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INTRODUCTION




STRUCTURAL OVERVIEW OF BIOLOGY

' i

DNA of bacteria Engyme
uith 2,000 genes
%2,000 proteins

-

An active protein
complex

® From DNA seguence , predict all ®From protein structures
protein structures predict all function .




PROTEIN FOLDING IS CENTRAL

Seguence > Structuwre 2 Function

@Unfolded protein is a #Folded protein @lunction depends
chain of oamino acids on protein shape
. {; é %
$ 4 >
® Hghly mabile - > Almost unigue shape @ Specific associations
® [nactive g : ? PYEC(S‘E[lJ ordered ® Brecise reactions
' ® Stable

® Active




tSIMuLATIONj




TOTAL POTENTTAL ENERGY

f.
U= Z%K\,(b‘bo)z +Z% KQ (9'90)2 T
All Bonds All P\hg[e';
n
+2. K#['l -cos(ng+d)] |
All Torsion P\hg[&g ‘f‘
& —
WICARTE) I
All nonbonded pairs ’ ~ 4
ENCAD.

+ 3 g /v |

All partial charges (Lifson )
L S




TOTAL POTENTIAL ENERGY . 2

* The total potential energy or

T enthalpy tully detines the
- system , U.
gf * Tle forces are the gradients
g ot the energy .
F(”‘) = 'Ju/ClX * The eneray is a sum of
9
“y, independent terms tor:

Bonds , Bond angles,

Torsion angles and non-
bonded atom pairs .

Position 5




MOLECULAR DYNAMICS THEORY

......... » #force = ~dl/dx (slope of potential, U);
: accelerakion, m alt) = Force.

l . <% ®All akoms move together so force bebueen

:f B oboms ckmhge wikth time .
‘ . ® Analytical solukion for x(t) and W(t)
y is impossible; numerical solution is trivial.
x(t+at)= () + V@) ot +L4act)-alt-od 1 A-Ea/c
New position Old position  Old velocity Acceleration

v(t+ab) = V(E + | 2a(t+ad) + Salt) - alt-at)] at/,

New uelacitlj Ol uelacitﬂ Acceleration Tive ske P,
Nm-qbt('-r of cmrJi:\r}-.atE At 2 mugt bﬂ
_ 1 ‘ 'Y e b very small ok
ukimh}; -2 MiVi(y) = Jz'T'L k‘ T 107" seconds
Kinetic eneray Atomic mosses | velocities BEE:J:LBS Tenperature or O O0A ps .

Total eneroy (ot 4 Usinetac ) must nok: change with kime -
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SIMULATING THE HYDROPHOBIC EFFECT

¢ 1| nonosecond MD simulations in
periodic waker boxes with from 30mM
to 3 Molar kﬂolroc arbon solukion .
Encod with F2C water (199%).

Measure cluster formakion l::fj Voronoi .

A(AB) = d(BC), but only A, B touch.




MOVIE OF BENZENE
MOLECULAR DYNAMICS IN
WATER AT ROOM
TEMPERATURE




HY DROPHOBIC ENERGY IS COOPERATIVE
A Y 9 oV (R A

® Accume clusters are close—

AG (kcal/mol)

packed spheres:

Vy = NV,

| | | | AN _ o((VN)?‘/g _ ﬁ(N)Z/g
0 5 0 15 20 25 AD = ﬁ[(N)Ug-(N-ﬂUg]

Number in Cluster

""LE AG'N :YAANJ then
AGy=YRL(N)2-(N-1)*]

® Deteymine Y Laj Fittihg with
CON)2_(N-1HVAT




HY DROFHOBIC ENERGY DEPENDS ON
BURIED SURFACE

q
O =N

Iq.'__.“

5 I ' .0 : ® Binned] tk , slope
'6 I 15 cal/mol—At
1 Robust fit , slope |

-7t L5 col/mol-Al

O 20 40 60 80 100 120 140 160 180
m— Decreose in Contoct Area (;\1) e

Ckange in Free Ener%
(keal/mole )
W

Constant of proportionality matches experiment . ‘
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UNEOLD THE o«—HELIX

12 Alonine residues

& Stork as on ideal A-helix in & box of
waker .

® Run 200 ps (100,000 time steps)

of molecular olﬂhmmi(';‘; ok six different
temperatures .

% Record percentoge ol-helix formed for
last. 50 ps.

® See temperakure—induced melting on
picosecond time—scale

Percent: age Helix 3

Put it in a box of waker.

8

Z

2. 25

Y

-
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—— Temperature (K) —p

300 500




A-HELTX LESS STABLE IN WATER

¢ In vacuo the helix s very stable
Ko even at high temperature.

O0ps ¥

&

e Helix

¢ In water the helix is unstable at
hioh temperature.

