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Abstract Knupp & Steinerg (1993). Free-slip boundary conditions
are also imposed at the entrance, along the sides, and

Numerical predictions are compared to experimentaft the top and bottom of the computational domain. At
measurements of ship models moving with forwardthe exit, _Orlanskl-llke boundary conditions are imposed
speed, including model 5415 and model 5365 (Athena)(Orlanski 1976).
The ability to model forced-motions is illustrated using a The VOF portion of the numerical algorithm is used
heaving sphere moving with forward speed. to track the free-surface interface, including the large-
scale effects of breaking waves, spray formation and air
, entrainment. A novel regridding scheme is introduced
Introduction whereby the level of water at the entrance of the com-
putational domain is preserved. The interface tracking
The Numerical Flow Analysis (NFA) code provides of the free surface is second-order accurate in space and
turnkey capabilities to model breaking waves aroundtime. At each time step, the position of the free surface
a ship, including both plunging and spilling breaking is reconstructed using piece-wise planar surfaces (Rider,
waves, the formation of spray, and the entrainment of airkKothe, Mosso, Cerutti & Hochstein 1994, Gueyffier, Li,
NFA uses a cartesian-grid formulation with immersed-Nadim, Scardovelli & Zaleski 1999). The advection por-
body and volume-of-fluid (VOF) methods. The govern-tion of the VOF algorithm uses an operator-split method
ing equations are formulated on a cartesian grid therebyPuckett, Almgren, Bell, Marcus & Rider 1997). The
eliminating complications associated with body-fitted advection algorithm implements a correction to improve
grids. The sole geometric input into NFA is a surface mass conservation when the flow is not solenodal due to
panelization of the ship hull. No additional gridding be- numerical errors.
yond what is already used in potential-flow methods and
hydrostatics calculations is required. The ease of inpuglre
in combination with a flow solver that is implemented
using parallel-computing methods permit the rapid turn
around of numerical simulations of complex interactions
between free surfaces and ships.

The convective terms in the momentum equations
treated using a slope-limited, third-order QUICK
scheme as discussed in Leonard (1997). A Smagorin-
sky turbulence model is also implemented.. There are no
special treatments required to model either the flow sepa-
ration at the transom or the wave overturning at the bow.
Based on Colella, Graves, Modiano, Puckett & A second-order, variable-coefficient Poisson equation is
Sussman (1999), free-slip boundary conditions are imused project the velocity onto a solenoidal field. A pre-
posed on the surface of the ship hull. The fractional areagonditioned conjugate-gradient method is used to solve
and volumes of very small cells are merged to improvethe Poisson equation.
the conditioning of the Poission solver (Mampaey &

L . NFA is written in Fortran 90. The governing equa-
Xu. 1995). T'he g”q IS streltched alon'g the cgrtesmn aX€ons are solved using a domain deco%positiongmgthod.
using one-dlmensm_mal elliptic equations to IMPTOVE €Srhe domains are distributed over the nodes of a paral-
olution near the ship hull and the free-surface mterfaceIeI computer. Communication between processors on the

Away from the ship and the free-surface interface, whereCray XT3 and X1 is performed using either Crays shared

the flow is less complicated, the mesh is coarser. Detall]$,nemory access library (SHMEM) or MPI. The CPU re-

qf the grid stretchlqg algonthm,_ which uses We'ght.func'.quirements are linearly proportional to the number of
tions that are specified in physical space, are provided in



grid points and inversely proportional to the number ofwhere R, = p,U,L,/u, is the Reynolds number and
processors. For the most part, NFA performed equallyF? = U2/(gL,) is the Froude numbey is the acceler-
well on the Cray X1, which is a vector machine, and theation of gravity. G; is a body force that rotates with the
Cray XT3, which is a massively parallel machine. Thebody (Repetto 2000)P is the pressure. As described in
main exception involved portions of NFA that involved Dommermuth et al. (1998};; is the subgrid-scale stress
conditional statements that could not be vectorized ortensor.S;; is the deformation tensor:

the Cray X1. Together, the ease of input and usage, the

ability to model and resolve complex free-surface phe- S = 1 (8“2’ aua‘) ) (4)
nomena, and the speed of the numerical algorithm pro- ! 2 \0z; Ox;

