must be
an even number.

In other words, it is impossible to create a graph so that the sum of the degrees
of its vertices is odd (try it!).

2.3. Example 2.3.1.

Example 2.3.1. Suppose a graph has 5 vertices. Can each vertex have degree 3?
degree 4?

(1) The sum of the degrees of the vertices would be 3 ·5 if the graph has 5 vertices
of degree 3. This is an odd number, though, so this is not possible by the
handshaking Theorem.

(2) The sum of the degrees of the vertices if there are 5 vertices with degree 4 is
20. Since this is even it is possible for this to equal 2|E|.

Discussion

If the sum of the degrees of the vertices is an even number then the handshaking
theorem is not contradicted. In fact, you can create a graph with any even degree
you want if multiple edges are permitted. However, if you add more restrictions it
may not be possible. Here are two typical questions the handshaking theorem may
help you answer.

Exercise 2.3.1. Is it possible to have a graph S with 5 vertices, each with degree
4, and 8 edges?
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Exercise 2.3.2. A graph with 21 edges has 7 vertices of degree 1, three of degree
2, seven of degree 3, and the rest of degree 4. How many vertices does it have?

Theorem 2.3.1. Every graph has an even number of vertices of odd degree.

Proof. Let Vo be the set of vertices of odd degree, and let Ve be the set of vertices
of even degree. Since V = Vo ∪Ve and Vo ∩Ve = ∅, the handshaking theorem gives us

2|E| =
∑
v∈V

deg(v) =
∑
v∈Vo

deg(v) +
∑
v∈Ve

deg(v)

or ∑
v∈Vo

deg(v) = 2|E| −
∑
v∈Ve

deg(v).

Since the sum of any number of even integers is again an even integer, the right-
hand-side of this equations is an even integer. So the left-hand-side, which is the sum
of a collection of odd integers, must also be even. The only way this can happen,
however, is for there to be an even number of odd integers in the collection. That is,
the number of vertices in Vo must be even. �

Theorem 2.3.1 goes a bit further than our initial corollary of the handshaking
theorem. If you have difficulty with the last sentence of the proof, consider the
following facts:

• odd + odd = even
• odd + even = odd
• even + even = even

If we add up an odd number of odd numbers the previous facts will imply we get
an odd number. Thus to get an even number out of

∑
v∈Vo

deg(v) there must be an
even number of vertices in Vo (the set of vertices of odd degree).

While there must be an even number of vertices of odd degree, there is no restric-
tions on the parity (even or odd) of the number of vertices of even degree.

This theorem makes it easy to see, for example, that it is not possible to have a
graph with 3 vertices each of degree 1 and no other vertices of odd degree.

2.4. Directed Graphs.

Definitions 2.4.1. Let G = (V,E) be a directed graph.

(1) Let (u, v) be an edge in G. Then u is an initial vertex and is adjacent to
v. The vertex v is a terminal vertex and is adjacent from u.

(2) The in-degree of a vertex v, denoted deg−(v) is the number of edges which
terminate at v.
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(3) Similarly, the out-degree of v, denoted deg+(v), is the number of edges
which initiate at v.

2.5. The Handshaking Theorem for Directed Graphs.

Theorem 2.5.1. For any directed graph G = (V,E),

|E| =
∑
v∈V

deg−(v) =
∑
v∈V

deg+(v).

Discussion

When considering directed graphs we differentiate between the number of edges
going into a vertex verses the number of edges coming out from the vertex. These
numbers are given by the in-degree and the out-degree.

Notice that each edge contributes one to the in-degree of some vertex and one to
the out-degree of some vertex. This is essentially the proof of Theorem 2.5.1.

Exercise 2.5.1. Prove Theorem 2.5.1.

2.6. Underlying Undirected Graph.

Definition 2.6.1. If we take a directed graph and remove the arrows indicating
the direction we get the underlying undirected graph.

Discussion

There are applications in which you may start with a directed graph, but then later
find it useful to consider the corresponding undirected graph obtained by removing
the direction of the edges.

Notice that if you take a vertex, v, in a directed graph and add its in-degree and
out-degree, you get the degree of this vertex in the underlying undirected graph.

