
10. HP model for Protein Folding

Protein structures can be investigated using energy functions and trying to find
the native structure by looking for the configuration with lowest energy. Often
ignored in these computations are the facts that proteins obey laws of statistical
mechanics, and that temperature is an important factor.

Statistical mechanics tells us that not every protein in a large group of them
has the lowest energy. The energies are random but they obey certain statistical
laws based on the Boltzmann distribution. Also it is known that proteins become
disordered and unfolded at high temperature.

The Boltzmann distribution is a law of statistical mechanics related to random
distributions of energies of a large number of molecules. The following general
principle applies to many phenomena in statistical mechanics: The most likely thing
to happen is what is observed. This tendency towards the most likely configuration
is related to entropy. Entropy is a measure of randomness, and physical systems
move towards higher entropy. The Boltzmann distribution is also important in the
computational technique of simulated annealing. In this techniques parameters are
varied randomly to search for the minimum of a function.

Probability is measured by counting the number of possibilities. A large number
of molecules called an ensemble. Each molecule has a different energy. The prob-
ability of a certain energy is given by the number of molecules having that energy
divided by the total number of molecules. Using combinatorial arguments we can
explain the Boltzmann distribution

(1) P (E) ∼ A exp (−βE)

where P (E) is the probability that a molecule has energy E. Here β is a constant
which is a function of temperature, and A is a constant chosen to assure that the
total probability is 1. This distribution occurs in the situation where the energy is
random, but the total energy is fixed. We see that the lowest energy is the most
likely, but there is a probability that the molecule has higher energy.

10.1. Random distribution of balls in boxes. To understand the Boltzmann
distribution start with a simple combinatorial problem, balls tossed randomly into
boxes. The balls can be thought of as molecules and the boxes as states. At first
we ignore energy.

Combinatorial problem I: Given N balls placed randomly in M numbered boxes,
what is the most probable distribution?

By distribution, we mean a list of the number of balls in each box. We list the
number of ball in each box as n1, n2, . . . , nM .
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This is really a counting problem. Think of numbering the balls and tossing
them in sequence and assume that at each toss the ball has an equal chance of
going in any box. This can be thought of in two different ways; either make a list
of balls and the number of the box that it falls in, or make a list of the boxes and
given the numbers of the balls in the box. Looking at it the first way, there are
MN possible outcomes of N tosses. We assume each is equally probable. Count
the number of outcomes with a given distribution and divide by MN to find its
probability. Then find the distribution for the outcome of largest probability.

As an example, suppose N = 7 and M = 3. To distinguish the balls we think
of them also as numbered, the number of the toss. One possible outcome with
distribution 3,2,2 is

Box 1: balls 1, 3, 5
Box 2: balls 2, 7
Box 3: balls 4, 6

Another possibility giving the distribution 3,2,2 is

Box 1: balls 1, 3, 6
Box 2: balls 4, 5
Box 3: balls 2, 7

How many possibilities are there for the distribution 3,2,2? We can get all such
distributions by taking a permutation of the numbers 1 to 7 and assigning the first
three balls to box 1, the next two balls to box 2, and the last two to box 3. There
are 7! permutations of 7 balls. Since we don’t distinguish the order of balls in a
box, we factor out the 3! permutations of balls in the first box, 2! in the second
and 2! in the third. So there are

7!

3!2!2!
= 210

possibilities for a 3,2,2 distribution.

If we take another distribution, say 1,1,5, then there are only

7!

1!1!5!
= 42

possibilities, so 2,2,3 is a more probable distribution than 1,1,5. The balls are more
evenly distributed for 2,2,3 since the numbers of balls in each box do not differ by
more than 1.

So by a simple counting argument, the number of possible ways to toss N balls
into M boxes with the distribution n1, n2, . . . , nM is

N !

n1!n2! · · ·nM !
.
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The number of possible outcomes is MN , and so 1/MN times this quantity is the
probability of the distribution n1, . . . , nM .

For the most probable distribution, the one with the greatest number of possi-
bilities, the number of balls in each box is about the same. We can show that

(2)
1

n1!n2! · · ·nM !

with

(3) n1 + n2 + · · ·+ nM = N

is maximum when the balls when the values nj are approximately equal.

If the distribution n1, n2, . . . , nM maximizes (2) under the constraint (3) then
for any i and j, ni and nj differ by no more than 1, that is,

ni − nj ≤ 1.

Proof Consider a distribution with one less ball in box i and one more in box
j. Since the original distribution was maximal, (2) is not increased. So replacing
ni and nj by ni − 1 and nj + 1 respectively in (2) the result is less or equal. After
cancellation, this gives

1

(nj + 1)!(ni − 1)!
≤ 1

nj !ni!
,

and so ni − nj ≤ 1.