\é'.dte abrobust capablhrt]y for simulating the free-surfacep andy are respectively the dimensionless variable den-
ISturbances near a ship. sities and viscosities:

p(¢) = A+ (1-NH(9)
weo) = n+(1—nH() , (5)

Consider turbulent flow at the interface between air andvherel = p,/p, andn = p,/ e are the density and vis-
water. Letu; denote the three-dimensional velocity field cosity ratios between air and water. For a sharp interface,
as a function of spacer() and time ¢). The coordinate with no mixing of air and watetI is a step function. In
system is fixed with respect to the ship.is the velocity = practice, a mollified step function is used to provide a
of the ship.v; includes the effects of rigid-body transla- smooth transition between air and water.

tion and rigid-_body rotation._ For an incompressible flow, A no-flux condition is imposed on the surface of the
the conservation of mass gives ship hull:

Formulation

8’&1'
(‘)xi

=0 . (1) UiTy = UMy (6)

wheren; denotes the normal to the ship hull that points
u; andx; are normalized by/, andL,,, which denote the into the fluid.
free-stream velocity and the length of the body, respec-

tively As discussed in Dommermuth et al. (1998), the di-

vergence of the momentum equations (3) in combina-
Following a procedure that is similar to Rider et al. tion with the conservation of mass (1) provides a Poisson

(1994), we letp denote the fraction of fluid that is inside equation for the dynamic pressure:

a cell. By definitiong = 0 for a cell that is totally filled

with air, and¢ = 1 for a cell that is totally filled with 0 10P o )
water. dxi p Ox;
The convection ob is expressed as follows: whereX is a source term. As shown in the next sec-
tion, the pressure is used to project the velocity onto a
o9 0 oQ solenoidal field.
o, T a0 Ui — U)o = 5— 2
5t 7 (w09 = 5 (2

v; is the velocity of the body. The coordinate system isNUMERICAL TIME INTEGRATION

fixed with respect to the body (Repetto 200G). is a Based on Sussman (2003a), a second-order Runge-
sub-grid-scale flux which can model the entrainment ofictta scheme is used to integrate with respect to time the
gas into the liquid. Dommermuth, Innis, Luth, Novikov, fie|d equations for the velocity field. Here, we illustrate
Schlageter & Talcott (1998) provide details of a sub-gridpow a volume of fluid formulation is used to advance
model that is appropriate for interface capturing meth-the yolume-fraction function Similar examples are pro-
ods that allow mixing of air and water. Since the present;jjed by Rider et al. (1994). During the first stage of the

formulation maintains a sharp interfacg,= 0. Runge-Kutta algorithm, a Poisson equation for the pres-
Let p, and y, respectively denote the density and sure is solved:
dynamic viscosity of water. Similarly;, andy,, are the o9 1 opr* 9 [ uk
corresponding properties of air. The flows in the water ——=— | - +R; ] , 8
P g prop Ox; p(¢*) Ox;  Oxy (At + ) ®

and the air are governed by the Navier-Stokes equations:
where R; denotes the nonlinear convective, hydrostatic,

du; + 9 [(u; —v;)u;] = _1op viscous, sub-grid-scale, and body-force terms in the mo-
dt O, ! p Oz mentum equations:’ andp* are respectively the veloc-

1 0 G; 01 ity components at time stép At is the time stepP* is
+pRe dx; (2pS:5) = F2 + oz; () the first prediction for the pressure field.



For the next step, this pressure is used to project thé&Jsing this approach, multiple zones of grid clustering
velocity onto a solenoidal field. The first prediction for may be specified. For example, along the x-axisi

the velocity field {.}) is indical notation), grid points may be clustered near the
bow and stern. For the y-axig{ in indical notation),

w =+ At (R — opr* ) grid points are clustered near the centerline out beyond
: g "o plgF) Oy the half beam. Finally, for the z-axig:{ in indical no-

tation), grid points are clustered near the mean waterline

The volume fraction is advanced using a volume of fluidin a region that is between the top and bottom of the ship

operator (VOF): hull. Note that equation 14, is a nonlinear equation that

is solved iteratively.