2.7. New Graphs from Old.

Definitions 2.7.1. 1. (W,F ) is a subgraph of G = (V,E) if

W ⊆ V and F ⊆ E.

2. Given graphs G1 and G2, their union

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).
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3. Given graphs G1 and G2, their join, denoted by G1 ∗G2, is the graph consisting of
the union G1 ∪ G2 together with all possible edges connecting a vertex of G1 that
is not in G2 to a vertex of G2 that is not in G1.

Example 2.7.1. Suppose G has vertex set V = {a, b} and one edge e = {a, b}
connecting a and b, and H has a single vertex c and no edges. Then G∗H has vertex
set {a, b, c} and edges {a, b}, {a, c}, {b, c}.

Exercise 2.7.1. Find the union and join of the graphs G1 and G2 below.

a b

c d

e

G

a f b

e

c g d

1 G2

Exercise 2.7.2. Prove that the union of two simple graphs is a simple graph.

Exercise 2.7.3. Prove that the join of two simple graphs is a simple graph.

2.8. Complete Graphs.

Definition 2.8.1. The complete graph with n vertices, denoted Kn, is the
simple graph with exactly one edge between each pair of distinct vertices.

Discussion

There are a certain types of simple graphs that are important enough that they
are given special names. The first of these are the complete graphs. These are the
simple graphs that have the maximal number of edges for the given set of vertices.
For example, if we were using graphs to represent a local area network, a complete
graph would represent the maximum redundancy possible. In other words, each pair
of computers would be directly connected. It is easy to see that any two complete
graphs with n vertices are isomorphic, so that the symbol Kn is ambiguously used to
denote any such graph.

Complete graphs also arise when considering the question as to whether a graph
G is planar, that is, whether G can be drawn in a plane without having any two
edges intersect. The complete graphs K1, K2, K3, and K4 are planar graphs, but Kn

is not planar if n ≥ 5. Draw K4 without making the edges intersect, then try to draw
K5 without creating an unwanted intersection between edges. (Notice that Kn+1 can
be created from Kn by adding one new vertex and an edge from the new vertex to
each vertex of Kn.)
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Exercise 2.8.1. Prove that the complete graph Kn, n ≥ 1, is the join Kn−1 ∗G,
where G is a graph with one vertex and no edges.

2.9. Cycles.

Definition 2.9.1. A cycle with n vertices {v1, v2, ..., vn}, denoted by Cn, is a
simple graph with edges of the form {v1, v2}, {v2, v3}, {v3, v4}, . . . , {vn−1, vn}, {vn, v1}.

Discussion

Notice that a cycle must have at least 3 vertices. Here are examples of the first
three possibilities:

C C C
3 4 5

Local area networks that are configured this way are often called ring networks.

Notice that the following two graphs are isomorphic. Pay close attention to the
labels.

v1 v2

v4 v3

v1 v2

v3 v4

e1

e2

e3

e4

e1

e4

e2

e3

The point of the last illustration, is that sometimes you have to redraw the graph
to see the ring shape. It also demonstrates that a graph may be planar even though
this fact may not be evident from a given representation.

2.10. Wheels.

Definition 2.10.1. A wheel is a join Cn ∗ G, where Cn is a cycle and G is a
graph with one vertex and no edges. The wheel with n+ 1 vertices is denoted Wn.
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Discussion

Notice that a wheel is obtained by starting with a cycle and then adding one new
vertex and an edge from that vertex to each vertex of the cycle. Be careful! The
index on the notation Wn is actually one less that the number of vertices. The n
stands for the number of vertices in the cycle that we used to get the wheel.

2.11. n-Cubes.

Definition 2.11.1. The n-cube, denoted Qn, is the graph with 2n vertices rep-
resented by the vertices and edges of an n-dimensional cube.

These graphs can be constructed recursively as follows:

1. Initial Condition. A 0-cube is a graph with one vertex and no edges.

2. Recursion. Let Q1
n and Q2

n be two disjoint n-cubes, n ≥ 0, and let f : Q1
n → Q2

n be
an isomorphism. Qn+1 is the graph consisting of the union Q1

n ∪Q2
n, together with

all edges {v, f(v)} joining a vertex v in Q1
n with its corresponding vertex f(v) in

Q2
n.