%

5

Pevcent
alter 4

* The rate of melting depends on
- % w " m  temperature.
Temperature (K) —p

e
w
(]
i

* Happens because water molecules
stabilize the transition state.




WATER ALLOWS HYDROGEN BONDS TO BREAK

Intack kﬂolrogen Hﬂolrogen bond
bonad in helix s breaking

! . I . E . ;
Jro
v~ X

[ Free l._:her% barvier
bebween stakes
e Water catalﬂ5es the bredkaoge of l\-jolrogen
bonds L:aj stabilijing the transition state.

o

ic much lower in woker
% .
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SIMULATING FOLDING IS DIFFICULT?

o 03 Y

£ 4 mtcrosecono{ Bﬁrner

A millisecond

Nakive

St ate
Compact , Ordered

Free Ener%

Unfolded ...
State Molten Globule Qfl’
Exponded, Disordered Skate C&

Compact , Disordered

Reaction Coordinate
¢ Simulation of 1 millisecond reguires 10,000 (U ﬂears!
¢ Must get over high barriers £ many olegrees of freedom .




MASSIVE COMPUTATIONAL RESOURCES

* bmpty Supercomputers.

*Blue Gene (IBM).
" Fofal(hg@\\ome (V(Jo\ﬂ Pande ) .




+FOL DING@HOME

Folding@home

from geno to structure

http://www stanford.edu/group/pandegroup/Cosm/

Using Folding@home

o Protect Goals: solvmg the protem folding
problem

How you can help

Download (New!! Version 1.33)

How to mstall our software

Frequently asked questions (FAQ)
Contact Foldmgf@whome (Help Center)
Folding{@home discussion board eidingetome

Join Foldingi@home by rivming our screen

¢ Fola proteins on 10,000 wad b
computers using the | Ldee SETI@home |

prooyam Gs G Screen Saver!
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>0 YEARS OF SIMULATION

s We have 10,000,000 times more resources .
* Systems have become larger (100 times) .
* Runs have become lonoer (100 ,000 times) .

* tnergy tunctions have become simpler |

2005

1955 P\rgon 1770 Water



PREDICTION:




WHAT DRIVES FOLDING?

*Rotein is a chain .

*Self —avoiding and close packed .

* Residue preferences:

2Inside /Outside
*Specific Neighbors

Red are hydrophabic , lie to

be GGy from uater
e _J

,
Green are kﬂolropki[ic , like

Hﬂolmpkobic Hﬂolropki[ic All Residues  contact with water
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A PARADIGM FOR PREDICT ING STRUCTURE

DECOYS |

@ Construct a lorae number

of possible folded shopes
(Decogs).

DISCRIMINATION

¢ Select the
| /g correct , native
Need a (:)OOGL energy function @)

/.)




THE CASP EFRECT

* Critical Assessment of Structure Prediction .

* Predict what no one knows.

* redict what s about to be lnown.

Joln Moult

* Carefully control evaluation and assessment. Competition?

* Meet to discuss what went Wwrona, ond what went rigkt.

* Have had CASP1 (“9) throuah CASP, (00).

Moult , Pedersen, Judson and Fidelis, A Large—Scale Experiment to
Assess Protein Structure Prediction Methods. Proteins. 23: w-v (1995)
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HIERARCHICAL STRUCTURE PRE])ICTION

[ Use a 3—state lakkice model.

1 of
10,000
low —~energy
shapes .

Predicked

seconolmrﬂ
struckure

Add all aktoms

Use o L—skoke off—lakkice model. i Full dekail




HIERARCHICAL PREDICTION DOES WELL

Does well ak CASPS (Crikical Assessment of Structure Prediction , Asilomar 1998)

Td46adg 7.5A (49 residues; 66113 ) « T56/dnab 6.8 A ( 60 residues; 67126 )
% T50%smd3 6.7 A (46 residues; 3075 ) % T61/hdea 7'41.{ (66 residues; 974 )

Samudrala, Xia, Huong & Levitt. Bona Fide Ab Initio Protein Structure Prediction

u';ing a Combined Hierarchicdl P\ppmﬂciu Froteins , 37 (3S): %1% (179D ‘
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SAMPLING ANT LION TOWN POTENTIALS

Uniform Exhaustive Search

T ? ? ? Y 9
Random start Minimization or Monte Carlo

~wgi
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ALL-ATOM ENERGY MINIMIZATION

® Minimize all-atom energy nith respect to all torsion angles.

® Augment the normal potential eneray function with:

® Cooperative kﬂo\mgen bonds .

® Cooperative kﬂolropkolpic interactions . [ ]

®Forced exposure of charges.