1 OP*

¢* = ¢" — VOF (uf, ¢*, At) (10)

Details of the VOF operator are provided later. A Pois-ENFORCEMENT OFBODY BOUNDARY CONDITIONS
son equation for the pressure is solved again during the
second stage of the Runge-Kutta algorithm: A no-flux boundary condition is imposed on the sur-
face of the body using a finite-volume technique. A
9 1 9Pt 9 (Uf + uf n R-) (11)  Signed distance functiop is used to represent the body.
ox; p(¢p*) Oz;  Ox; At ! 1 is positive outside the body and negative inside the
body. The magnitude of is the minimal distance be-
u; is advanced to the next step to complete one cycle ofween the position of) and the surface of the body.is
the Runge-Kutta algorithm: zero on the surface of the body. is calculated using a
) L opki surface pan_elization of the huII_ for.m: G.reen’s theo_rem is
B <u>; +uF At (Ri _ )) 7 (12)used to indicate whether a point is inside or outside the
’ 2\ ! p(¢*) Oz body, and then the shortest distance from the point to the
o surface of the body is calculated. Triangular panels are
and the volume fraction is advanced to complete the alysed to discretize the surface of the body. The shortest
gorithm: distance to the surface of the body can occur on either
. A a surface, edge, or vertice of a triangular panel. Details
oF+l = gk — VOF (Uz tu; s At) (13) associated with the calculationgfare provided in Suss-
2 man & Dommermuth (2001).

Cells near the ship hull may have an irregular shape,

GRIDDING depending on how the surface of the ship hull cuts the
cell. On these irregular boundaries, the finite-volume ap-

Along the cartesian axes, one-dimensional stretchproach is used to impose free-slip boundary conditions.

ing is performed using a differential equation. betle- | et S, denote the portion of the cell whose surface is on
note the position of the grid points in physical space, andhe body, and les, denote the other bounding surfaces

let £ denote the position of the grid points in a mappedof the cell that are not on the body. Gauss's theorem is

space. As shown by Knupp & Steinerg (1993), the dif- applied to the volume integral of equation 8:
ferential equation that describes grid stretching in one di-

mension is as follows: _ * ko
/ ds”iikap :/ ds (u’erRini) . (16)
P 1owdr Ly s p(¢%) Oz Js, 45, At
o T wagoe 0 (14)

Here,n; denotes the components of the unit normal on
wherew(x) is a weight function that is specified in phys- the surfaces that bound the cell. Based on equation 9, a
ical space. For example, suppose the grid spacing is corﬁ\—'eumaf”” condition is derived for the pressureSgras
stant but different forr < , andz > x,. Between follows:

z, < x < x1, there is a transition zone from one grid

spacing to the next. Then the following weight function ni OPT __uini + UM R (17)
may be used to describe this distribution of grid points: p(¢*) Oz; At At
w(z) = w for x < xg The Neumann condition for the velocity (6) is substituted
wo — w (- o) into the preceding equation to complete the Neumann
w(z) = ———2 <1 + cos(0)> condition for the pressure of),:
2 1 — Xo
+ wp for e <z < I n; oP* v;‘ni Ufm
w(z) = wp for x>z . (15) p(%) Oz ~ AL + At + R (18)



This Neumann condition for the pressure is substituteddue to numerical errors, equation 21 is not necessarily

into the integral formulation in equation 16: satisfied. Le denote the resulting numerical error for
any given cell. For each cell whose flux is not conserved,
1 oP* ukn, a correction is applied prior to performing the VOF ad-
—_——n; = ds + Rin; : ; .
s, p(oF) ox; s At vection. For example, the following reassignment of the
v flux along the vertical direction ensures that the redefined
+ / ds—— (19)  flux is conserved:
s, At
. . . . . -+ + SA?T
This equation is solved using the method of fractional F = Fy - AT A
areas. Details associated with the calculation of the 500
area fractions are provided in Sussman & Dommermuth o EA3 (22)
(2001) along with additional references. Cells whose cut 3 3 A + A5