Thus in the most probable distribution, the balls are equally distributed in the
boxes. The number of balls in any two boxes does not differ by more than 1.

10.2. Random distribution of balls in boxes with energy. To get a Boltz-
mann type distribution, consider a simplified situation where the energy is restricted
to discrete numbers 1, . . . ,M . Suppose that the number of each box indicates the
energy of the ball in the box. Suppose also that the total amount of energy is fixed
as a constant Etot, so in addition to the constraint (3), we have the constraint

(4) n1 + 2n2 + · · ·+ j nj + · · ·+M nM = Etot.

What is the most probable distribution in this situation? We will show that if
the numbers nj are very large, then the distribution is approximately exponential,

(5) nj ≈ A ·Bj ,
for constants A and B. Note that nj/N represents the probability that for this
distribution a molecule has energy j.

Note from (5) that

(6) ni/nj ≈ Bi−j
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so that the quotient ni/nj depends only on the energy difference i− j.

To show that the most probable distribution is of the form (5), we show that the
quotients nj−1/nj and nj/nj+1 are equal.

If the distribution n1, n2, . . . , nN maximizes (2) under the constraints (3) and
(4) and if the values nj are large, then

(7)
nj−1
nj
≈ nj
nj+1

.

for all j.

Proof. Let i = j − 1 and k = j + 1. Start with the maximal distribution and
change it by considering a distribution with two less balls in box j and one more in
box i and one more in box l. This does not change the total energy so constraint
(4) still holds. Also we have not changed the number of balls, so (3) holds. We
assumed that the original distribution maximized (2), so since since (2) decreases
under this rearrangement, we have

1

(ni + 1)!

1

(nj − 2)!

1

(nk + 1)!
≤ 1

ni!

1

nj !

1

nk!
,

and hence

(8)
nj

ni + 1

nj − 1

nk + 1
≤ 1.

Likewise if by considering a distribution with two more balls in box j and one less
in box i and one less ball in box k, get

(9) 1 ≤ nj + 2

ni

nj + 1

nk
.

Letting ni →∞ shows that

(10)
ni−1
ni

=
ni
ni+1

or

(11)
ni+1

ni
= B for all j

where B is a constant. It follows that

(12) nk =
nk
nk−1

nk−1
nk−2

· · · n2
n1

n1 = n1B
k−1

and the distribution is exponential of the form P (k) = nk/N = A ·Bk. Here P (k)
is the probability that for this distribution a ball is in box k. For the probabliities
to add to 1,

A−1 =

M∑
k=1

Bk.

The expression on the right is called the partition function.
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Using Calculus. The above argument is simple and does not require mathematics
above counting and algebra. In most physics books the proof of Boltzmann’s law
is shown using calculus and the theory of Lagrange multipliers. If there is a very
large number of balls it is best to think of

pj = nj/N

as a continuous variable with

(13)

N∑
j=1

pj = 1.

and use the Stirling approximation

lnn! = n lnn− n

for large n. So replace (2) by
∑
pj log pj , and the problem becomes to maximize

S = −
∑

pj log pj

under the constraints (13) and

(14)

N∑
j=1

j pj = Etot.

This problem can be solved using Lagrange multipliers. Let

g =

N∑
j=1

pj h =

N∑
j=1

j pj ,

then for j = 1, . . . , N solve

∂S

∂pj
− α ∂g

∂pj
− β ∂h

∂pj
= 0

for constants α and β. Computing the partial derivatives, we get

−1− ln pj − α− βj = 0

pj = e−1−αe−βj

and again this shows the distribution is exponential, pj = A ·Bj where B = e−β .

10.3. The role of temperature. In the case where energy is not in discrete units
we can write P (E) = A exp(−βE), 0 < E < ∞. Since the probability must
integrate to 1, we have A = β, and we find, using integration by parts, that the
average energy is given by

Average energy =

∫ ∞
0

P (E)E dE =
1

β
.

In the case of gases it is found that the average energy is proportional to the
temperature, 1/β = kT . This gives the Boltzmann distribution in its usual form
(1).
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10.4. HP model. The Boltzmann distribution together with the HP model for
proteins is used to study thre phase transition from denatured to native state in
proteins with decreasing temperature. The HP model uses a very simplified model
of a protein. In this model, a protein is a chain, or discrete curve, of points labelled
H or P depending on the particular amino acid. The points are assumed to be
a distance of 1 apart. H denotes if the amino acid is hydrophylic and P denotes
if it is hydrophobic. This is a typical classification of amino acids. Hydrophylic
residues are expected to be on the outside of a protein and react well with water;
hydrophobic residues do not interact with water and are usually found in the inside
of a protein. A hydrophobic reside is usually not found next to a hydrophylic one.
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