POTENTIAL ENERGY IN TORSION SPACE

$ 4,
Us ZKyD-cntupenl] S\ &

All Torsion P\hg[e‘s | ' + 5
6 4 2
Y 2 rﬁ \ o, |
+ 2. e[ ("4) - /r)] afl. 1% 3
All nonbonded pairs | L r > 4—Y—I&'
A
+ > 3324.i9; /v i i
P\[[ Pﬁﬁ:iﬁ[ ckﬁrges o [— °
|
® A protein nith N residues has obout —r—p

LN ((P,\Il-,- x) single bond torsion
angles.  The some protein has obout
S50ON Carkesian coordinates (x ,tj,)).




Omaan al Potential Modified Potential
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STRUCTURE PREDICTION BY MINIMIZATION

* Minimize special energy tunckion with respect to 104 = 1w
Yorsion angles ((p’w, X)'

¢ Add enerqy terms for cooperative kﬂolrogen bonds
anck kﬂo{ro;{\obic compackion .

This method dida well at
CASPL , 2000.

Best T107. RMS= 235 TA0L Submitted. RMS=5 O




COOPERATIVE HYDROGEN BONDS

¢ Cooperakive kﬂolrogen bonds give rise to good seconolarﬂ struckture .

" ‘ Ih.l
3~ T
L:‘-‘.{-*
<l
&
-} o, ,-f
s |
'5,..‘} :
Y,

Modified Potential

Bad H Bonds L ""Origﬁnal Potential




ALL-R PREDICTION SUCCESS

® All-R sheet proteins are the hardest to predict.

* Torsion minimization does well on THI4, an all B—protein.

Native Structure . Predickion is somewhat similar.
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MONTE CARLO METHODS

@ Normal Monte Carlo:

Malee random moves

an Gccept some of

Step —» them (Metropolis) ,

At low temperature

(a) At each move downhill. @ Simalated Annedling:
step, attempt

MANY MOves . Reduce 1, the
(b)Accept the temperature , s
first move that

obeus: Random the run proceeds.
number , Ry < Step —»

exp (HAU/I«T)




Fmgment Lilomrﬂ

e

5 ¢

)

¢

FRAGMENT MONTE CARLO

RVL

RFL

EVL

KV1

KVY

*Maole a ldomrﬂ of small
Fmgments of similar

seguence .

®Suap in 6 new tragment by
setting six (/)

Lorsion mngles ,

* Accept move lpﬂ Monte Cearlo

ana cnneal .




— Ny —p

— Efr) —p»

INOWLEDGE-BASED ENERGIES

I thtmctiwl

ilit

— NG —p

— Eifr) —p

I Repulsive I

#Get distribution of
Aist ances between
pairs of Gtom centers

ot a particular type,
e.q.D-OD1.. F-CDL.

ﬁNormali}e ond tale 109
to get Ener% score:

E;(r)=logIN,(r) /M, ()3




SEGMENT FOLDING PREDICT ION

* Do Monte Carlo moves with vespect to (phi, psi)
torsion ﬁngle.s. Simuloted anne.ﬁlf_ng_ [ T ]

& Use all—atom Know IEA(DE-—B Gsed energy function .

Add terms to enforce compaction .

® Get reasonable (phi,psi)
angles from real
protein trogments.

% Tlis method does well ot

CASP&, Asilomar “00. TOMO Ft 80 residues to L.O/E\




HARD PROBLEMS




WHY IS FOLDING SO HARD?

* Many ditterent specitic interactions.
* Cooperativity of the underlying interactions.

¢ [lyee—dimensional with very many possible

spatial Grrangements .

* Violates Grick’s Law of Hard Problems.




WHY ARE WE GET TING
BETTER AT FOLDING?

* Peer pressure (CASP)?

* Faster computers?
* M any more sey,uences?

* More structures?




INFORMATION + PHYSICS = LIFE

DNA RNA Protein Folded
Seg uence —) Seg uence —) Seg uence — Protein

e n silico 5“93: 1?“9“1;: Hara: Foldizg (s
ﬁhgﬂ I"EP Cd ™ Ghl‘j LO lj
i Code simulation

* N o

Ec@j: Fololing is
free l:nj laws of
physics

Hard: Transcripkion Hard: Translation
Polymer ase Ribosome
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THE END




HISTORICAL RECORD OF BEST PREDICTIONS AT CASP

CASP & YEAR

NUMBER
TARGETS

BEST RESULT
<Q3> GROUP

CASPl1 1994
CASPZ2 1996
CASP3 1998
CASP4 2000

24
18
28

63 Rost & Sander

70 Rost
75 Jones
80 Jones

® Steady improvement of dbout 5% per CASP (Ew_vﬁ tuo ye ars )




NOTES

* PP files on home paae

“ Searcking LW .google .com

Google
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