volume is less than 25% of the full volume of the cell are
merged with neighbors_ The merging occurs a'ong th@ased on thIS new ﬂUX, new relative Ve|OCitieS are de'
direction of the steepest gradient of the signed-distancéned on the faces of the cell:
function. This improves the conditioning of the Pois- Ap B
son equation for the pressure. As a result, the stability of a; = — (23)
the projection operator for the velocity is also improved N
(see equations 9 and 12). whereAz; is the grid spacing an¥ = Az AzsAxs
is the volume of the cell. Away from the ship huil;
INTERFACE RECONSTRUCTION AND ADVECTION is the relative velocity with a corrective term to conserve
mass. Inside the ship hutl; = 0 becaused; = 0. Near
In our VOF formulation, the free surface is recon- the ship hull,i; is scaled by the fraction of area that is
structed from the volume fractions using piece-wise lin-cut by the presence of the ship hulii; is continuous
ear polynomials. The reconstruction is based on algoacross the faces of the cells along andy—axes, but
rithms that are described by Gueyffier et al. (1999). Thediscontinuous across the faces alongthexis because
surface normals are estimated using weighted central difin this particular example that is the axis where the flux
ferencing of the volume fractions. A similar algorithm is has been corrected.

described by Pilliod & Puckett (1997). Near the body,  Equation 2 is operator split. A dilation term is added
care must be taken to use cells whose volume fraction |§0 ensure that the volume fraction remains betv\@eih
exterior to the body in the calculation of the normal to 4 < 1 during each stage of the splitting (Puckett et al.
the free-surface interface. The advection portion of the1997). The resulting discrete set of equations for the first

algorithm is Operator Spllt, and it is based on similar al'stage of the time_stepping procedure is pro\/ided below:
gorithms reported in Puckett et al. (1997). Major differ-

: ; ok ok
ences between the present algorithm and earlier methods Fi [(Uf) 7¢k7At} ) [(Ul ) 7¢k7At}
include special treatments to account for the body and tg, — »*
alleviate mass-conservation errors due to the presence of v
non-solenoidal velocity fields. At (u;r)k _ (u;)k
. + N
Let F; denote flux through the faces of a cefi; is Axq

expressed in terms of the relative velocity ¢ v;) and
the areas of the faces of the cell,| that are cut by the (Z -4 —

ship hull: v
= (ot o am)\P
Fr= A (=) (20) v aplie) )
2
If the ship hull does not cut the cell, thety correspond . Fs {(ﬁ;)k,é, At} S {(ﬁg)k,g?), At}

to the surface areas that bound the cell. Near the ship* = ¢ —
hull, A; is some fraction of the surface areas that bound X X
the cell. Note thatd; = 0 inside the ship hull. Based on = (af)" — (a3)
an application of Gauss’s theorem to the volume integral Ry ve—
of Equation 1 and making use of Equation 6:

(24)

F; denotes VOF advection based on the uncut areas of
Ff—F =0, (21)  the faces of the cell. As an example, for a cell that is full
of water, F; (’111, ¢, At) = ¢a1AtAac2Aa:3. The dila-
WhereF;r is the flux on the positive i-th face of the cell tion term is treated explicitly in the first two parts of the
and F;~ is the flux on the negative i-th face of the cell. operator-slip algorithm and implicitly in the last part of

4



the preceding equation. Note that the order of the splitUpon substitution of equation 27 into the preceding
ting is alternated from time step to time step to preserveequation, the following Neumann condition is derived for
second-order accuracy. the pressure at the exit of the computational domain:

The free-surface interface that is reconstructed from 19P duy
the volume fractions is most often calculated and visual- — o = Uc
. . . o . p Ox ox
ized using commercial codes. Specifically, commercial
codes calculate the 0.5 isosurface of the volume-fractiomhis equation is substituted into the set of finite-volume
function ¢. The free-surface interface that is calculatedequations that govern the pressure (see equation 19).
fromfthe Or.]5 lgosurface IS dlfijefrent frrc])m thle freef\-sur_face Equations 27 thru 30 prevent the reflection of distur-
Intertace that Is reconstructed from the volume fractionsy,, ceq pack into the interior of the computational do-

To illustrate this point, consider a cell whose volume main. However, these equations do not guarantee the

1|‘_ract|Aongbo IS bethwe(re]n ,hﬁlf fl;”r?nd fﬁllOﬁ = %o Shl' o conservation of mass. In order to conserve mass, a re-
fEt z feno?et fe €9 rt]o_t € cle .d shsumﬁ thatﬂt _ggridding procedure is introduced. The initial volume
ree-surface Interface Is horizontal and that all the luidg, ion is integrated for the grid cells that are on the

is sitting in the bottom of the cell. Then the height of the ading edge of the computational domain. This inte-