Qn can also be represented as the graph whose vertices are the bit strings of length
n, having an edge between each pair of vertices that differ by one bit.

Discussion

The n-Cube is a common way to connect processors in parallel machines. Here
are the cubes Q3 and Q4.

4-cube3-cube

000 100

010

001

110

011 111

101

Exercise 2.11.1. Find all the subgraphs of Q1, and Q2.

Exercise 2.11.2. Label the vertices of Q4 appropriately, using bit strings of length
four.
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Exercise 2.11.3. Use your labeling of the vertices of Q4 from Exercise 2.11.2 to
identify two disjoint Q3’s, and an isomorphism between them, from which Q4 would
be obtained in the recursive description above.

Exercise 2.11.4. Prove that Qn+1 ⊆ Q1
n ∗ Q2

n, where Q1
n and Q2

n are disjoint
n-cubes, n ≥ 0.

Exercise 2.11.5. Prove that the 2-cube is not (isomorphic to) the join of two
1-cubes.

Exercise 2.11.6. Draw the graph Q5. [Hint: Abandon trying to use a ”cube”
shape. Put 00000 on the top of the page and 11111 on the bottom and look for an
organized manner to put the rest in between.]

2.12. Bipartite Graphs.

Definition 2.12.1. A simple graph G is bipartite if V can be partitioned into
two nonempty disjoint subsets V1 and V2 such that every edge connects a vertex in V1

and a vertex in V2.

Definition 2.12.2. A bipartite graph is complete if V can be partitioned into
two disjoint subsets V1 and V2 such that there is an edge from every vertex V1 to every
vertex in V2.

Km,n denotes the complete bipartite graph when m = |V1| and n = |V2|.

Discussion

The definition of a bipartite graph is not always consistent about the necessary
size of |V1| and |V2|. We will assume V1 and V2 must have at least one element each,
so we will not consider the graph consisting of a single vertex bipartite.

Note: There are no edges connecting vertices in V1 in a bipartite graph. Neither are
there edges connecting vertices in V2.

Exercise 2.12.1. How many edges are there in the graph Km,n?

Exercise 2.12.2. Prove that a complete bipartite graph Km,n is the join Gm ∗Gn

of graphs Gm and Gn, where Gm has m vertices and no edges, and Gn has n vertices
and no edges.

2.13. Examples.

Example 2.13.1. A star network is a K1,n bipartite graph.
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K1,8

Example 2.13.2. Ck, for k even, is a bipartite graph: Label the vertices {v1, v2, ..., vk}
cyclicly around Ck, and put the vertices with odd subscripts in V1 and the vertices with
even subscripts in V2.

(1) Suppose V1 is a set of airlines and V2 is a set of airports. Then the graph
with vertex set V = V1 ∪ V2, where there is an edge between a vertex of V1

and a vertex of V2 if the given airline serves the given airport, is bipartite.
If every airline in V1 serves every airport in V2, then the graph would be a
complete bipartite graph.

(2) Supplier, warehouse transportation models where an edge represents that a
given supplier sends inventory to a given warehouse are bipartite.

Exercise 2.13.1. Is the following graph bipartite?
b

a

c

d

e

Exercise 2.13.2. Prove that Qn is bipartite. [Hint: You don’t need mathematical
induction; use the bit string model for the vertex set.]

Bipartite graphs also arise when considering the question as to whether a graph is
planar. It is easy to see that the graphs K1,n and K2,n are planar for every n ≥ 1. The
graphsKm,n, however, are not planar if bothm and n are greater than 2. In particular,
K3,3 is not planar. (Try it!) A theorem, which we shall not prove, states that every
nonplanar graph contains (in some sense) a subgraph (see Slide 15) isomorphic to K5

or a subgraph isomorphic to K3,3.

Remark 2.13.1. The important properties of a graph do not depend on how it is
drawn. To see that two graphs, whose vertices have the same labels, are isomorphic,
check that vertices are connected by an edge in one graph if and only if they are also
connected by an edge in the other graph.


