2. Representing Boolean Functions

2.1. Representing Boolean Functions.

Definitions 2.1.1.

- 1. A literal is a Boolean variable or the complement of a Boolean variable.
- 2. A **minterm** is a product of literals. More specifically, if there are n variables, $x_1, x_2, \ldots x_n$, a minterm is a product $y_1y_2 \cdots y_n$ where y_i is x_i or \overline{x}_i .
- 3. A sum-of-products expansion or disjunctive normal form of a Boolean function is the function written as a sum of minterms.

Discussion

Consider a particular element, say (0, 0, 1), in the Cartesian product B^3 . There is a unique Boolean product that uses each of the variables x, y, z or its complement (but not both) and has value 1 at (0, 0, 1) and 0 at every other element of B^3 . This product is $\overline{x} \, \overline{y} z$.

This expression is called a *minterm* and the factors, \overline{x} , \overline{y} , and z, are *literals*. This observation makes it clear that one can represent *any* Boolean function as a *sum-of-products* by taking Boolean sums of all minterms corresponding to the elements of B^n that are assigned the value 1 by the function. This sum-of-products expansion is analogous to the *disjunctive normal form* of a propositional expressions discussed in *Propositional Equivalences* in MAD 2104.

2.2. Example 2.2.1.

EXAMPLE 2.2.1. Find the disjunctive normal form for the Boolean function F defined by the table

x,	y	z	F(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Solution: $F(x, y, z) = \overline{x}y\overline{z} + x\overline{y}\overline{z} + x\overline{y}z$

Discussion

The disjunctive normal form should have three minterms corresponding to the three triples for which F takes the value 1. Consider one of these: F(0,1,0) = 1. In order to have a product of literals that will equal 1, we need to multiply literals that have a value of 1. At the triple (0,1,0) the literals we need are \overline{x} , y, and \overline{z} , since $\overline{x} = y = \overline{z} = 1$ when x = 0, y = 1, and z = 0. The corresponding minterm, \overline{xyz} , will then have value 1 at (0,1,0) and 0 at every other triple in B^3 . The other two minterms come from considering F(1,0,0) = 1 and F(1,0,1) = 1. The sum of these three minterms will have value 1 at each of (1,0,0), (0,1,0), (1,0,1) and 0 at all other triples in B^3 .

2.3. Example 2.3.1.

EXAMPLE 2.3.1. Simply the expression

$$F(x, y, z) = \overline{x}y\overline{z} + x\overline{y}\,\overline{z} + x\overline{y}z$$

using properties of Boolean expressions.

Solution.

$$\overline{x}y\overline{z} + x\overline{y}\,\overline{z} + x\overline{y}z = \overline{x}y\overline{z} + x\overline{y}(\overline{z} + z) \\ = \overline{x}y\overline{z} + x\overline{y} \cdot 1 \\ = \overline{x}y\overline{z} + x\overline{y}$$

Discussion

Example 2.3.1 shows how we might simplify the function we found in Example 2.2.1. Often sum-of-product expressions may be simplified, but any nontrivial simplification will produce an expression that is *not* in sum-of-product form. A sum-of-products form must be a sum of *minterms* and a minterm must have each variable or its compliment as a factor.

EXAMPLE 2.3.2. The following are examples of "simplifying" that changes a sumof-products to an expression that is not a sum-of-products:

sum-of-product form:	$x\overline{y}z + x\overline{y}\overline{z} + xyz$
NOT sum-of-product form:	$= x\overline{y} + xyz$
NOT sum-of-product form:	$=x(\overline{y}+yz)$

EXERCISE 2.3.1. Find the disjunctive normal form for the Boolean function, G, of degree 4 such that $G(x_1, x_2, x_3, x_4) = 0$ if and only if at least 3 of the variables are 1.

2.4. Functionally Complete.

DEFINITION 2.4.1. A set of operations is called **functionally complete** if every Boolean function can be expressed using only the operations in the set.

Discussion

Since every Boolean function can be expressed using the operations $\{+, \cdot, -\}$, the set $\{+, \cdot, -\}$ is *functionally complete*. The fact that every function may be written as a sum-of-products demonstrates that this set is functionally complete.

There are many other sets that are also functionally complete. If we can show each of the operations in $\{+, \cdot, -\}$ can be written in terms of the operations in another set, S, then the set S is functionally complete.

2.5. Example 2.5.1.

EXAMPLE 2.5.1. Show that the set of operations $\{\cdot, -\}$ is functionally complete.

PROOF. Since \cdot and - are already members of the set, we only need to show that + may be written in terms of \cdot and -.

We claim

$$x + y = \overline{\overline{x} \cdot \overline{y}}.$$

Proof of Claim Version 1

$\boxed{\overline{\overline{x}\cdot\overline{y}}} = \overline{\overline{x}} + \overline{\overline{y}}$	De Morgan's Law
= x + y	Law of Double Complement

Proof of Claim Version 2

x	y,	\overline{x}	\overline{y}	$\overline{x} \cdot \overline{y}$	$\overline{\overline{x}\cdot\overline{y}}$	x + y
1	1	0	0	0	1	1
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	1	0	0

Discussion

EXERCISE 2.5.1. Show that $\{+, -\}$ is functionally complete.

EXERCISE 2.5.2. Prove that the set $\{+, \cdot\}$ is not functionally complete by showing that the function $F(x) = \overline{x}$ (of order 1) cannot be written using only x and addition and multiplication.

2.6. NAND and NOR.

Definitions 2.6.1.

1. The binary operation NAND, denoted |, is defined by the table

2. The binary operation NOR, denoted \downarrow , is defined by the table

x	y	$x \downarrow y$
1	1	0
1	0	0
0	1	0
0	0	1

Discussion

Notice the NAND operator may be thought of as "not and" while the NOR may be thought of as "not or."

EXERCISE 2.6.1. Show that $x|y = \overline{x \cdot y}$ for all x and y in $B = \{0, 1\}$.

EXERCISE 2.6.2. Show that {|} is functionally complete.

EXERCISE 2.6.3. Show that $x \downarrow y = \overline{x + y}$ for all x and y in $B = \{0, 1\}$.

EXERCISE 2.6.4. Show that $\{\downarrow\}$ is functionally complete.