: I
free-surface mterfaqe a_bove the bottom of the cell baseéerated quantity is used to maintain a constant mean water
on VOF reconstruction is as follows:

level at the entrance to the computational domain. At the
n=doAz . (25 end of each time step, changes in the integrated volume

fraction are calculated. Any changes in the integrated

In contrast, based on the 0.5 isosurface, the height of theolume fraction are eliminated by imposing a vertical ve-

+ Ry . (30)

free-surface interface is locity that brings the mean water level at the leading edge
3 1 back into alignment. The velocity correction is used to
n= (2 " 5% ) (26)  move the volume fractions over the entire computational

domain either up or down, depending on the situation. A

The maximum difference between equations 25 and 26/OF method is used to move the volume fractions. The

occurs whenp, = 3/4. The error at this point is about VOF method ensures that the free-surface interface re-
11% higher for 0.5 isosurface relative to VOF reconstruc-mains sharp during the regridding process.

tion. If the volume fraction is less thath < 0.5, then the

0.5 isosurface does not even exist. This is problematignTiaL TRANSIENTS

in visualizations of turbulent flows with lots of spray be-

cause droplets and sheets of water can suddenly appear Initial transients are minimized using an adjustment

and disappear. procedure. An analysis of adjustment procedures as it
applies to free-surface problems is provided in Dommer-
RADIATION CONDITIONS muth (1994) and Dommermuth (2000). L&t) denote

the adjustment factor as a function of time, thn) and
Exit boundary conditions are required in order to its derivativef’(t) are by definition
conserve mass and flux. For ships with forward speed, an

Orlanski-like formulation (Orlanski 1976) provides the f@) = 1- eXp(—(i)2)
necessary radiation condition. ; Tf;
') = 25 exp(—(7)%) . (31)
du 0m g @27) T2 T,
ot Ox

whereT, is the adjustment time. The adjusted velocity of

Ue i; the forw_ard speed of the ;hip, andis the water- 5 ship moving with unit forward speed along the x-axis
particle velocity along the x-axis. For the other compo-q

nents of velocity and the volume fraction, zero gradients

are imposed at the exit of the computational domain: v = f(t) . (32)
Ouy _ Oug _ 99 —0 . (28) For a ship hull that is oscillating up and down, the vertical
or Or ox motion (z) and vertical velocity ¢3) of the free surface

Neumman conditions are specified for the pressure in & & body-fixed coordinate system are
manner that is very similar to the imposition of free-slip

conditions on the ship hull (see equations 16 thru 19). = Asin(wt)/(t) , .

Based on the x-component of momentum, vy = Awcos(wt)f(t) + Asin(wt) f'(t) . (33)
10P  Ou R - A is the amplitude and is the frequency of the verti-
poxr Ot i (29)  cal motion. Since the free surface moves relative to the



ship hull, there is no need to recalculate how the ship(Equations 8 & 11). If the density is smoothed, then the
hull intersects the cartesian grid. This is the major adsame smoothed density must be used in the projection
vantage of body-fixed coordinate systems relative to costeps (Equations 9 & 12).

ordinate systems that are not fixed relative to the body

(Repetto 2000). The main disadvantage of body-fixed

coordinate systems is that for rotational modes of moResylts

tion, the Courant condition may be very restrictive near

the ed fth tational d in.
e edges of the computational domain 5365 geometry

ENFORCEMENT OFCOURANT CONDITIONS Experimental measurements of model 5365 have
i i L been performed at Froude numbédrs = 0.2518 and

_ The momentum equations are integrated in time usy) 431 that correspond to equivalent full-scale speeds of

ing an explicit Runge-Kutta algorithm. As a result, @ 14 5 and 18 knots, respectively. Details of the experi-

Courant condition must be enforced for the maximumy,enia| measurements are provided in Wilson, Fu, Pence

relative velocity: & Gorski (2006).
Ax; Corresponding to these experiments, three-
ui —vil < C At (34 dimensional numerical simulations using

