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5. Spanning Trees

5.1. Spanning Trees.

Definition 5.1.1. Given a connected graph G, a connected subgraph that is both
a tree and contains all the vertices of G is called a spanning tree for G.

Discussion

Given a connected graph G, one is often interested in constructing a connected
subgraph, which contains all of the vertices of G, but has as few the edges of G as
possible. For example, one might wish to find a minimal graph in a connected circuit
in which each pair of nodes is connected. Such a subgraph will be a spanning tree
for G. As we will soon see, if G is not already a tree, then it will have more than one
spanning tree.

5.2. Example 5.2.1.

Example 5.2.1. In the figure below we have a graph drawn in red and black and
a spanning tree of the graph in red.
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Discussion

The spanning tree of a graph is not unique.

Exercise 5.2.1. Find at least two other spanning trees of the graph given in
Example 5.2.1.
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5.3. Example 5.3.1.

Example 5.3.1. K5 has 3 nonisomorphic spanning trees.

Discussion

The three nonisomorphic spanning trees would have the following characteristics.
One would have 3 vertices of degree 2 and 2 of degree 1, another spanning tree would
have one vertex of degree three, and the third spanning tree would have one vertex of
degree four. There are more than 3 spanning trees, but any other will be isomorphic
to one of these three.

Exercise 5.3.1. How many nonisomorphic (unrooted) spanning trees are there of
the graph in Example 5.2.1?

5.4. Existence.

Theorem 5.4.1. A graph is connected if and only if it has a spanning tree.

Discussion

One of the key points of Theorem 5.4.1 is that any connected graph has a spanning
tree. A spanning tree of a connected graph can be found by removing any edge that
forms a simple circuit and continuing until no such edge exists. This algorithm turns
out to be very inefficient, however, since it would be time-consuming to look for
circuits each time we wish to consider removing an edge. There are two recursive
algorithms, the depth-first search and the breadth-first search algorithms, that are
fairly efficient, but we will not discuss them here, since they will be covered in depth
in your computer science courses.

Proof of Theorem 5.4.1. First we let G be a graph that contains a spanning
tree, T . Let u and v be vertices in G. Since T is a spanning tree of G, u and v are
also vertices in T . Now, T is a tree, so it is connected. Thus there is a path from u
to v in T . T is, by definition of a spanning tree, a subgraph of G, so the path in T
from u to v is also a path in G. Since u and v were arbitrary vertices in G we see
that G is connected.

Conversely, we assume G is a connected graph. Notice that if G is not simple
we may remove all loops and all but one edge between any pair of vertices that has
more than one edge between them and the resulting graph will be a simple connected
graph. Thus we may assume without loss of generality that G is simple.

Let n = |V (G)|. If G has fewer than n− 1 edges then it would not be connected
as a result of an exercise in Connectivity, thus |E(G)| ≥ n−1. Also from Introduction
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to Trees we recall that G is a tree if and only if |E(G)| = n− 1, so we assume G has
at least n− 1 edges, say |E(G)| = (n− 1) + k.

We will prove that a connected graph with n vertices and (n−1)+k edges contains
a spanning tree by induction on k, k ≥ 0.

Basis Step: k = 0. Then G is already a tree by our observation above.
Induction Step: Assume that every connected graph with n vertices and (n −

1) + k edges, k ≥ 0, contains a spanning tree. Suppose G is a connected
graph with n vertices and (n − 1) + (k + 1) edges. Since |E(G)| > n − 1,
G is not a tree so there must be a simple circuit in G. Removing any edge
from this circuit will result in a connected subgraph, G1, of G with the same
vertex set and n− 1 + k edges. By our induction hypothesis, G1 contains a
spanning tree. But since G1 is a subgraph of G containing all of the vertices
of G, any spanning tree of G1 is a spanning tree of G. Thus, G contains a
spanning tree.

Therefore, by the principle of mathematical induction, every simple con-
nected graph contains a spanning tree.

�

This proof can be used as a basis of a recursive algorithm for constructing spanning
trees. It is, however, nothing more than the inefficient algorithm we alluded to above.

Corollary 5.4.1.1. A connected subgraph of G that has the minimum number of
edges and still contains all the vertices of G must be a spanning tree for G. Moreover,
a spanning tree of a graph with n vertices must have exactly n− 1 edges.

5.5. Spanning Forest.

Definition 5.5.1. A spanning forest of a graph G is the union of a collection
of one spanning tree from each connected component of G.

Theorem 5.5.1. Every finite simple graph has a spanning forest.

Discussion

A graph that is not connected does not have a spanning tree. It does, however,
have a spanning forest.

Exercise 5.5.1. Prove Theorem 5.5.1.
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5.6. Distance.

Definition 5.6.1. Let T1 and T2 be spanning trees of the graph G. The distance,
d(T1, T2), between T1 and T2 is the number of edges in E(T1)⊕ E(T2). That is,

d(T1, T2) = |E(T1)⊕ E(T2)|.

Discussion

Recall the notation ⊕ from sets is the symmetric difference of two sets: A⊕B =
A ∪B − A ∩B.

Consider the spanning tree in Example 5.2.1. It is possible to find another span-
ning tree of the given graph by removing one edge from the given spanning tree and
adding an edge not already in use. (See Exercise 5.6.4 below.) The distance between
this new spanning tree and the old one is 2, since there is 1 edge in the first that is
not in the second and one edge in the second that is not in the first.

Exercise 5.6.1. What is the parity of the distance between any two spanning trees
of a graph G? Explain. (Parity is even or odd).

Exercise 5.6.2. Prove that if A, B, and C are arbitrary finite sets, then

|A ∩ C| ≥ |A ∩B|+ |B ∩ C| − |B|.
[Hint: If X and Y are finites sets, |X ∪ Y | = |X|+ |Y | − |X ∩ Y |.]

Exercise 5.6.3. This one is in your homework. Do not post the solution on the
discussion board.

Prove that if T1, T2, and T3 are spanning trees of a simple connected graph G then

d(T1, T3) ≤ d(T1, T2) + d(T2, T3).

[Hint: First, reduce the inequality to the one in Exercise 5.6.2.]

Exercise 5.6.4. Suppose T and T ′ are spanning trees of a simple connected graph
G and T 6= T ′. Prove that there is an edge e in T that is not in T ′ and an edge e′

in T ′ that is not in T such that if we remove e from T and then add e′ to T − e,
the resulting subgraph T ′′ of G is a spanning tree. [Hint: First show that T ∪ T ′ is a
connected subgraph of G that is not a tree.]

Exercise 5.6.5. In Exercise 5.6.4 what is the relationship between d(T ′, T ′′) and
d(T, T ′)?

Exercise 5.6.6. Prove that if T and T ′ are spanning trees of a simple connected
graph G and T 6= T ′, then there are spanning trees T0, T1, T2, ..., Tk of G, k ≥ 1, such
that

(a) T1 = T ,