) - 680x192x128=16,711,680 grid points, 4x8x4=128
C is a coefficient that ensures that the Courant Cond"sub-domains, and 128 nodes have been performed on
tion is satisfied for both the momentum equations and, Cray XT3. The length, width, depth, and height of
the VOF advection. Typically) = 0.45 in the numeri- e computational domain are respectively 3.0, 1.0,
cal results that are presented in this paper. If the Couranflo’ 0.5 ship lengths (L). Grid stretching is employed
condition is exceeded, the magnitude of the velocity isj, 41 directions. The smallest grid spacing is 0.002L
reduced such that the Courant condition is satisfied. Thigaar the ship and mean waterline, and the largest grid

clipping of the velocity field tends to occur in regions gnacing s 0.02L in the far field. This provides about 8
where fine spray is formed, especially in the rooster-tail, g1 celis across the transom of the low Froude-number
region. case, and 11 x 61 grid cells for the high Froude-number
case. For the low Froude-number case, there are 200
TREATMENT OF CONVECTIVE TERMS cells per transverse wavelength (0.398L) where the grid
spacing is fine and 20 grid cells where it is coarse. For
The convective terms in the momentum equationshe high Froude-number case, there are 585 cells per
(see Equation 3) are calculated using a slope-limitedtransverse wavelength (1.17L) where the grid spacing
QUICK, finite-difference scheme (Leonard 1997). Spe-is fine and 58.5 grid cells where it is coarse. Initial
cial treatments are required near the ship hull. One postransients are minimized by slowly ramping up the
sibility is to use one-sided differencing. However, one-free-stream current. The period of adjustment associated
sided differencing is often unstable. Another possibility with this ramp up is 0.5 in non-dimensional units of
is to extend the velocity of the fluid into the ship hull. time, whereT' = (L/g)'/? is the normalization factor.
In this case, setting the velocity equal to zero inside theFor these simulations, the non-dimensional time step is
body is stable, but too “sticky.” Another possibility is to t=0.0005. The numerical simulations run 12001 time
extend the fluid velocity into the ship hull in such a man- steps corresponding to 6 ship lengths. They each require
ner that the no-flux condition is met right at the ship hull. 50 hours of wall-clock time.

The interior flow that meets this condition is as follows: Figure 1 shows wave cuts for the 10.5 knot case.

(35) The correlation coefficients between experimental mea-

surements and numerical predictions for parts (a) thru
where recalb; is velocity of the body and,; is the unit ~ (d) of Figure 1 are 0.89, 0.91, 0.85, and 0.86, respec-
normal that points along gradient of the signed-distancdively. The solid and dashed lines respectively denote
function (). At the ship hull,u;n; = v;n; using this  the experimental measurements and the numerical pre-
formulation of the interior flow. dictions. The correlation gets poorer in the region where
the grid spacing along the y-axis gets poorer. The short-
est waves are not resolved by the numerical simulations.
More grid resolution is required. Convergence studies
are in progress.

u; = (vyng)n;

DENSITY SMOOTHING

The density as a function of the volume fraction is
smoothed using a three-point stencil (1/4,1/2,1/4) thatis  Figure 2 shows wave cuts for the 18 knot case. The
applied consecutively along each of the cartesian axesorrelation coefficients between experimental measure-
This improves the conditioning of the Poisson equationments and numerical predictions for parts (a) thru (d) of



Figure 2 are 0.89, 0.92, 0.88, and 0.91, respectively. Ithe bow. As a result, the NFA predictions are slightly
general, the high Froude-number simulation is in slightlylower than the maximum free-surface profile that has
better agreement with the experimental measurementseen measured.

than the low Froude-number simulation, probably be- Figure 3 compares NFA predictions to whisker-

cause the waves are longer. However, both simulationﬁrobe measurements for the flow near the stern. The
would benefit from using higher resolu_tion, especiall_y ortion above the centerline of the ship represents NFA
near the bow and transom where there is wave breakinflg s while the portion below is based on experiments.
and flow separation. Black lines mark the edges where spilling occurs. NFA
accurately captures the flow separation from the transom
5415 geometry stern and agreement between predictions and measure-

. ents is good overall. However, at this resolution some
Experimental measurements of a DDG model 5415m - ’ -

illing along th fthe r rtailis n red.

have been performed at Froude numh€rs-0.2755 and spilling along the edges ofthe rooster tail is not captured

. s a result, the predicted rooster-tail amplitude directly
0.4136 that correspond to equivalent full-scale speeds Of;\stern of the transom is higher than measurements. Sim-

?O and ?;0 knots,f_rlespecu;]/ely.h'_l'hﬁ Te?suremtfents 'nlcmdﬁlations that resolve the breaking in this region may pro-
t{gﬁjﬁé:ﬁ;g&;ﬁ;gg ;tsrr? uIFs)ingL; 6’1 v:/i?sigi g(rfbi e;’?iéide the dissipation of energy that is necessary to reduce
total drag. The length, beam, and draft of the model are © Wéve amplitude in the rooster-tail region.
respectively 5.72m, 0.388m, and 0.248m. The model- F|_gure 5 shows transverse cuts of the free-surface
scale speeds are 4.01 and 6.02 knots. Details of the huilevation near the bow. The cross section of the port

geometry, inc|uding the Sinkage and trim, are providedSide of the hull is outlined USing a grey shade. Circular
by the Carderock Division (2005). symbols denote the profile measurements along the side
. . . . . . of the hull. Solid lines denote whisker-probe measure-
A three-dimensional numerical simulation using ments. Dashed lines denote NFA predictions. Results are

800x192x192=29,491,200 grid points, 4x8x8=256 Sub'shown for various stations aft of the bow from (a) x=0 to

domains, and 256 nodes has been performed on a Cre&/) x=-0.169L, where L is the ship length. The figures

XTt&t' Thel (Ijength, width, deptth, E}nd3 %eif%t T(t)hg gonrﬁ; show the overturning of the bow wave. The initial onset
putational domain are respectively 3.9, L.U, 1.9, 9.5 SRyt o antrainment is evident in the NFA predictions. In
lengths (L). Gnd_stretch_mg is employed in all dlrect_lons. ddition, fragments of splash up are also captured. As
The smallest grid spacing is 0.0008L near the ship amzxpected, the whisker-probe measurements provide an

mean waterline, and the largest grid spacing is 0.05Lu : o :
) X . _upper envelope to the numerical predictions. This effect
in the far field. For the high Froude-number case, thISIS illustrated in Figure 5k, where the bow wave is just

pr%VIfgzoabq(LjJt 15” X 100tgr|d cells acrosls th(;,\htralmos?L eginning to overturn. For this station, there is a sud-
an grid cells per transverse wavelength (1. en jump in the whisker-probe measurement that corre-

yvhere the grid Spacing 1S fine and 20 gnd cells Wheresponds to the instrument measuring the top of the spray
it is coarse. Initial transients are minimized by slowly sheet. The envelop of the plunging event is captured well
ramping up the free-stre_am current. As before,_ the p.eby the numerical simulations as illustrated in Figures 5k-
riod Of adjus_tment a_ssomafced with th|§ ramp up 1S 0.5 No. Figures 50 & 5p show the initial stages of splash up.
non-d!mens!onal units of “”.‘e-_For this simulation, t.he The results of the numerical simulation are not as ener-
npn-dlmensmnal time step Is t=0.0002. The numencal etic as the experiments. Higher resolution may help in
simulation runs 28001 time steps corresponding o 5. his particular region. The entrainment of air is observed

ship lengths. It requires 125 hours of wall-clock time. in Figure 5p-t. The splash up is resolved better by the
Figure 4 compares NFA predictions to experimen-numerical simulations in Figures 5s & 5t. However, the
tal measurements for the flow near the bow. The freewhisker-probe measurements are consistently lower than
surface profile measurements are denoted by sphericégie numerical simulations in Figures 5g-t. This requires
symbols along the ship hull. The ship hull is outlined further study to find the source of the discrepancy.

in grey. Whiskgr-probe measurements are indicgted by Figure 6 shows the total resistance as a function of
the small spherical symbols transverse to the ship. Du‘ﬁme Time is normalized by, /U, whereL, — 5.72m

to the measuring technique, whisker-probe data providegndU — 3.10m/s. The solid line is the measured
an upper bound of the free-surface elevation. NFA pre'steady—state value and the dashed line is the unsteady

dictions of the free surface are denoted by the color CONKEA prediction. The NFA predictions are calculated by

tour. I_n general, the whisker-probe measuremen_ts_agreiﬁtegrating the normal component of the pressure along
well with the upper bound of the free-surface predictions

NFA correctly predicts the overturning of the bow wave.the direction of travel over the surface of the ship hull.
and the resulting splash up slightly aft of the bow. At Based on ITTC line, the portion of the drag that tangen-

. ; . ) : tial to the ship is added to these results to predict the to-
this resolution, the numerical simulations do not resolv

the very thin sheets which characterize the run-up negtral drag. This additional term is required because NFA is



an Euler code that does not directly predict skin-frictioninterface capturing methods. Once again, comparisons
drag. Unlike potential-flow formulations, NFA does not are shown to the bow flow of model 5415. The results
require a correction for residuary resistance associatedo not show significant improvement over their earlier
with the shedding of vorticity because Euler formula- results. However, their calculations of the breakup of
tions account for base drag. The figure shows NFA re-a turbulent spray sheet illustrate a novel application of
sults converging to the steady-state resistance. We noiaterface-capturing methods. Dommermuth et al. (2004)
that there are known long-time transients associated withise two methods to study the flow around model 5415, a
a ship accelerating from rest to constant forward speedertical strut, and a bluff wedge. The first method uses
(Dommermuth, Sussman, Beck, T.O’'Shea, Wyatt, Olsorfree-slip conditions on the hull in combination with a hy-
& MacNeice 2004). brid level-set and VOF interface-capturing method. In
addition, adaptive mesh refinement (AMR) is used to im-
Sphere geometry prove grid resolution near the hull and free-surface inter-
face. Their preliminary results illustrate the efficiency
Consider the motion of a heaving sphere that is mov-of AMR. The second method uses body-force and VOF
ing with forward speed. The purpose of this study isformulations on a cartesian grid with no grid stretching.
to build toward developing a capability that is suitable The results show more fine-scale detail than the earlier
for forced-motion studies and seakeeping. The Froudetudies. The predicted free-surface elevations compare
number isFr = U,/v/gD = 0.5, whereD is the di-  well with experiments, but the body-force method is too
ameter of the sphere. The normalized diameter of thesticky.” Based on these results, the present research uses
sphere isD = 1. The amplitude of the heaving mo- free-slip boundary conditions to impose the body bound-
tion is A = 0.25 and the frequency of oscillation is ary condition to reduce stickiness. The VOF algorithm
w = 2w (see Equation 33). Three grid resolutions arehas been generalized to include free-slip conditions on
studied: 64° = 262,144, 128° = 2,097,152, and  the ship hull. The grid is stretched along the cartesian
256° = 16,777,216 grid points. The length, width, and axes to improve grid resolution. Together, these new for-
height of the computational domain are 4. The smallesinulations enable the modeling of complex free-surface
grid spacings for the coarse, medium, and fine grids ar@ows.
respectively 0.00412, 0.0206, and 0.0103. The time steps It is not possible to show all of the details in the cur-

are respectively 0.0025, 0.00125, and 0.0006225. rent numerical predictions through the use of figures. In

Figure 7 shows the x-component of force acting onorder to study the flow in even more detail, several ani-

a sphere moving with forward speed, and Figure 8 showsnations have been prepared at the flow visualization cen-
the z-component. The forces are normalized by the dister at ERDC. The animations are accessible by contact-
placement of the sphere, which is initially halfimmersed.ing the authors. Animations are available for all the cases
The forces only include the portion of the pressure thaishown in this paper.

is directed normal to the surface of the sphere. The ef-

fects of skin friction are not included. First- and second-

harmonic interactions are evident in both components ofAcknowledgements
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Figure 1: Athena 10.5 knot wave cuts.
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Figure 2: Athena 18 knot wave cuts.
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Figure 3: Model 5415 bow view.

Figure 4: Model 5415 stern view.
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Figure 5: Model 5415 transverse wave cuts.
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Figure 5: Model 5415 transverse wave cuts, continued.
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Figure 5: Model 5415 transverse wave cuts, continued
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Figure 7: X-component of force acting on a heaving sphere moving with forward speed.
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Figure 8: Z-component of force acting on a heaving sphere moving with forward speed.
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Figure 9: Time sequence of a heaving sphere moving with forward speed.
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